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CLASSICAL DETERMINATE TRUTH I

KENTARO FUJIMOTO AND VOLKER HALBACH

Abstract. We introduce and analyze a new axiomatic theory CD of truth. The primitive truth predicate
can be applied to sentences containing the truth predicate. The theory is thoroughly classical in the sense
that CD is not only formulated in classical logic, but that the axiomatized notion of truth itself is classical:
The truth predicate commutes with all quantifiers and connectives, and thus the theory proves that there
are no truth value gaps or gluts. To avoid inconsistency, the instances of the T-schema are restricted to
determinate sentences. Determinateness is introduced as a further primitive predicate and axiomatized. The
semantics and proof theory of CD are analyzed.

Ad veritatem autem copulativae requiritur quod utraque
pars sit vera, et ideo si quaecumque pars copulativae sit
falsa, ipsa copulativa est falsa.

William of Ockham, Summa Logicae II.32

Ad veritatem autem [propositionis] disiunctivae requiritur
quod aliqua pars sit vera[.]

William of Ockham, Summa Logicae II.33

§1. Classicality and compositional semantics. Philosophy abounds with general
claims expressed with a truth predicate: Philosophers debate whether there are
contingent or synthetic a priori truths, and whether there are unprovable or
unverifiable truths; they mostly agree that what is known is true, but that some
justified true beliefs are not known; they teach their students that the conclusion of
a valid argument is true if its premisses are true and try to convince their students
that the rules of natural deduction are truth-preserving. Specific instances of these
claims can often be stated without a predicate for truth; but the quantified claims
make essential use of the truth predicate.

In the arguments for this kind of claim, assumptions about the truth predicate
are often used implicitly without further ado. In the present paper we strive to make
these assumptions explicit by listing principles about the truth predicate that are
jointly consistent with further plausible assumptions about the objects to which
truth is ascribed. We presuppose that these objects share the structure of (types of)
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CLASSICAL DETERMINATE TRUTH I 219

sentences without entering the debate about whether truth applies to propositions,
beliefs, sentence tokens, or still other things.1

It is widely believed that truth serves its role as a device of generalization in virtue
of its disquotational feature; and a large part of the literature on truth is devoted to
the development of strong disquotational truth theories. However, in their zeal to
devise theories of disquotational truth, some philosophers seem to have lost sight of
how we reason with generalizations. When truth is used as a device of generalization,
disquotation is not the only principle that is used in reasoning with generalizations.
Compositional principles are just as important and used routinely without qualms.
We give three examples.

Our first example comes from logic. When motivating axioms or rules for a logical
calculus, compositional laws of truth are used. In the case of the elimination rule
for conjunction or for the universal quantifier in natural deduction, students usually
quickly accept the claim that the rule preserves truth. At this point in the course,
students may not have seen the model-theoretic notions of satisfaction and truth or
the object/metalanguage distinction at all; nevertheless they have no problems in
seeing that a conjunct must be true if the conjunction is true and that a substitution
instance is true if the universally quantified sentence is true. The point can also be
made about the history of logic: Logicians chose sound logical calculi long before
the arrival of the modern model-theoretic notion of truth in Tarski and Vaught
[43] in 1956 (as far as we know; see Hodges [26]). Truth preservation of logical
rules is often assumed to hold without any restriction. Any restriction to a specific
sublanguage is at odds with the universality of logic.

The use of the compositional principles is by no means confined to the realm of
logical theorizing. Our second example is from epistemology. Most epistemologists
would be happy to endorse the following argument, which could form part of a
Gettier example:

Smith believes a disjunction. He is justified in believing one
disjunct, which happens to be false, while he does not believe the
other disjunct, which happens to be true. Therefore Smith has a
justified true belief.

In this argument we reason about the truth (and justification) of beliefs by analyzing
and manipulating their logical structures without explicitly specifying exactly what
these beliefs are. The validity of the argument depends on the assumption that a
disjunction is true if one of its disjuncts is true, as stated by Ockham in the second
quote above. Fujimoto [16, 17] called this kind of reasoning blind deduction, because
we reason about the truth of beliefs or sentences without being able to specify these
beliefs or sentences by means of a quotational name or a structural description.
Disquotation axioms or T-sentences used as axioms permit only reasoning about
the truth of sentences that are explicitly given by such a naming device.

1There are many alternative approaches. Philosophers have tried to recover the expressive power of
the truth predicate by employing propositional quantification. Sophisticated theories of propositions
as objects to which truth is ascribed have been developed. Here, we do not have space to discuss these
alternatives. See Halbach and Leigh [24] for a discussion.
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220 KENTARO FUJIMOTO AND VOLKER HALBACH

The use of the compositional principles is so ubiquitous that their use often goes
unnoticed as in our third example:

Alfred made a claim that was denied by Kurt (i.e., Kurt asserted
the negation of the claim); and everything Kurt claimed is true.
Therefore not everything Alfred claimed is true.

For the validity of this argument we require the principle that a claim is not true if
its negation is true.

In the examples we quantify over all sentences, beliefs, or propositions. Blind
deductions are not restricted to sentences that are safe, grounded, determinate,
healthy, non-circular, or in some other way ‘unproblematic’. Moreover, the full
compositional principles are consistent without any restrictions on the underlying
logic or syntax theory.

The axioms for truth can and should be added to a base theory that yields at
least a comprehensive theory of syntax (in a direct or coded form); the base theory
may also go far beyond a theory of syntax. In [22, 23] the second author formulated
the truth theory over set theory as the base. Here, however, we start from Peano
arithmetic, which is traditionally used as base theory for axiomatic theories of truth;
but we consider it only as a simple model case. Expressions are identified with their
codes. As usual, we confine ourselves to a truth rather than a satisfaction predicate
in the case of arithmetic, as names for all objects are available and satisfaction and
variable assignments are not needed. All extensions of Peano arithmetic we consider
are formulated in classical logic.

In what follows, L0 is the language of arithmetic. The axioms are formulated in an
expansion of L0 with further predicate symbols T and D. Negation and conjunction
are the only connectives, and the universal is the only quantifier in the language;
other connectives and the existential quantifier are assumed to be defined. In the
axioms below Sent(x) expresses that x is a sentence ofL. The symbol ¬. expresses the
function that, if it is applied to a sentence, returns its negation. If a suitable function
symbol is not in L0, this function needs to be expressed by a suitable formula; ∧. and
∀. are defined analogously. The quantifier ∀t ranges over (codes of) closed terms and
is defined using a suitable formula describing the set of closed terms; and x(t/v)
designates the result of formally substituting t for the variable v in x. The following
axioms then express that a negated sentences is true iff the sentence is not, that a
conjunct is true iff both conjuncts are, and that a universally quantified sentence is
true iff all its substitution instances are:

T4 ∀x
(

Sent(x) → (T(¬. x) ↔ ¬Tx)
)
,

T5 ∀x ∀y
(

Sent(x∧. y) → (T(x∧. y) ↔ Tx ∧ Ty)
)
,

T6 ∀v ∀x
(

Sent(∀.v x) → (T(∀.v x) ↔ ∀t Tx(t/v))
)
.

The axioms T4 –T6 capture a thoroughly classical concept or truth: The truth theory
is not only formulated in classical logic, but the notion of truth axiomatized by
T4 –T6 is itself classical. According to the axioms, truth commutes with quantifiers
and connectives for all sentences, including those with the truth predicate. Theories
such as the Kripke–Feferman theory [8, 37] or Cantini’s [6] VF are formulated in
classical logic as well, but capture a non-classical notion of truth.
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Axiom T4 disproves the existence of truth value gaps and gluts. We define falsity
as the truth of the negation, that is, we stipulate: Fx :⇔ T¬. x. If the truth predicate
is classical and T4 is assumed, then falsity is equivalent to non-truth. Thus, every
sentence is true or false; and no sentence is both true and false.

Disquotation axioms have been been thought to be more fundamental than the
compositional axioms. Consequently, there have been various attempts to obtain
compositional from disquotational principles. Tarski [42, p. 259] tried to derive
restricted compositional principles from the T-sentences using what he called the rule
of infinite induction, which is a generalization of the �-rule. More recently, some
authors, including Halbach [19] and Horsten and Leigh [27], have used reflection
principles instead, which are of course finitized versions of infinitary rules. We
are sceptical about the prospects of justifying compositional from disquotational
axioms. There are general objections against the use of infinitary and reflection
rules to this end. Another crucial objection is especially relevant when unrestricted
compositional principles are employed. Usually, attempts to obtain compositional
axioms for all sentences of a certain kind from disquotational principles rely on
the disquotation principle for all sentences of this kind. For instance, we may try
to derive the compositional axioms for all T-free (or T-positive) sentences from
all equivalences T�φ� ↔ φ, where φ is T-free (or T-positive). However, in the case
of the completely unrestricted compositional axioms T4 –T6, this strategy is not
very promising. Of course, the unrestricted compositional axioms T4 –T6 can be
derived from all instances T�φ� ↔ φ; but this is because the unrestricted T-schema
is inconsistent over arithmetic. Hence, we will not be able to derive all type-free
compositional from disquotational principles, even if some kind of infinitary rule
is assumed.2 Therefore we adopt the unproblematic, fully general compositional
principles as axioms and do not attempt to derive them from a disquotation schema,
which has to be restricted in some way.

§2. Determinateness and disquotation. Our policy for restricting disquotation
is inspired by disquotationalist and deflationist theories of truth. We expand the
base language L0 by adding sentences that are needed for semantic ascent and
generalization. The sentences of the base language together with those needed for
semantic ascent and generalization form the set D. Roughly, if we have a sentence
φ in D, we also add an equivalent new sentence T�φ� as a ‘copy’ of φ. These copies
are required for semantic ascent. We close then under connectives and quantifiers
in a way to be explained. This permits generalizations, because we can now express,
for instance, that all provable sentences of L0 are true. This process is then iterated:
We add copies T�φ� for semantic ascent and then close under connectives and
quantifiers in order to be able to generalize. We add only sentences to D that

2This claim requires some qualification. It is possible to obtain all compositional axioms from a single
consistent instance of the T-schema by a trick due to McGee [32] based on Curry’s paradox. Let C be
the conjunction of all compositional axioms. By the diagonal lemma there is a sentence � such that
� ↔ (T��� ↔ C ) is provable. This sentence is logically equivalent to (T��� ↔ �) ↔ C . Therefore the
equivalence T��� ↔ � is a re-axiomatization of the compositional axioms over arithmetic. We see this
as a mere curiosity; but it shows that the claim that one cannot get all type-free compositional axioms
from a consistent set of T-sentences needs some qualification.
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222 KENTARO FUJIMOTO AND VOLKER HALBACH

are required for semantic ascent and generalization, not all sentences of the full
language L. In particular, not all sentences of the form T�φ� are in D. The set D
fails to be decidable. In a general setting with ‘contingent’ vocabulary, whether a
sentence belongs to D may depend on empirical facts.

Our truth theoryCD itself is formulated in the full languageL; but the disquotation
schema is restricted to sentences of D, that is, to the sentences of the base language
and those needed for semantic ascent and generalization. Being a sentence of D is
expressed in CD by the primitive predicate symbol D, which is suitably axiomatized.
As disquotation schema we can then use D�φ� → (T�φ� ↔ φ) for all sentences
of L, or rather a generalization thereof with parameters. We call the sentences in D

determinate. If it were not for the additional predicate D, they would be the sentences
that are grounded in Kripke’s [28] sense (with some qualifications).

This approach ensures that truth can be used as a device of generalization over
sentences in L0 and over generalizations of such generalizations, and so on. Hence
this use of truth is fully available in CD. However, disquotation is not available for
sentences that cannot be reached by semantic ascent and generalization.

2.1. Determinateness. We describe and axiomatize D, the set of determinate
sentences in more detail. First, we declare all atomic sentences of the base language
L0 determinate:

D1 ∀s ∀tDs=. t.

That is, all closed identity statements are determinate. If there were further predicate
symbols in the base language, analogous axioms would be added. The axioms below
will enable us to prove that all sentences of the base language L0 are determinate.

If and only if φ is determinate, that is, in D, we add a copy T�φ� of φ to D. This
is stated for arbitrary closed terms t, not only numerals �φ�:

D2 ∀t
(
DT. t ↔ Dt◦

)
.

The expression t◦ stands for the value of the term t. We cannot have a function
symbol ◦ in our language, and thus this function needs to be expressed by a suitable
formula.

A negated sentence is determinate iff the sentence is:

D4 ∀x
(

Sent(x) → (D(¬. x) ↔ Dx)
)
.

Whether a conjunction is determinate depends on the determinateness of its
conjuncts. Clearly, if both conjuncts are determinate, then so is their conjunction;
and if both are indeterminate, so is their conjunction. But is a conjunction
determinate if only one conjunct is?

Our choice here is motivated by the function of truth as a generalizing device.
Typically, a universal generalization would have the form ∀x (φ(x) → Tx). The
formula φ(x) could express that x is a provable sentence of Peano arithmetic
or that x is sentence of the form T�T ··· �0=0�� ···�. We consider the simple
example ∀x (x=�0=0� → Tx) whose antecedent is satisfied by a single sentence
only; we ‘generalize’ via semantic ascent over all sentences of the form 0=0. Of
course, generalization via semantic ascent is not needed for a single sentence; but
‘generalizing’ over a single sentence demonstrates the principle. If D contains the
sentences required for generalizing via semantic ascent, then∀x (x = �0=0� → Tx)
should be determinate. The determinateness of universal quantified sentences
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depends on their instances. Let � be an indeterminate sentence. Then the instance

���=�0=0� → T��� (1)

has a determinate antecedent and an indeterminate consequent, by axioms D1
and D2. If the instance (1) were indeterminate, so would be the universal
generalization ∀x (x=�0=0� → Tx) by any reasonably determinateness rules for
quantification. Hence, our axioms for D should declare (1) determinate.

The determinateness of (1) should follow from the determinateness of the
antecedent ���=�0=0�. The falsity of the determinate antecedent renders the
consequent irrelevant; and the truth value of (1) does not depend on the consequent.
Thus, we stipulate that a sentence φ → � can inherit its determinateness from a
determinate and false antecedent. Equally, we also postulate that it is determinate
if it has a true and determinate consequent.

This method of generalization applies equally if we do not only ‘generalize’ over
a single sentence such as 0 = 0, but, for instance, over all sentences provable in PA.
Moreover, iterated semantic ascent permits generalization over all sentences 0=0,
T�0=0�, T�T�0=0��, and so on.

In our official language negation and conjunction are our only connectives.φ → �
is conceived as an abbreviation of ¬(φ ∧ ¬�). In the presence of D4 we can then
state our determinateness axiom for binary connectives in the following way:

φ ∧ � is determinate iff:
φ and � are both determinate, or
one of the conjuncts is false and determinate.

This is expressed in the following axiom:

D5 ∀x ∀y
(

Sent(x∧. y) →
(
D(x∧. y) ↔

(
(Dx ∧ Dy) ∨ (Dx ∧ Fx) ∨ (Dy ∧ Fy)

)))
.

By our conventions above, Fx abbreviates T¬. x, namely, falsehood of x; also note
that Dx and D¬. x are equivalent by the axiom D4. By axiom T4, F can be replaced
with ¬T.

Another way to argue for our treatment of binary connectives would be to
argue that sentences such as ∀x (x = �0=0� → Tx) and its instance (1) are only
about the determinate sentence 0=0 and should be treated just like T�0=0�.
The latter is determinate by axiom D1. Thus, it may be argued, semantic ascent
applies to (1) and the universally quantified sentence in the same way it applies to
T�0=0�. However, making precise the underlying notion of aboutness is notoriously
challenging (see Picollo [33, 34]); we do not attempt to pursue this line here.

Universally quantified sentences are treated as conjunctions of their instances:

D6 ∀v ∀x
(

Sent(∀.v x) →
(
(D(∀.v x) ↔

(
∀tDx(t/v) ∨ ∃t

(
Dx(t/v) ∧ Fx(t/v)

))))
.

Injecting the notion of determinateness into the object language makes it possible to
apply the truth and determinateness predicates to sentences containing D. We treat
both, truth and determinateness, as completely type-free: D and T can be applied
meaningfully to any sentence of the language. This is in contrast to traditional
conceptions of groundedness, which apply to sentences with truth, while truth
cannot be applied to sentences containing groundedness claims. Therefore, in our
setting, the question arises whether atomic sentences of the form Dt are determinate.
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224 KENTARO FUJIMOTO AND VOLKER HALBACH

Treating D like an elementary predicate of L0, that is, a predicate from L0 would
suggest the axiom ∀tDD. t. This would mean that we have T�Dt� ↔ Dt for all
terms t. However, when it comes to complex sentences, we axiomatize D in terms
of T in D5 and D6. Hence, it looks unsafe to declare all sentence Dt determinate;
D should be treated with the same caution as T: If, and only if φ is determinate, we
stipulate that D�φ� is determinate. Generalizing this to terms other than numerals
gives the following axiom analogous to D2:

D3 ∀t (DD. t ↔ Dt◦).

This concludes the list of determinateness axioms.

2.2. Disquotation. We still need to add axioms stipulating that a sentence T�φ� in
D is always obtained by semantic ascent and thus a ‘copy’ of φ. Formally, we require
that D�φ� → (T�φ� ↔ φ) is a theorem of our theory CD for every sentence of L.
We also require that our theory proves a more general, ‘uniform’ version of the
disquotation schema; that is, we generalize it by quantifying over the closed terms
and postulate for every formula φ(x1, ... , xn) with at most x1, ... , xn the following:

DDS ∀t1 ... ∀tn
(

D�φ(t.1, ... , t.n)� →
(
T�φ(t.1, ... , t.n)� ↔ φ(t1◦, ... , tn◦)

))
.

In this uniform determinate disquotation schema the expression �φ(t.1, ... , tn. )�
stands for a complex term expressing that t1, ... , tn are formally substituted for
the free variables in φ(x1, ... , xn). This permits us to bind the variables t1, ... , tn in
�φ(t.1, ... , tn. )�. This concludes the list of axioms for our theory CD.

2.3. Alternative axiomatizations. In the presence of the compositional axioms
T4 –T6, we need to stipulate DDS only for atomic φ. Whatever our policy on
disquotation is, we can always focus on the atomic instances; T4 –T6 will ensure
that also all instances of T�φ� ↔ φ will be provable for all sentences φ built from
those atomic formulae. Because we aim at an axiomatization that is as lean as
possible for technical reasons, our official axiomatization does not feature schema
DDS, but only disquotational axioms concerning atomic sentences. In particular,
schema DDS can be replaced with the following three axioms:

T1 ∀s ∀t
(
Ts=. t ↔ s◦= t◦

)
,

T2 ∀t (Dt◦ → TD. t),
T3 ∀t

(
Dt◦ → (TT. t ↔ Tt◦)

)
.

T2 can be derived from the following instance of DDS and axiom D3:

∀t
(
DD. t → (TD. t ↔ Dt◦)

)
. (2)

Thus the three axioms imply DDS in the presence of the other axioms as is established
in Lemma 3.1.

The principles T3, (2), and T2 show that the truth and determinateness predicates
interact in a serious manner. In particular, D is not only a formalization of a
metatheoretic notion that has been injected into the object language; predicates
of the object language—and especially the truth predicate—can be meaningfully
applied to sentences with D.

From (2) we can prove one direction of the T-sentencesφ → T�φ� for all sentences
without T, including those with D. Some sentences without T but with D—such as
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D��� for some indeterminate �—are not determinate, and thus DDS will not give
us the T-schema for some sentences with D. Therefore, we consider the addition of
the right-to-left direction to T2:

T2+ ∀t (Dt◦ ↔ TD. t).

This sentence is not provable from the disquotation schema DDS, and is not covered
by our policy about D. With T2+ we can derive all T-sentences T�φ� ↔ φ as long
as φ is T-free.

Determinateness is one of many predicates such as analyticity, knowledge,
necessity, and logical validity that are deeply intertwined with truth. Having the
T-sentences T�φ� ↔ φ also for φ containing such predicates may be desirable; but
we know already that this is not be possible for all such φ (see Halbach [20]),
as axioms like T2+ may engender inconsistency, depending on the axioms for the
other predicates. We cannot think of a better strategy than to consider these axioms
on a case-by-case basis and to endorse axioms like T2+, as long as they do not
yield undesirable consequences. With T2+ we leave the safety of disquotation for
determinate sentences only. In the case of determinateness we show that axiom T2+

does not affect the �-soundness of our theory and thus T2+ can be added as a
further optional axiom.

The quantifier ∀t in D2, D3, T2, T3, and T2+ ranges over all closed terms,
including those that do not denote a sentence. It may be desirable to restrict the
quantifier in these axioms to terms denoting sentences. This would allow us to
make any stipulations about sentences Tt and Dt where t fails to denote a sentence.
We have chosen the version above for their simplicity.

2.4. Extensionality. In this section we discuss two additional axioms that are
irrelevant to most of the metamathematical properties of our system. However, at
least the first of these axioms is conceptually important. The issue goes beyond our
specific system, and even beyond axiomatic theories, because semantic theories of
truth are affected as well.

We expect truth to be an extensional notion unlike necessity, apriority, or being
known. The compositional axioms prove the extensionality of truth for sentences
in the following sense: Substituting a subformula in a sentence φ with another
subformula with the same truth value does not affect truth or falsity of φ.

One would expect extensionality at the level of terms as well. That is, if the terms
s and t have the same value, a sentence φ(t) ought to be true if, and only if φ(s)
is true. However, this principle fails to be provable from the axioms we have listed
so far. Only restricted versions can be proved, for instance, if the values of s and
t are determinate or � is purely arithmetical. Without axiom R1, we can refute
T�Ts� ∧ ¬T�Tt� under the assumption s = t only for determinate s and t, but
not for all terms. Here, we call a term determinate iff its value is. Thus, we state
extensionality with respect to terms as an axiom:

R1 ∀x ∀v ∀s ∀t
((

Sent(∀.v x) ∧ s◦= t◦
)
→

(
Tx(s/v) ↔ Tx(t/v)

))
.

Axiom R1 is closely related to the question whether identity is a logical constant.
Using R1, we can prove the truth of ∀x ∀y (x=y → (φ(x) → φ(y))) for all
formulae φ, which is a logical truth if identity is a logical constant. If identity is
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a logical constant and our theory is to prove all logically valid sentences, then we
have to add R1 (or some other axiom).3

So far we have focused on truth. For determinateness we also stipulate
extensionality:

R2 ∀x ∀v ∀s ∀t
((

Sent(∀.v x) ∧ s◦= t◦
)
→

(
Dx(s/v) ↔ Dx(t/v)

))
.

Whether determinateness should also be extensional may be less clear. For our
purposes the extensionality of determinateness is not decisive. Omitting R2 would
not affect the results below.

§3. Axioms for classical determinate truth. We now collect the stipulations in the
previous sections. We start from the language L0 of arithmetic. It contains at least a
constant for 0 and a function symbol S for the successor function, a symbol + for
addition, and a symbol · for multiplication. For each number n we use the numeral n,
defined as the result of applying S to 0 for n-many times, as the canonical name for n.
L0 may feature further function and constant symbols, even those for all primitive
recursive functions. The identity symbol = is the only predicate symbol of L0; but
further predicate symbols could easily be added.4

The language LT is L0 augmented with T; LD is L0 augmented with D. Adding
both T and D to L0 yields the language L. Therefore, the following inclusions hold,
if the languages are identified with the set of their formulae:

L0 ⊂ LT and LD ⊂ L.
Our system is labelled CD for ‘Classical Determinate Truth’. It is formulated in

the language L with D and T. The syntax of L is appropriately arithmetized within
PA. We adopt the notation of Halbach [21] concerning arithmetization of syntax.
However, for dealing with new predicate D and other technical reasons, we slightly
supplement (and change) his notation as follows:

• Sent(x), SentT(x), SentD(x), and Sent0(x) represent the set of codes of L-,
LT-, LD-, and L0-sentences, respectively.

• Fml(x), FmlT(x), FmlD(x), and Fml0(x), respectively, represent the set of
codes of formula of these languages.

• Similarly, we use AtFml(x), AtFmlT(x), AtFmlD(x), and AtFml0(x) for the
codes of atomic formulae of these languages, and AtSent(x), AtSentT(x),
AtSentD(x), and AtSent0(x) for the codes of atomic sentences of these
languages, respectively.

• Var(x) and Term(x) represent the sets of codes of variables and codes of
L-terms (= the set of codes of L0-terms), respectively; recall that ClTerm is
for the set of codes of closed L0-terms, and note that every closed L-term is a
closed L0-term.

• For each primitive predicate symbol R with arity k, R. is a k-ary function that
represents the syntactic operation of applying R to k-many terms. For instance,

3We thank Anton Broberg for pointing out to us the underivability of the truth of ∀x ∀y (x=y →
(φ(x) → φ(y))) in CD without axiom R1. His comment motivated the present section.

4With modifications the theory can reformulated in a purely relational language without closed terms
such as the language of set theory. For such a setting without function symbols, a satisfaction predicate
might be a better fit than a unary truth predicate (see Halbach [22]).

https://doi.org/10.1017/jsl.2023.49 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2023.49


CLASSICAL DETERMINATE TRUTH I 227

D. is an arithmetical representation of the syntactic operation of applying D to
a term.

• x(y/z) represents the syntactic substitution of a term y for a variable z in an
expression x.

Hence, it can be proved in PA that Sent(∀.v x) implies that v is the code of a variable
(i.e., Var(v)) and that x codes some formula φ with at most one free variable. We
use Sent(∀.v x) to express that x is a formula with at most the variable v free. Often
we need to quantify over closed terms and abbreviate ∀z (ClTerm(z) → �(z)) as
∀t �(t) and also use s as a further variable ranging over closed terms.

The system CD is given by all axioms of PA with induction in the language L with
T and D and the following axioms:

Truth axioms
T1 ∀s ∀t

(
Ts=. t ↔ s◦= t◦

)
,

T2 ∀t(Dt◦ → TD. t),
T3 ∀t

(
Dt◦ → (TT. t ↔ Tt◦)

)
,

T4 ∀x
(

Sent(x) → (T(¬. x) ↔ ¬Tx)
)
,

T5 ∀x ∀y
(

Sent(x∧. y) → (T(x∧. y) ↔ Tx ∧ Ty)
)
,

T6 ∀v ∀x
(

Sent(∀.v x) → (T(∀.v x) ↔ ∀t Tx(t/v))
)
.

Determinateness axioms
D1 ∀s ∀tDs=. t,
D2 ∀t

(
DT. t ↔ Dt◦

)
,

D3 ∀t (DD. t ↔ Dt◦),
D4 ∀x

(
Sent(x) → (D(¬. x) ↔ Dx)

)
,

D5 ∀x ∀y
(

Sent(x∧. y)→
(
D(x∧. y)↔

(
(Dx ∧ Dy)∨(Dx ∧ Fx)∨(Dy∧Fy)

)))
,

D6 ∀v ∀x
(

Sent(∀.v x)→
(
(D(∀.v x)↔

(
∀tDx(t/v)∨∃t

(
Dx(t/v)∧Fx(t/v)

))))
.

As explained above, Fx abbreviates T¬. x, which expresses the falsity of x.
Extensionality axioms
R1 ∀x ∀v ∀s ∀t

((
Sent(∀.v x) ∧ s◦= t◦

)
→

(
Tx(s/v) ↔ Tx(t/v)

))
,

R2 ∀x ∀v ∀s ∀t
((

Sent(∀.v x) ∧ s◦= t◦
)
→

(
Dx(s/v) ↔ Dx(t/v)

))
.

We now turn to some subsystems and supersystems of CD in order to assess the
significance of axioms T2 and D3. It will be shown that removing one of these two
axioms or both does not affect the proof-theoretic strength of CD. That is, the three
systems

CD0 := CD – T2 – D3

CD1 := CD – T2

CD2 := CD – D3

are proof-theoretically equivalent, although they are different theories.
The addition of axiomT2+ boosts the proof-theoretic strength of CD, that is,

CD+ := CD + T2+

CD+
2 := CD2 + T2+

is properly stronger than CD. Further variants of CD will be studied in Part II of the
paper.
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We define disjunction ∨, conditional →, and the existential quantifier ∃ in the
standard manner in terms of negation ¬, conjunction ∧, and universal quantifier ∀:
accordingly, their corresponding operations x∨. y, →. , and ∃.vx are defined as

x∨. y := ¬. ((¬. x)∧. (¬. y)), x→. y := (¬. x)∨. y, and ∃.vx := ¬. (∀.v(¬. x)).

It readily follows from T4 to T6 that T commutes with ∨, →, and ∃. In addition, the
following compositional rules of determinateness for these connectives are provable
in CD0:

∀x ∀y
(

Sent(x∨. y) →
(
D(x∨. y) ↔

(
(Dx ∧ Dy) ∨ (Dx ∧ Tx) ∨ (Dy ∧ Ty)

)))
, (3)

∀x ∀y
(

Sent(x→. y) →
(
D(x→. y) ↔

(
(Dx ∧ Dy) ∨ (Dx ∧ Fx) ∨ (Dy ∧ Ty)

)))
,

(4)

∀v ∀x
(

Sent(∃.vx) →
(
D(∃.vx) ↔

(
∀s Dx(s/v) ∨ ∃s

(
Dx(s/v) ∧ Tx(s/v)

))))
. (5)

Concluding this section, we mention some simple observations. First, we show
that the uniform determinate disquotation schema is provable in CD, as mentioned
above.

Lemma 3.1. For all L-formulae φ(x1, ... , xk) with at most x1, ... , xk free the theory
CD proves the following:

DDS ∀t1 ... ∀tn
(

D�φ(t. 1, ... , t.n)� →
(
T�φ(t. 1, ... , t.n)� ↔ φ(t1◦, ... , tn◦)

))
.

In particular, D�φ� → (T�φ� ↔ φ) is provable for all sentences φ.

The lemma can be proved by a metatheoretic induction on the complexity of φ,
where the complexity of a formula φ, cp(φ) for short, is standardly defined: every
atomic formula has the complexity 0; cp(¬φ) = cp(∀xφ) = cp(φ) + 1; cp(φ ∧ �) =
max{cp(φ), cp(�)} + 1.

By an induction within CD all sentences of the base language can be shown to be
determinate. Sent0(x) expresses that x is a sentence of L0.

Lemma 3.2. CD0 
 ∀x (Sent0(x) → Dx).

Using these two lemmata, we can establish the T-sentences for all sentences of the
base language.

Lemma 3.3. For all L0-formulae φ(x1, ... , xk) with only x1, ... , xk free, we have

CD 
 ∀t1 ...∀tk (T�φ(t. 1, ... , t.k)� ↔ φ(t1◦,... , tk◦)).

Obviously, we cannot have the unrestricted T-schema in any axiomatic theory
of truth. Some truth theories feature one direction of the T-schema without any
restrictions. However, both directions are incompatible with CD.

Proposition 3.4. The axiom schemata (T-Out) and (T-In) are defined as follows:

(T-Out) T�φ� → φ for all φ ∈ L.
(T-In) φ → T�φ� for all φ ∈ L.

Then, each of (T-Out) and (T-In) is inconsistent with T4 over arithmetic, and thus
with CD.
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Proof. We first derive a contradiction from CD + (T-Out). Let � be the liar
sentence with �↔ ¬T��� as above. The liar sentence � implies T�¬�� by T4, from
which ¬� follows by (T-Out). Hence we have ¬�. However, ¬� is equivalent to T���
and thus implies � by (T-Out).

The inconsistency of (T-In) is shown in a similar way by using the other direction
of T4. �

A consequence of the compositional axioms is the thorough classicality of CD.
CD proves that (classical) logic is truth-preserving for the entire language L.

Lemma 3.5. The following holds for all formulae φ(x) and canonical provability
predicates constructed from φ(x) as defining the axioms:

CD 
 ∀x (φ(x) → Sent(x) ∧ Tx) → ∀y (Bewφ(x)(y) → Ty).

Here, Bewφ(x)(y) expresses that y is provable from all sentences � with φ(���).

Proof. The claim is shown by induction on the length of a proof. Since T
commutes with all logical connectives, quantifiers, and identity in CD, CD proves
that every logical axiom is true; note that the extensionality axioms R1 and R2 are
needed to show the logical axioms for identity. Every non-logical axiom is true by the
assumption. The base step is thereby obtained. The induction step is straightforward,
since commutativity ensures that every logical inference rule preserves truth. �

Fischer et al. [12] criticized truth theories such asFS and variants of KF formulated
in classical logic, because they are incompatible with reflection principles for logic.
In CD the soundness of a calculus for predicate logic is provable. This is a trivial
consequence of the lemma above if Bew(x) expresses provability in pure logic.

Corollary 3.6. CD proves that every logically valid sentence (in classical logic) is
true: namely, CD 
 ∀x(Bew(x) ∧ Sent(x) → Tx).

§4. Semantics. McGee [31] showed that certain theories of truth that are
thoroughly classical are �-inconsistent. In particular, the system FS that also
features axioms T1 and T4 –T6 is �-inconsistent. In order to defend CD and its
variants we therefore do not only show that they are consistent, but also that they
possess �-models.

In this section, we will give an �-model of CD+, namely, a model of CD+ whose
L0-reduct is the standard model of arithmetic. The existence of an �-model entails
that CD+ and thus CD are �-consistent.5

4.1. The model. Let us define L-formulae Di(x) (1 ≤ i ≤ 6) as follows:

D1(x) :⇔ ∃s∃t (x = (s=. t)),

D2(x) :⇔ ∃s (x=T. s ∧ Ds◦),

D3(x) :⇔ ∃s (x=D. s ∧ Ds◦),

D4(x) :⇔ Sent(x) ∧ ∃y (x=¬. y ∧ Dy),

5The existence of an �-model of CD+ in itself also follows from Theorem 7.11.
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D5(x) :⇔ Sent(x) ∧ ∃y∃z
(
x=y∧. z ∧

(
(Dy ∧ Dz) ∨ (D¬. y ∧ Fy) ∨ (D¬. z ∧ Fz

))
,

D6(x) :⇔ Sent(x) ∧ ∃v∃y
(
x=∀.v y ∧

(
∀s Dy(s/v) ∨ ∃s

(
D¬. (y(s/v)) ∧ F(y(s/v))

)))
.

We thereby define D(x) :⇔
∨

1≤i≤6 Di(x). D describes the closure condition of
a determinateness predicate D (relative to a fixed interpretation of the truth
predicate T).

By (N, X, Y ) let us denote the L-structure with domain �, the set of natural
numbers, in which D is interpreted by X, T is interpreted by Y, and all the
other symbols receive the standard interpretations. Both D and T occur only
positively in D. Hence, for eachY ⊂ �, D induces the following monotone operator
ΓD[Y ] : P(�) → P(�) so that

ΓD[Y ](X ) = {n ∈ � | (N, X, Y ) |= D(n)}.
In general, given a monotone operator Γ: P(�) → P(�), we say that X ⊂ � is
Γ-closed if Γ(X ) ⊂ X , and that X ⊂ � is a Γ-fixed point if Γ(X ) = X .

Given an L0-formula or L0-term e, let us denote its standard interpretation by
eN and its Gödel number by #e. For instance, SentN denote the set of the Gödel
numbers of all L-sentences.

Lemma 4.1. For every X,Y ⊂ SentN, the following are equivalent.6

1. X is a ΓD[Y ]-fixed point.
2. (N, X, Y ) is a model of all the determinateness axioms D1–D6.

For each ordinal α, we define sets Dα and Tα as follows:

D0 := Ø, T0 := Ø,

D	+1 := ΓD[T	 ](D	), T	+1 := {#φ ∈ SentN | (N, D	, T	) |= φ},

D� :=
⋃
	<�

D	, T� :=
⋃
	<�

T	 ∩D	.

It is obvious from the definition that T� = D� ∩ T� for all limit ordinals �. We can
also show by induction on ordinals that D	, T	 ⊂ SentN for all ordinals 	.

The next two propositions are obvious by definition.

Lemma 4.2. Let 	 be any ordinal, a be a closed L0-term, φ and � be L-sentences,
and 
(x) be an L-formula with only a single variable x free.

1. If 	 > 0 and φ is L0-atomic, then #φ ∈ D	 .
2. aN ∈ D	 iff #Ta ∈ D	+1.
3. aN ∈ D	 iff #Da ∈ D	+1.

6D5 and D6 are defined so that the condition 1 implies that (N, X, Y ) satisfies not the original axioms
D5 and D6, but the following variants of them:

(D5’) ∀x ∀y
(

Sent(x∧. y) →
(
D(x∧. y) ↔

(
(Dx ∧ Dy) ∨ (D¬. x ∧ Fx) ∨ (D¬. y ∧ Fy)

)))
,

(D6’) ∀v ∀x
(

Sent(∀. v x) →
(
D(∀. v x) ↔

(
∀tDx(t/v) ∨ ∃t

(
D¬. x(t/v) ∧ Fx(t/v)

))))
;

but they are equivalent to the original D5 and D6 anyway due to the axiom D4; we adopt this definition
of D5 and D6 for a purely technical reason.
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4. #φ ∈ D	 iff #¬φ ∈ D	+1.
5. #(φ ∧ �) ∈ D	+1, iff either #φ,#� ∈ D	 or #¬φ ∈ D	 ∩ T	 or #¬� ∈
D	 ∩ T	 .

6. #∀x
(x) ∈ D	+1, iff either of the following holds:
• #
(b) ∈ D	 for all L0-closed terms b;
• #¬
(b) ∈ D	 ∩ T	 for some L0-closed term b.

Proof. For example, we have #Ta = T.
N(#a) and ((#a)◦)N = aN, from which

claim 2 follows, since we have

aN ∈ D	 ⇔ (N, D	, T	) |= D2(#Ta) ⇔ #Ta ∈ D	+1. �

Lemma 4.3. Let 	 be any ordinal, a and b be closed L0-terms, φ and � be L-
sentences, and 
(x) be an L-formula only with some single variable x free.

1. #(a = b) ∈ T	+1 iff aN = bN.
2. aN ∈ T	 iff #Ta ∈ T	+1.
3. aN ∈ D	 iff #Da ∈ T	+1.
4. #¬φ ∈ T	+1 iff φ �∈ T	+1.
5. #(φ ∧ �) ∈ T	+1 iff #φ ∈ T	+1 and #� ∈ T	+1.
6. #∀x
(x) ∈ T	+1 iff #
(c) ∈ T	+1 for all closed L0-terms c.

Let us define a formula x ≈ y as follows:

x ≈ y :⇔ x=y ∨ ∃z ∃v ∃s ∃t
(
Sent(∀.v z) ∧ s◦= t◦∧ x = z(s/v) ∧ y = z(t/v)

)
.

Namely, for natural numbers n,m ∈ N, n ≈Nm means that either n = m or n and
m code numerically equivalent L-sentences in the sense that they are substitution
instances of the same L-formula with closed terms with the same values. Since all
the existential quantifiers in the definition can actually be bounded by the values of
some primitive recursive functions on x and y, the relation ≈N is primitive recursive
in the value function (or the index function [ · ] of the primitive recursive functions)
and thus provably recursive in PA. The extensionality axioms R1 and R2 say that
truth and determinateness are invariant across numerically equivalent L-sentences,
namely, sentences φ and � with #φ ≈N #�.7 The following proposition is shown by
a straightforward induction on ordinals.

Proposition 4.4. Let 	 be any ordinal and n ≈Nm.

1. n ∈ D	 iff m ∈ D	 .
2. n ∈ T	 iff m ∈ T	 ; note that if #φ ≈N #� then (N, X, Y ) |= φ ↔ �.

The next is the main lemma of this subsection.

Lemma 4.5. For all ordinals 	 and � with 	 ≤ �, the following hold:

1. D	 ∩ T	 = D	 ∩ T� and
2. D	 ⊂ D�.

7The first disjunct ‘x=y’ is added for a purely technical reason, namely, for incorporating the
ordinary logical axioms for atomic sentences of the form Da or Ta to the axioms (Ax2) and (Ax3) of
the semi-formal system CD∞, which will be introduced later in Section 7.
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Proof. By simultaneous induction on 	. The base step is trivial. Let 	 be a limit
ordinal and � ≥ 	. For each n ∈ D	 , there is some � < 	 such that n ∈ D� , for which
we have D� ∩ T	 = D� ∩ T� = D� ∩ T� and D� ⊂ D� by the induction hypothesis.

Let 	 be a successor ordinal. Claim 1 is shown by sub-induction on �; we
can assume � > 	. First, suppose � is a limit. If n ∈ D	 ∩ T	 , then n ∈ T� by
definition. Let n ∈ D	 ∩ T� for the converse. By definition, there is some � < � such
that n ∈ D� ∩ T� . If � < 	, then D� ∩ T� ⊂ T	 by the induction hypothesis for 1;
otherwise, 	 ≤ � < � and thusD	 ∩ T� = D	 ∩ T	 by the sub-induction hypothesis.
Next, suppose � is a successor, and take any n = #φ ∈ D	 (⊂ SentN) for an
L-sentence φ. If φ is an L0-atomic, then the claim follows from Lemmata 4.2.1 and
4.3.1. If φ = Ta for some closedL0-term a, then we have aN ∈ D	–1 by Lemma 4.2.2,
and thus we obtain

n ∈ T	
4.3.2⇔ aN ∈ T	–1

IH⇔ aN ∈ T�–1
4.3.2⇔ n ∈ T�,

where ‘IH’ denotes the induction hypothesis. If φ = Da, then we have aN ∈ D	–1

by Lemma 4.2.3, and thus n ∈ T	 and aN ∈ D�–1 by Lemma 4.3.3 and the
induction hypothesis for 2, respectively, the latter of which implies n ∈ T� again
by Lemma 4.3.3; hence, both n ∈ T	 and n ∈ T� hold. We move on to the cases for
complex φs. Let φ = � ∧ 
. By Lemma 4.2.5, n ∈ D	 implies

(
#�,#
 ∈ D	–1

)
∨

(
#¬� ∈ D	–1 ∩ T	–1

)
∨

(
#¬
 ∈ D	–1 ∩ T	–1

)
.

If the first disjunct holds, then we have

n ∈ T	
4.3.5⇔ #�,#
 ∈ T	

IH⇔ #�,#
 ∈ T	–1
IH⇔ #�,#
 ∈ T� 4.3.5⇔ n ∈ T�.

If the second disjunct holds, then we have #¬� ∈ T	 ∩ T� by the induction
hypothesis for 1, from which we can infer

#¬� ∈ T	 ∩ T�
4.3.4⇔ #� �∈ T	 and #� �∈ T� 4.3.5⇒ #φ �∈ T	 and #φ �∈ T�.

The case where the third disjunct holds can be similarly treated. The claim for the
remaining cases where φ is of the form ¬� or ∀x�(x) can be shown similarly.

Claim 2 for a successor 	 is also shown by sub-induction on �. As before, we can
assume � > 	, and the limit case is obvious. Let � be a successor ordinal and take
any n = #φ ∈ D	 for an L-sentence φ. If φ is L0-atomic, then the claim trivially
obtains by Lemma 4.2.1. If either ϕ = Ta or ϕ = Da, then we have

n ∈ D	
4.2.2 or 3⇔ aN ∈ D	–1

IH⇒ aN ∈ D�–1
4.2.2 or 3⇔ n ∈ D�.

The claim for the other cases for complex φs can be straightforwardly shown. For
instance, if φ = � ∧ 
, then we have

n ∈ D	
4.2.5⇔

(
#�,#
 ∈ D	–1

)
∨

(
#¬� ∈ D	–1 ∩ T	–1

)
∨

(
#¬
 ∈ D	–1 ∩ T	–1

)
IH⇒

(
#�,#
 ∈ D�–1

)
∨

(
#¬� ∈ D�–1 ∩ T�–1

)
∨

(
#¬
 ∈ D�–1 ∩ T�–1

)
4.2.5⇔ n ∈ D�.

The other cases can be treated in a similar way. �
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Lemma 4.6. Let φ be an L-sentence and 	 an ordinal.
1. If #φ ∈ D	 , then #φ ∈ T	 iff (N, D	, T	) |= φ.
2. If aN = #φ ∈ D	 , then (N, D	, T	) |= φ iff (N, D	, T	) |= Ta.

Proof. 1. Let #φ ∈ D	 . Then, we have

#φ ∈ T	
4.5.1⇔ #φ ∈ T	+1

def⇔ #(N, D	, T	) |= φ.

2. Let aN = #φ ∈ D	 . Then, we have

(N, D	, T	) |= φ
by 1⇔ #φ ∈ T	

def⇔ (N, D	, T	) |= Ta. �
Lemma 4.7. 1. For each 	 and L-sentence φ, either #φ �∈ T	 or #¬φ �∈ T	 .
2. For each 	 and L-sentence φ, if #φ ∈ D	 , then either #φ ∈ T	 or #¬φ ∈ T	 .
Proof. 1. By induction on 	. The claim for a non-limit 	 immediately follows

by definition. Let 	 be a limit, and suppose for contradiction that #φ ∈ T	 and
#¬φ ∈ T	 . Then, there are some �, � < 	 such that #φ ∈ T� ∩D� and #¬φ ∈ T� ∩
D�, which is impossible by Lemma 4.5 and the induction hypothesis.

2. By induction on 	. If 	 = 0, thenD0 = Ø and the claim trivially holds. If 	 is a
successor, then the claim immediately follows by Lemma 4.3.4. Finally, if 	 is a limit
and #φ ∈ D	 , then #φ ∈ D� for some � < 	, and thus either #φ ∈ T� or ¬φ ∈ T�
by the induction hypothesis, from which the claim follows by Lemma 4.5.1. �

Let�1 denote the least uncountable ordinal. By Lemma 4.5, we haveD	 ⊂ D� and
D	 ∩ T	 ⊂ D� ∩ T� for all 	 ≤ �. Hence, by the standard cardinality consideration,
we have the following nice properties of D�1 and T�1 :

D�1+1 = D�1 , and D�1+1 ∩ T�1+1 = D�1 ∩ T�1 = T�1 ; (6)

in particular, D�1 is a ΓD[T�1 ]-fixed point. Let us denote D�1 and T�1 by D∞ and
T∞, respectively. We finally give an �-model of CD.

Theorem 4.8. LetT∞ := {#φ | (N,D∞,T∞) |= φ}. Then, (N,D∞,T∞) |= CD+.
Hence, in particular, CD+ and CD have an �-model and thus are �-consistent.

Proof. By definition, it immediately follows that (N,D∞,T∞) is a model of T1,
T2+, and T4–T6. To see (N,D∞,T∞) |= T3, take any n ∈ ClTermN and suppose
(n◦)N ∈ D∞. Then, there exist some closed L0-term a and L-sentence φ such that
n = #a and (n◦)N = aN = #φ ∈ D∞ (⊂ SentN). Hence, we have

(N,D∞,T∞) |= TT. n
def⇔ (N,D∞,T∞) |= Ta 4.6.2⇔ (N,D∞,T∞) |= φ

def⇔ (N,D∞,T∞) |= Tn◦.

Since D∞ is a ΓD[T∞]-fixed point, (N,D∞,T∞) satisfies D1–D4 (which does not
depend on the interpretation of T). To show (N,D∞,T∞) |= D5, take any L-
sentences φ and �. By Lemma 4.6.1, we have D∞ ∩ T∞ = D∞ ∩ T∞ and thus
obtain

#φ ∧ � ∈ D∞
4.2.5⇔ (#φ,#� ∈ D∞) ∨ (#¬φ ∈ D∞ ∩ T∞) ∨ (#¬� ∈ D∞ ∩ T∞)

⇔ (#φ,#� ∈ D∞) ∨ (#¬φ ∈ D∞ ∩ T∞) ∨ (#¬� ∈ D∞ ∩ T∞).

We can similarly show (N,D∞,T∞) |= D6 using D∞ ∩ T∞ = D∞ ∩ T∞. �
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4.2. The minimality of D. In this section, we will show that D∞ (:= D�1) has a
certain ‘minimality’ property.

Let us define L-formulae Tj(x) (1 ≤ j ≤ 6) as follows:

T1(x) :⇔ ∃s∃t
((
x = (s=. t) ∧ s◦ = t◦

)
∨

(
x = (¬. s=. t) ∧ s◦�= t◦)

))
,

T2(x) :⇔ ∃s
((
x=T. s ∧ Ds◦ ∧ Ts◦

)
∨

(
x=¬. T. s ∧ D(¬. s◦) ∧ Fs◦

))
,

T3(x) :⇔ ∃s (x=D. s ∧ Ds◦),

T4(x) :⇔ Sent(x) ∧ ∃y (x = ¬. ¬. y ∧ Ty),

T5(x) :⇔ Sent(x) ∧ ∃y∃z
((
x = (y∧. z) ∧ Ty ∧ Tz

)
∨

(
x = ¬. (y∧. z) ∧ (Fy ∨ Fz)

))
,

T6(x) :⇔ Sent(x) ∧ ∃v∃y
((
x = ∀.v y ∧ ∀sTy(s/v)

)
∨

(
x = ¬. ∀.v y ∧ ∃sFy(s/v)

))
.

We define T (x) :⇔
∨

1≤j≤6 Tj(x). Note that T says nothing about the Gödel
numbers of L-sentences of the form ¬Da. Both D and T occur only positively in T .
Hence, for each givenX ⊂ �, it induces a monotone operator ΓT [X ] : P(�) → P(�)
such that

ΓT [X ](Y ) = {n ∈ � | (N, X, Y ) |= T (n)};

note that ΓT [X ](Y ) ⊂ SentN for all X,Y ⊂ �.

Lemma 4.9. Let X,Y ⊂ �. If (N, X, Y ) |= CD, then Y is ΓT [X ]-closed.

Proof. The proof is routine. Take any n ∈ ΓT [X ](Y ) ⊂ SentN and let n = #φ
where φ is an L-sentence. If φ = Da for a closed L0-term a, then we have aN ∈
X and thus (N, X, Y ) |= Da◦, which implies (N, X, Y ) |= TD. a, namely, #φ ∈ Y ,
because (N, X, Y ) |= T2; note that it is never the case that #φ = ¬Da for any closed
L0-term a. If φ = ¬Ta for a closed L0-term a, then (¬. a)N ∈ X ∩ Y and thus aN ∈
X \ Y by (N, X, Y ) |= D4 ∧ T4, which implies #φ ∈ Y because (N, X, Y ) |= T3 ∧
T4. Next, let φ = ¬(� ∧ 
). Then, either #¬� ∈ Y or #¬
 ∈ Y . If the former is
the case, then #� �∈ Y by (N, X, Y ) |= T4 and thus #φ �∈ Y by (N, X, Y ) |= T5,
from which we get #¬φ ∈ Y by (N, X, Y ) |= T4. We leave the remaining cases to
the reader. �

Lemma 4.10. Let X,Y ⊂ �. Suppose the following:

(a) X is ΓD[Y ]-closed;
(b) Y is ΓT [X ]-closed.

Then we have D∞ ⊂ X and T∞ ⊂ Y and thus, by (6) above, T∞ ⊂ D∞ ∩ Y .

Proof. It suffices to show the following under the supposition of (a) and (b): for
all L-sentences φ and ordinals α,

#φ ∈ Dα → #φ ∈ X, (7)

#φ ∈ Dα ∩ Tα → #φ ∈ Y, (8)

#φ ∈ Dα \ Tα → #¬φ ∈ Y. (9)

They are shown by simultaneous induction on α. The base step is trivial. If α is a
limit, the claim follows from the induction hypothesis using Lemma 4.5. Let α be
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a successor. The claim for the case where φ is an L0-atomic is obvious. We will go
through the remaining cases.

Let φ = Ta and suppose #φ ∈ Dα . We have aN ∈ Dα–1 (⊂ SentN) by Lemma
4.2.2. Then, we have aN ∈ X by the induction hypothesis and thus #φ ∈ X by (a);
hence (7) holds for φ. The other claims (8) and (9) are obtained as follows:

#φ ∈ Tα 4.3.2⇔ aN ∈ Tα–1
IH⇒ aN ∈ X ∩ Y (b)⇒ #φ ∈ Y ;

#φ �∈ Tα 4.3.2⇔ aN �∈ Tα–1
IH⇒ (¬. a)N ∈ X ∩ Y (b)⇒ #¬φ ∈ Y.

Let φ = Da and suppose #φ ∈ Dα . We have aN ∈ Dα–1 by Lemma 4.2.3. Then,
we get aN ∈ X by the induction hypothesis, which implies #φ ∈ Y by (b); hence, (7)
and (8) hold for φ. The other claim (9) trivially holds, since #φ �∈ Tα would imply
aN �∈ Dα–1 by Lemma 4.3.3, which is absurd.

Let φ = ¬� and suppose #φ ∈ Dα . We have #� ∈ Dα–1 by Lemma 4.2.4. Then,
it follows that #� ∈ X by the induction hypothesis and thus #φ ∈ X by (a). The
other claims (8) and (9) are obtained as follows:

#φ ∈ Tα 4.3.4⇔ #� �∈ Tα 4.5.1⇔ #� �∈ Tα–1
IH⇒ #φ ∈ Y ;

#φ �∈ Tα 4.3.4⇔ #� ∈ Tα 4.5.1⇔ #� ∈ Tα–1
IH⇒ #� ∈ Y (b)⇒ #¬φ ∈ Y.

Let φ = � ∧ 
 and suppose #φ ∈ Dα . By Lemma 4.2.5, there are three cases to
be separately considered. First assume #�,#
 ∈ Dα–1. Then, we get #� ∈ X and
#
 ∈ X by the induction hypothesis, and thus #φ ∈ X by (a); hence, (7) holds for
φ. We next obtain (8) as follows:

#φ ∈ Tα 4.3.5⇔ #�,#
 ∈ Tα 4.5.1⇔ #�,#
 ∈ Tα–1
IH⇒ #�,#
 ∈ Y (b)⇒ #φ ∈ Y.

For the remaining claim (9), we infer

#φ �∈ Tα 4.3.5⇔ #� �∈ Tα or #
 �∈ Tα 4.5.1⇔ #� �∈ Tα–1 or #
 �∈ Tα–1

IH⇒ #¬� ∈ Y or #¬
 ∈ Y (b)⇒ #¬φ ∈ Y.

Second assume #¬� ∈ Dα–1 ∩ Tα–1. We have #¬� ∈ X ∩ Y by the induction
hypothesis, which implies #φ ∈ X and #¬φ ∈ Y by (a) and (b); hence, (7) and (9)
hold for φ. Note that #φ ∈ Tα can never be the case under the current assumption,
since it would imply #¬� �∈ Tα by Lemmata 4.3.4 and 4.3.5 and thus #¬� �∈ Tα–1

by Lemma 4.5.1; hence, (8) trivially holds for φ. The case where #¬
 ∈ Dα–1 ∩ Tα–1

can be similarly treated.
The remaining case where φ = ∀x�(x) can be similarly treated to the last case,

and we omit the details. �

Remark 4.11. As we have remarked, D∞ is ΓD[T∞]-closed. We can also show
that T∞ is ΓT [D∞]-closed; the proof is routine. Hence, it follows from Lemma 4.10
that D∞ and T∞ are simultaneously inductively defined by the following monotone
operators from P(N) × P(N) to P(N):

ΓD(X,Y ) = ΓD[Y ](X ) and ΓT (X,Y ) = ΓT [X ](Y ).
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Lemma 4.12. Let X,Y ⊂ �. Suppose the same conditions (a) and (b) as in
Lemma 4.10, as well as the following additional condition:

(c) for all L-sentences φ, if #φ ∈ X, then either #φ �∈ Yor #¬φ �∈ Y.

Then the following holds.

1. D∞ ∩ Y = T∞.
2. D∞ is the least ΓD[Y ]-closed set.

Proof. We have T∞ ⊂ D∞ by (6) and T∞ ⊂ Y by Lemma 4.10; hence, T∞ ⊂
D∞ ∩ Y . For the converse, take any #φ �∈ T∞. If #φ ∈ D∞, then we have #¬φ ∈
T∞ ⊂ Y by Lemma 4.7.2 and thus #φ �∈ Y by (c).

For claim 2, we first show that D∞ is ΓD[Y ]-closed. We observe that T only
appears in the clauses D5 and D6 of D in the form (D¬. x ∧ T¬. x). Hence, since
D∞ ∩ Y = D∞ ∩ T∞ by claim 1, we have ΓD[Y ](D∞) = ΓD[T∞](D∞) ⊂ D∞. Now,
take any ΓD[Y ]-closed set Z. Since the intersection of ΓD[Y ]-closed sets is also ΓD[Y ]-
closed (by the monotonicity of ΓD[Y ]), D∞ ∩ Z is ΓD[Y ]-closed. Also, since D
occurs in T only positively, it also follows that Y is ΓT [D∞∩Z]-closed; for, D∞ ⊂
X by Lemma 4.10 and thus ΓT [D∞∩Z](Y ) ⊂ ΓT [D∞](Y ) ⊂ ΓT [X ](Y ) ⊂ Y . Hence,
D∞ ∩ Z and Y satisfy the conditions (a) and (b) of Lemma 4.10, and thus we obtain
D∞ ⊂ Z. �

The next theorem immediately follows from Lemmata 4.1, 4.9, and 4.12.

Theorem 4.13. Let X,Y ⊂ N. If (N, X, Y ) |= CD, then the following hold:

1. D∞ ⊂ X .
2. D∞ ∩ Y = T∞.
3. D∞ is the least ΓD[Y ]-fixed point.

This theorem says that every sentence in D∞ is determinate in any �-model of
CD, the truth and the falsity are invariable on D∞ across all �-models of CD, and
D∞ is the least fixed point of ΓD[Y ] (and thus is the least set Z with (N, Z, Y ) |=
D1 – D6) whenever (N, X, Y ) |= CD for some X. This mathematical fact, as well
as the philosophical story that motivated CD, suggests an axiom expressing such
a minimality property of D, which yields a new theory CD�. This axiom and the
resulting system will be briefly explained in Section 9, but their full analysis is left
for the Part II.

§5. A lower bound of the strength of CD. In this section, we will show that the
system RA<ε0 of ramified analysis up to ε0 and the system RT<ε0 of ε0-iterated truth
(see [21] for its definition) are arithmetically conservative over CD, that is, every
arithmetical theorem of the former system is provable in the latter system, and also
that RA<εε0 and RT<εε0 are arithmetically conservative over CD+. The reductions
will be achieved by constructing a relative interpretation of intermediate systems KF
and CT[[KF]] in CD and CD+, respectively.

5.1. The systems KF and CT. For the sake of the reader’s convenience, we repeat
the definition of the system KF of Feferman [8] (in our notation).
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Definition 5.1. The LT-system KF is defined as PA with full induction in LT

augmented with the following axioms:

K1 ∀s∀t
(
T(s=. t) ↔ s◦= t◦

)
∧ ∀s∀t

(
F(s=. t) ↔ s◦�= t◦

)
,

K2 ∀s
(
TT. s ↔ Ts◦

)
∧ ∀s

(
FT. s ↔ Fs◦

)
,

K3 ∀x
(
SentT(x) →

(
T(¬. ¬. x) ↔ Tx

))
,

K4 ∀x∀y
(
SentT(x∧. y) →

(
T(x∧. y) ↔ (Tx ∧ Ty)

))
,

K5 ∀x∀y
(
SentT(x∧. y) →

(
F(x∧. y) ↔ (Fx ∨ Fy)

))
,

K6 ∀v∀x
(
SentT(∀.v x) →

(
T(∀.v x) ↔ ∀s Tx(s/v)

))
,

K7 ∀v∀x
(
SentT(∀.v x) →

(
F(∀.v x) ↔ ∃sFx(s/v)

))
,

R3 ∀x ∀v ∀s ∀t
((

SentT(∀.vx) ∧ s◦= t◦
)
→

(
Tx(s/v) ↔ Tx(t/v)

))
.

Note that, while Fx and ¬Tx are equivalent in CD, they are not equivalent in
KF, and we have to distinguish them when working in KF. It is easily shown that
R3 is redundant and provable from the other axioms (see [5, Lemma 3.1]). We
will occasionally consider two extra axioms Cons and Comp, which are defined as
follows:

Cons: ∀x
(
SentT(x) → ¬(Tx ∧ Fx)

)
,

Comp: ∀x
(
SentT(x) → (Tx ∨ Fx)

)
.

For each ϕ ∈ LT, let ϕc denote Cantini’s ‘dual’ translation of ϕ: namely, Tca :=
¬Fa for each L0-term a, and c preserves the L0-vocabulary (as well as the logical
connectives and quantifiers); see [5, Section 4]. c is a relative interpretation of
KF + Cons in KF + Comp and vice versa. Cantini [5] showed that KF + Cons and
KF + Comp are both proof-theoretically equivalent to KF.

Lemma 5.2. KF proves the following.

1. ∀x∀y
(

SentT(x∨. y) →
((

T(x∨. y) ↔ (Tx ∨ Ty)
)
∧

(
F(x∨. y) ↔ (Fx ∧ Fy)

)))
.

2. ∀x∀y
(

SentT(x→. y)→
((

T(x→. y)↔ (¬Fx → Ty)
)
∧

(
F(x→. y)↔ (Tx∧Fy)

)))
.

3. ∀v∀x
(
∀. vx ∈ SentT →

((
T(∃. vx) ↔ ∃sTx(s/v)

)
∧ F(∃. vx) ↔ ∀sFx(s/v)

))
.

Definition 5.3. Let L1 be a first-order language that extends L0 only with new
predicate symbols. We set a new language L+

1 to be L1 ∪ {T} where T is a fresh
unary predicate symbol: the new predicate T will be interpreted as the Tarskian
typed compositional truth for the language L1. Let Sent1 be a representation of
the set of (codes of) L1-sentences. Given any L1-system S, the L+

1 -system CT[[S]] is
defined as S with all axiom schemata of S (possibly including other schemata than
induction) extended for L+

1 together with the following axioms expressing Tarski’s
‘inductive clauses’ of truth.

T1 ∀�s (
TR. �s ↔ R �s◦), for all L1-atomic formulae R �x.

T2 ∀x
(
Sent1(x) →

(
T(¬. x) ↔ ¬Tx)

))
.

T3 ∀x ∀y
(
Sent1(x∧. y) →

(
T(x∧. y) ↔ Tx ∧ Ty

))
.

T4 ∀v ∀x
(
∀.vx ∈ Sent1 →

(
T(∀.vx) ↔ ∀s Tx(s/v)

))
.

R4 ∀x ∀v ∀s ∀t
((

Sent1(∀.vx) ∧ s◦= t◦
)
→

(
Tx(s/v) ↔ Tx(t/v)

))
.

Here we abbreviate a sequence of variables (or terms), x0, ... , xk (or a1, ... , ak), by
�x (or �a) for saving space. If L1 ⊃ LT, then T1 contains ∀s

(
TT. s ↔ Ts◦

)
. It can be
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shown in a parallel manner to the case of R3 in KF that R4 is derivable from the
other axioms.

Lemma 5.4. Let S be as above. CT[[S]] proves the following theorems:

1. ∀x ∀y
(
Sent1(x∨. y) →

(
T(x∨. y) ↔ (Tx ∨ Ty)

))
.

2. ∀x ∀y
(
Sent1(x→. y) →

(
T(x→. y) ↔ (Tx → Ty)

))
.

3. ∀v ∀x
(
Sent1(∀. vx) →

(
T(∃. vx) ↔ ∃sTx(s/v)

))
.

5.2. Reduction of KF to CD0. The translation � of LT into L replaces every atomic
formula T�a (for a term a) with Ta ∧ Da; � does not change anything else.

In what follows, we will occasionally write s ∈ ClTerm instead of ClTerm(s),
x ∈ Sent instead of Sent(x), and similarly for other formulae.

Lemma 5.5. � is a relative interpretation of KF in CD0.

Proof. We will only exhibit the proofs that � preserves the axioms K2, K5, and
K7. For K2, take any s ∈ ClTerm. Then we have

T¬. T. s ∧ D¬. T. s
T4 & D4⇔ ¬TT. s ∧ DT. s

D2⇔ ¬TT. s ∧ Ds◦ T3⇔ ¬Ts◦ ∧ Ds◦

T4 & D4⇔ T¬. s◦ ∧ D¬. s◦.

The other conjunct can be shown similarly. For K5, take any x, y ∈ SentT; then we
have

T¬. (x∧. y) ∧ D¬. (x∧. y) T4 & T5⇔ (Fx ∨ Fy) ∧ D¬. (x∧. y)

D4 & D5⇔ (Fx ∨ Fy) ∧
(
(Dx ∧ Dy) ∨ (Dx ∧ Fx) ∨ (Dy ∧ Fy)

)
by logic⇔ (Dx ∧ Fx) ∨ (Dy ∧ Fy)

D4⇔ (D¬. x ∧ T¬. x) ∨ (D¬. y ∧ T¬. y).

For K7, take any v and x such that ∀.vx ∈ SentT; then we have

T¬. (∀.vx) ∧ D¬. (∀.vx) T4 & T6⇔ ∃s Fx(s/v) ∧ D¬. (∀.vx)

D4 & D6⇔ ∃s Fx(s/v) ∧
(
∀sDx(s/v) ∨ ∃s (Dx(s/v) ∧ Fx(s/v))

)
by logic⇔ ∃s (Dx(s/v) ∧ Fx(s/v))

D4⇔ ∃s (D¬. x(s/v) ∧ T¬. x(s/v)).

The remaining cases are similarly and even more easily shown. �

Because � does not affect arithmetical sentences, the next corollary follows.

Corollary 5.6. KF is arithmetically conservative over CD0 and thus CD.

Finally, since KF and RA<ε0 are known to have the same arithmetical theorems
by results due to Cantini [5] and Feferman [8], RA<ε0 is arithmetically conservative
over CD.
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5.3. Reduction of CT[[KF]] to CD+
2 . Let k be an L0-definable function that

represents the arithmetization of the translation � of LT in L: that is, for all x ∈ �,

kx :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x, ifx ∈ AtFml0,
(T. y)∧. (D. y), ifx = T. y and y ∈ Term,
¬. ky, ifx = ¬. y ∈ FmlT,
(ky)∧. (kz), ifx = y∧. z ∈ FmlT,
∀.v(ky), ifx = ∀.vy ∈ FmlT,
0, otherwise.

(10)

With the standard coding, k is primitive recursive and thus definable in PA, and PA
proves ∀x

(
FmlT(x) → Fml(kx)

)
. Furthermore, with the notation of [5], PA also

proves ∀z
(
Free(z, x) ↔ Free(z, kx)

)
, where Free(a, b) says that a is a code of a

variable that is free in the formula coded by b; in particular, we have ∀x
(
SentT(x) ↔

Sent(kx)
)
.

We thereby extend � to a translation of L+
T to L by stipulating the following:

T
�x := Tkx.

We will use the same symbol � for the two translations for simplicity.

Lemma 5.7. PA 
 (∀x ∈ FmlT)∀s(∀v ∈ Var)
(
k(x(s/v)) = (kx)(s/v)

)
.

Proof. By a routine induction on the complexity of x. �

Lemma 5.8. The following claims are provable in CD2.

1. ∀x
(
SentT(x) →

(
Tk(¬. x) ↔ ¬Tkx

))
; by T4 and (10).

2. ∀x ∀y
(
SentT(x∧. y) →

(
Tk(x∧. y) ↔ (Tkx ∧ Tky)

))
; by T5 and (10).

3. ∀x ∀v
(
SentT(∀. v x) →

(
Tk(∀. vx) ↔ ∀s Tk(x(s/v))

))
; by T6, (10), and

Lemma 5.7.

Theorem 5.9. � is a relative interpretation of CT[[KF]] in CD+
2 .

Proof. It immediately follows from the definition of � and the last lemma that the
�-translations of the axioms T1 for all L0-atomics and T2–T4 are provable in CD2.
R4� readily follows from R1 and Lemma 5.7 (though this step is actually redundant
because R4 is derivable from the other axioms of CT[[KF]]). For the remaining case,
i.e., the axiom T1 for an atomic of the form Tx, take any s ∈ ClTerm. Then we have

T
�(T. s) ⇔ T(T. s∧. D. s)

T5⇔ TT. s ∧ TD. s
T2+

⇔ TT. s ∧ Ds◦ T3⇔ Ts◦ ∧ Ds◦ ⇔ T�s◦;

note that the use of T2+ in the third equivalence is crucial here. �

Corollary 5.10. CT[[KF]] is arithmetically conservative over CD+
2 and thus CD+.

Now, the following fact is essentially due to Cantini [5].

Fact 5.11. CT[[KF + Cons]] (= CT[[KF]] + Cons) is arithmetically equivalent to
RA<εε0 , that is, the two systems have the same arithmetical theorems.

Hence, RT<εε0 is arithmetically conservative over CD+.
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§6. An upper bound of the strength of CD. In this section, we will show that CD is
proof-theoretically reducible to KF. This will be achieved via partial cut-elimination
for a semi-formal system for CD.

6.1. Semi-formal system CD∞. In this subsection, we will introduce a Tait-style
semi-formal system CD∞.

Throughout this Section 6, capital Greek letters Γ and Δ will be used as variables
ranging over finite sets of L-sentences, and we will only consider L-sentences in
negation-normal form (or in what is sometimes called ‘Tait form’), which are
constructed from closed L0-literals by conjunction, disjunction, and universal and
existential quantifiers; we will abuse the notation and denote the negation operation
on negation-normal forms, which is often written as ‘∼’ in the literature, also by
¬, e.g., ¬(Ta ∧ Da) = ¬Ta ∨ ¬Da. Following the convention, for a finite set Γ of
L-sentences and an L-sentence A, we will write Γ, A for Γ ∪ {A}.

The derivation relation CD∞ | �p Γ in the semi-formal system CD∞ for ordinals
� and p < � and a set Γ of L-sentences, which intuitively means that at least one
φ ∈ Γ is verified by a derivation of length � with cut-rank p, is defined as follows.

Axioms. Let a, b, and c be any closed L0-terms, Γ any set of L-sentences, � any
ordinal, and p < � any finite ordinal.

(Ax1) If A is a true closed L0-literal, then CD∞ | �p Γ, A.

(Ax2) If aN ≈N bN (see p.13 for the definition of ≈), then CD∞ | �p Γ,Da,¬Db.

(Ax3) If aN ≈N bN, then CD∞ | �p Γ,Ta,¬Tb.

(D1) If bN, cN ∈ ClTermN and aN = (b=. c)N, then CD∞ | �p Γ,Da.

Logical Rules. Let A and B be L-sentences, C (x) an L-formula with at most one
free variable, � an ordinal, and p < �.

(∨1) If CD∞ | �′p Γ, A ∨ B,A for some ordinal �′ < �, then CD∞ | �p Γ, A ∨ B .

(∨2) If CD∞ | �′p Γ, A ∨ B,B for some ordinal �′ < �, then CD∞ | �p Γ, A ∨ B .

(
∧

) If CD∞ | �0p Γ, A ∧ B,A and CD∞ | �1p Γ, A ∧ B,B for some ordinals �0, �1 <

�, then CD∞ | �p Γ, A ∧ B .

(∃) If CD∞ | �′p Γ,∃xC (x), C (a) for some closed L0-term a and ordinal �′ < �,

then CD∞ | �p Γ,∃xC (x).
(∀) If there exists some ordinal �a < � for each closed L0-term a such that

CD∞ | �ap Γ,∀xC (x), C (a), then CD∞ | �p Γ,∀xC (x).

(cut) If CD∞ | �0p Γ, A and CD∞ | �1p Γ,¬A for some ordinals �0, �1 < � and

L-sentence A with complexity < p, then CD∞ | �p Γ.

Rules for positive occurrences of D. For ordinals � and p < � and a closed term a,
CD∞ | �p Γ,Da holds, if one of the following holds for some ordinal �′ < �8:

8Note that D5±∞ and D6±∞ are the rule versions of the variants D5’ and D6’ of D5 and D6 (see fn.
4.1 for their definitions). Recall that they are equivalent to the original D5 and D6 due to the axiom D4.
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(D2pos
∞ ) There is a closed term b such that aN = (T. b)N ∈ SentN and

CD∞ | �′p Γ,Da,Db◦.

(D3pos
∞ ) There is a closed term b such that aN = (D. b)N ∈ SentN and

CD∞ | �′p Γ,Da,Db◦.

(D4pos
∞ ) There is a closed term b such that aN = (¬. b)N ∈ SentN and

CD∞ | �′p Γ,Da,Db.

(D5pos
∞ ) There are some closed terms b and c such thataN = (b∧. c)N ∈ SentN and

CD∞ | �′p Γ,Da, (Db ∧ Dc) ∨ (D¬. b ∧ Fb) ∨ (D¬. c ∧ Fc).

(D6pos
∞ ) There are some closed terms b and c such thataN = (∀.bc)N ∈ SentN and

CD∞ | �′p Γ,Da,∀sDc(s/b) ∨ ∃s(D¬. c(s/b) ∧ Fc(s/b)).

Rules for negative occurrences of D. For ordinals � and p < � and a closed term a,
CD∞ | �p Γ,¬Da holds, if one of the following holds for some ordinal �′ < �:

(D2neg
∞ ) There is a closed term b such that aN =(T. b)N∈SentN and

CD∞ | �′p Γ,¬Da,¬Db◦.

(D3neg
∞ ) There is a closed term b such that aN =(D. b)N∈SentN and

CD∞ | �′p Γ,¬Da,¬Db◦.

(D4neg
∞ ) There is a closed term b such that aN =(¬. b)N∈SentN and

CD∞ | �′p Γ,¬Da,¬Db.

(D5neg
∞ ) There are some closed terms b and c such that aN = (b∧. c)N ∈ SentN and

CD∞ | �′p Γ,¬Da, (¬Db ∨ ¬Dc) ∧ (¬D¬. b ∨ ¬Fb) ∧ (¬D¬. c ∨ ¬Fc).

(D6neg
∞ ) There are some closed terms b and c such thataN = (∀.bc)N ∈ SentN and

CD∞ | �′p Γ,¬Da,∃s¬Dc(s/b) ∧ ∀s(¬D¬. c(s/b) ∨ ¬Fc(s/b)).

Rules for positive occurrences of T. For ordinals � and p < � and a closed term a,
CD∞ | �p Γ,Ta holds, if one of the following holds for some ordinal �′ < �:

(T1pos
∞ ) There are some closed terms b and c such thataN = (b=. c)N ∈ SentN and

CD∞ | �′p Γ,Ta, b◦ = c◦.

(T2pos
∞ ) There is a closed term b such that aN = (D. b)N ∈ SentN and

CD∞ | �′p Γ,Ta,Db◦.

(T3pos
∞ ) There is a closed term b such that aN = (T. b)N ∈ SentN and

CD∞ | �′p Γ,Ta,Tb◦ ∧ Db◦.

(T4pos
∞ ) There is a closed term b such that aN = (¬. b)N ∈ SentN and

CD∞ | �′p Γ,Ta,¬Tb.

(T5pos
∞ ) There are some closed terms b and c such that aN = (b∧. c)N ∈ SentN and

CD∞ | �′p Γ,Ta,Tb ∧ Tc.

(T6pos
∞ ) There are some closed terms b and c such that aN = (∀.bc)N ∈ SentN and

CD∞ | �′p Γ,Ta,∀sTc(s/b).
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Rules for a negative occurrence of T. For ordinals � and p < � and a closed term a,
CD∞ | �p Γ,¬Ta holds, if one of the following holds for some ordinal �′ < �:

(T1neg
∞ ) There are some closed terms b and c such that aN = (b=. c)N ∈ SentN

and CD∞ | �′p Γ,¬Ta, b◦�=c◦.
(T3neg

∞ ) There is a closed term b such that aN = (T. b)N ∈ SentN and
CD∞ | �′p Γ,¬Ta,¬Tb◦ ∧ Db◦.

(T4neg
∞ ) There is a closed term b such that aN = (¬. b)N ∈ SentN and

CD∞ | �′p Γ,¬Ta,Tb.

(T5neg
∞ ) There are some closed terms b and c such thataN = (b∧. c)N ∈ SentN and

CD∞ | �′p Γ,¬Ta,¬Tb ∨ ¬Tc.

(T6neg
∞ ) There are some closed terms b and c such that aN = (∀.bc)N ∈ SentN and

CD∞ | �′p Γ,Ta,∃s¬Tc(s/b).
Note that there is no rule for a negative occurrence of T corresponding to (T2pos

∞ ).

Lemma 6.1. The following basic properties of CD∞ can be shown in the standard
manner, and we omit their proofs.

1. (Structural Lemma)
For all � ≤ �, q ≤ p, and Δ ⊂ Γ, if CD∞ | �q Δ, then CD∞ | �p Γ.

2. (Numerical Equivalence Lemma)
For all closed terms a and b, if aN = bN and CD∞ | �p Γ, A(a), then

CD∞ | �p Γ, A(b).
3. (Tautology Lemma)

CD∞ |2·cp(A)
0 A,¬A; recall that cp(A) denotes the complexity of A (see page 12).

4. (∧-Inversion)
If CD∞ | �p Γ, A ∧ B , then CD∞ | �p Γ, A, and CD∞ | �p Γ, B .

5. (∨-Exportation)
If CD∞ | �p Γ, A ∨ B , then CD∞ | �p Γ, A, B .

6. (∀-Inversion)
If CD∞ | �p Γ,∀xA(x), then CD∞ | �p Γ, A(a) for all closed terms a.

The next lemma is nearly obvious from the design of CD∞, and the proof is
routine.

Lemma 6.2. For every L-sentence �, if CD 
 �, then CD∞ |�+k
n � for some

k, n < �; actually, we can primitive recursively calculate k and n from a given derivation
of �.

The following three lemmata can also be shown standardly.

Lemma 6.3 (Reduction Lemma). If CD∞ | α
1+n+1 Γ, then CD∞ | 2α

1+n Γ.

Lemma 6.4 (Partial Cut-elimination Lemma). IfCD∞ | α1+n Γ, thenCD∞ |�n(α)
1 Γ,

where �n(α) is recursively defined as follows: �0(α) = α and �k+1(α) = ��k (α).

Lemma 6.5. For every L-sentence �, if CD 
 �, then CD∞ | �1 � for some � < ε0.
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Note that CD∞ | �1 � means that there is a derivation of � in CD∞ in which (cut)
is only applied to closed L-literals; such a derivation corresponds to what Cantini
[5] calls a quasi-normal derivation in his semi-formal system TKF∞.

6.2. Reduction of CD to KF. Let �, �, and 	 be ordinals. Recall that we only
consider L-sentences in negation-normal form throughout the Section 6. Given an
L-sentence φ, we write |= φ[�, �, 	] when φ is true under the following interpreta-
tion:

• the quantifiers range over �;
• the L0-vocabulary receives the standard interpretations;
• each negative occurrence of D in φ is interpreted by D�+1;
• each positive occurrence of D in φ is interpreted by D�+1;
• each (either negative or positive) occurrence of T in φ is interpreted by T	+1.

We extend this notation to finite sets Γ of L-sentences and write |= Γ[�, �, 	] when
|= φ[�, �, 	] for some φ ∈ Γ. By Lemma 4.5.2, the sequence 〈D	 | 	 ∈ On〉 is a
monotonically increasing, whereOn denotes the class of ordinals, and thus the next
lemma can be shown in the standard manner.

Lemma 6.6 (Persistence Lemma). Let φ be an L-sentences and Γ a finite set of
L-sentences. For every ordinals �1 ≤ �0, �0 ≤ �1, and 	, the following hold.

1. If |= ϕ[�0, �0, 	], then |= ϕ[�1, �1, 	].
2. If |= Γ[�0, �0, 	], then |= Γ[�1, �1, 	].

The next is the main lemma of the present section.

Lemma 6.7. For all ordinals �, if CD∞ | �1 Γ, then for all ordinals � and 	, if
� + 2� ≤ 	, then |= Γ[�, � + 2� , 	].

Proof. The claim is shown by induction on derivation. Throughout this proof,
a, b, c, and d always denote closed L0-terms.

Suppose that the last inference is made by either of the following axioms:

CD∞ | �1 Γ,A
(Ax1)

CD∞ | �1 Γ,Ta,¬Tb
(Ax3)

CD∞ | �1 Γ,Dc
(D1)
,

where A is a true closed L0-literal, aN≈N bN, and cN is the Gödel number of a
closed L0-atomic. The claim for the first case is obvious; the claim for the second
case follows from Proposition 4.4.2, and the claim for the third case follows from
Proposition 4.2.1. Next, suppose the last inference is made by the axiom (Ax2):

CD∞ | �1 Γ,Da,¬Db
(Ax2)

,

where aN≈N bN. Take any ordinal � and 	. SinceD�+1 ⊂ D�+2�+1 by Lemma 4.5.1,
aN �∈ D�+2�+1 implies aN �∈ D�+1 and thus bN �∈ D�+1 by Proposition 4.4.1. Hence,
either aN ∈ D�+2�+1 or bN �∈ D�+1 holds, and thus |= {Da,¬Db}[�, � + 2� , 	].

We move on to the induction step. The case where we use a logical rule in the last
inference, except for cut, can be treated in the usual manner. For instance, suppose
the last inference is made by (∀), namely, (our variant of) the �-rule:

CD∞ | �a1 Γ,∀x A(x), A(a), for each closed L0-term a,

CD∞ | �1 Γ,∀x A(x)
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where �a < � for each a. Take any � and 	 with � + 2� ≤ 	. It follows from the
induction hypothesis that for each closed term a, we have the following:

|= Γ ∪ {∀xA(x)} ∪ {A(a)} [�, � + 2�a , 	].

If |= Γ ∪ {∀x A(x)}[�, � + 2�a , 	] for any a, then we have |= Γ ∪ {∀x A(x)}[�, � +
2� , 	] by Lemma 6.6. Otherwise, for all closed terms a, we have |= A(a)[�, � + 2�a , 	]
and thus |= A(a)[�, � + 2� , 	] by Lemma 6.6, which implies |= ∀x A(x)[�, � + 2� , 	].

Next, the claim for the cases where the last inference is made by one of the rules
for determinateness can be straightforwardly shown using Lemmata 4.2 and 4.5.
For example, suppose the last inference is of the following form:

CD∞ | �1 Γ,¬Da, (¬Db ∨ ¬Dc) ∧ (¬D¬. b ∨ ¬Fb) ∧ (¬D¬. c ∨ ¬Fc)

CD∞ | �1 Γ,¬Da
(D5neg

∞ )
,

where � < � and aN = (b∧. c)N ∈ SentN. Take any � and 	 with � + 2� ≤ 	. If we have
|= Γ ∪ {¬Da}[�, � + 2� , 	], then we get |= Γ ∪ {¬Da}[�, � + 2� , 	] by Lemma 6.6.
Otherwise, we have the following by the induction hypothesis:

|= (¬Db ∨ ¬Dc) ∧ (¬D¬. b ∨ ¬Fb) ∧ (¬D¬. c ∨ ¬Fc) [�, � + 2� , 	].

Since D�+1 ⊃ D� and D� ∩ T	+1 = D� ∩ T� by Lemma 4.5, this implies

bN �∈ D� or cN �∈ D�, and (¬. b)N �∈ D� ∩ T�, and (¬. c)N �∈ D� ∩ T�.

Hence, by Lemma 4.2.5, we obtain aN �∈ D�+1 and thus |= ¬Da[�, � + 2� , 	]. Let us
see one more example. Suppose the last inference is of the following form:

CD∞ | �1 Γ,Da,∀sDc(s/b) ∨ ∃s(D¬. c(s/b) ∧ Fc(s/b))

CD∞ | �1 Γ,Da
(D6pos

∞ )
,

where � < � and aN = (∀.bc)N ∈ SentN. Take any � and 	 with � + 2� ≤ 	. As before,
if |= Γ ∪ {Da}[�, � + 2� , 	], then the claim follows by Lemma 6.6. Otherwise, by
the induction hypothesis, we have

|= ∀sDc(s/b) ∨ ∃s(D¬. c(s/b) ∧ T¬. c(s/b)) [�, � + 2� , 	].

Since � + 2� + 1 ≤ � + 2� ≤ 	, it follows from Lemma 4.5 that

(c(d/b))N ∈ D�+2� for all closed terms d with dN ∈ ClTermN,

or(¬. c(d/b))N∈ D�+2� ∩ T�+2� for some d with dN ∈ ClTermN,

which implies aN ∈ D�+2�+1 by Lemma 4.2.6 and thus |= Da[�, � + 2� , 	]. We leave
the other cases to the reader.

Now, let us assume that the last inference is made by a truth rule. Suppose the
last inference is made by either (T4pos

∞ ) or (T3neg
∞ ):

CD∞ | �1 Γ,Ta,¬Tb

CD∞ | �1 Γ,Ta
(T4pos

∞ )
CD∞ | �1 Γ,¬Ta,Tb

CD∞ | �1 Γ,¬Ta
(T4neg

∞ )
,

where � < � and aN = (¬. b)N ∈ SentN. Take any � and 	 with � + 2� ≤ 	. We will
prove the claim only for the former case; the latter case can be similarly shown.
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If |= ¬Tb[�, � + 2� , 	], then bN �∈ T	+1 and thus aN ∈ T	+1 by Lemma 4.3.4, which
implies |= Ta[�, � + 2� , 	]. Otherwise, we have |= Γ ∪ {Ta}[�, � + 2� , 	] by the
induction hypothesis, and the claim follows by Lemma 6.6 as before. Next, suppose
that we make either of the following inferences at the last step:

CD∞ | �1 Γ,Ta,Tb◦ ∧ Db◦

CD∞ | �1 Γ,Ta
(T3pos

∞ )
CD∞ | �1 Γ,¬Ta,¬Tb◦ ∧ Db◦

CD∞ | �1 Γ,¬Ta
(T3neg

∞ ),

where � < � and aN = (T. b)N ∈ SentN. Take any � and 	 with � + 2� ≤ 	. For the
former case, if |= Tb◦ ∧ Db◦[�, � + 2� , 	], then, by Lemma 4.5, we have

(b◦)N ∈ D�+2�+1 ∩ T	+1 ⊂ D�+2� ∩ T	+1 = D�+2� ∩ T�+2� ,

and thus, by Lemmata 4.2.2, 4.3.2, and 4.5, we obtain

aN ∈ D�+2�+1 ∩ T�+2�+1 = D�+2�+1 ∩ T	+1,

which implies |= Ta[�, � + 2� , 	]; otherwise, we have |= Γ ∪ {Ta}[�, � + 2� , 	] by
the induction hypothesis, and the claim follows by Lemma 6.6 as before. Similarly,
for the latter case, if |= ¬Tb◦ ∧ Db◦[�, � + 2� , 	], then, by Lemma 4.5, we have

(b◦)N ∈ D�+2�+1 \ T	+1 ⊂ D�+2� \ T	+1 = D�+2� \ T�+2� ,

and thus, again by Lemmata 4.2.2, 4.3.2, and 4.5, we obtain

aN ∈ D�+2�+1 \ T�+2�+1 = D�+2�+1 \ T	+1,

which implies |= ¬Ta[�, � + 2� , 	]; otherwise, we have |= Γ ∪ {¬Ta}[�, � + 2� , 	]
by the induction hypothesis, and the claim follows by Lemma 6.6 as before. Thirdly,
suppose that the last inference is made by the rule (T2pos

∞ ):

CD∞ | �1 Γ,Ta,Db◦

CD∞ | �1 Γ,Ta
(T2pos

∞ )
,

where � < � andaN = (D. b)N ∈ SentN. Take any� and 	with� + 2� ≤ 	. Suppose |=
Db◦[�, � + 2� , 	]. We have (b◦)N ∈ D�+2�+1 and thus (b◦)N ∈ D	 by Lemma 4.5.2.
Hence, we get aN ∈ T	+1 by Lemma 4.3.3 and thus |= Ta[�, � + 2� , 	]. Otherwise,
the claim follows by Lemma 6.6 as before. The remaining cases for the other truth
rules can be dealt with similarly.

Finally, let us assume that the last inference is made by (cut). We only consider
the crucial case where the cut formulae are of the forms Da and ¬Da:

CD∞ | �01 Γ,Da CD∞ | �11 Γ,¬Da

CD∞ | �1 Γ ,

where �0, �1 < �. Let � = max{�0, �1} and take any� and 	with� + 2� ≤ 	. Suppose
�|= Γ[�, � + 2� , 	] for contradiction. Since 2� + 2� ≤ 2� , it would follow that

�|= Γ[�, � + 2� , 	] and �|= Γ[� + 2� , � + 2� + 2� , 	]

by Lemma 6.6. Hence, by the induction hypothesis, we would have

|= Da[�, � + 2� , 	] and |= ¬Da[� + 2� , � + 2� + 2� , 	],
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which means aN∈ D�+2�+1 and aN �∈ D�+2�+1; a contradiction. The remaining case
in which the cut formulae are closed LT-literals can be straightforwardly treated. �

Combining this with Lemma 6.5, we obtain the next corollary.

Corollary 6.8. For each L-sentence φ, if CD 
 φ, then there is some � < ε0 such
that |= �[0, 2� , 2� ].

Now, the argument of this section can be adequately formalized within KF
(orRA<ε0), in which we can formalize the construction ofD	s andT	s for sufficiently
large ordinals (< ε0) and prove (the arithmetization of) Corollary 6.8 in terms of
them. Hence, in particular, we obtain the following.

Corollary 6.9. CD is arithmetically conservative over KF.

Combining this corollary with Corollary 5.6, we obtain our main theorem.

Theorem 6.10. CD0,CD1,CD2, andCD are arithmetically equivalent toKF,RA<ε0 ,
and RT<ε0 , that is, they have exactly the same arithmetical theorems.

In fact, our proofs establish stronger results: All the systems are proof-
theoretically reducible to each other in the sense of Feferman [7, 9].

§7. Upper bound of the strength of CD+. We will show that CD+ is arithmetically
conservative overRT<εε0 . This will be shown by constructing a relative interpretation
ofCD+ inCT[[KF + Cons]] (= CT[[KF]] + Cons) that preserves the arithmetical part.

7.1. Total and consistent predicates. We begin with the following definition:

D+(x) :⇔ (Fx ↔ ¬Tx).

Thus, D+(x) is equivalent to (Tx ∨ Fx) ∧ (¬Tx ∨ ¬Fx). We obviously have

KF + Cons 
 (∀x ∈ SentT)
(
D+(x) ↔ (Tx ∨ Fx)

)
,

KF + Comp 
 (∀x ∈ SentT)
(
D+(x) ↔ (¬Tx ∨ ¬Fx)

)
.

(11)

Lemma 7.1. The following are provable in KF.
1. ∀s

(
D+(T. s) ↔ D+(s◦)

)
; use K2.

2. (∀x ∈ SentT)
(
D+(¬. x) ↔ D+x

)
; use K3.

Lemma 7.2. The following are provable in KF + Cons.

1. ∀x ∀y
(

SentT(x∧. y) →
(
D+(x∧. y) ↔

(
(D+x ∧D+y) ∨ (D+x ∧ Fx) ∨ (D+y ∧ Fy)

)))
.

2. ∀x ∀y
(

SentT(x∨. y) →
(
D+(x∨. y) ↔

(
(D+x ∧D+y) ∨ (D+x ∧ Tx) ∨ (D+y ∧ Ty)

)))
.

3. ∀v ∀x
(

SentT(∀. vx) →
(
D+(∀. vx) ↔

(
∀sD+x(s/v) ∨ ∃s

(
D+x(s/v) ∧ Fx(s/v)

))))
.

4. ∀v ∀x
(

SentT(∃. vx) →
(
D+(∃. vx) ↔

(
∀sD+x(s/v) ∨ ∃s

(
D+x(s/v) ∧ Tx(s/v)

))))
.

Proof. We work within KF + Cons; recall that we haveD+(x) ↔ (Tx ∨ Fx) for
all x ∈ SentT in KF + Cons. For claim 1, take any x, y ∈ SentT; then we have

T(x∧. y) ∨ F(x∧. y) K4 & K5⇔ (Tx ∧ Ty) ∨ (Fx ∨ Fy)
by logic⇔ (D+x ∧D+y) ∨ (D+x ∧ Fx) ∨ (D+y ∧ Fy).
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Claim 2 can be shown similarly to 1 using Lemma 7.1.2 and K3. For claim 3, take
any v and x with ∀.vx ∈ SentT; then we have

T(∀.vx) ∨ F(∀.vx) K6 & K7⇔ ∀sTx(s/v) ∨ ∃sFx(a/v)
by logic⇔ ∀sD+x(s/v) ∨ ∃s

(
D+x(s/v) ∧ Fx(s/v)

)
.

Claim 4 can be shown similarly to 3 using Lemma 7.1.2 and K3. �
Lemma 7.3. KF 
 ∀s

(
D+(T. s ∨. F. s) ↔ D+s◦

)
∧ ∀s

(
D+(¬. T. s ∨. ¬. F. s) ↔ D+s◦

)
.

Proof. Take any s ∈ ClTerm. The following four equivalences are provable
in KF:

T(T. s ∨. F. s)
5.2.1 & K2⇔ Ts◦ ∨ Fs◦ 5.2.1 & K2 & K3⇔ T(¬. F. s ∨. ¬. T. s);

¬F(T. s∨. F. s)
5.2.1 & K2 & K3⇔ ¬Fs◦ ∨ ¬Ts◦ 5.2.1 & K2 & K3⇔ ¬F(¬. F. s∨. ¬. T. s);

F(T. s∨. F. s)
5.2.1 & K2 & K3⇔ Fs◦ ∧ Ts◦ 5.2.1 & K2 & K3⇔ F(¬. F. s∨. ¬. T. s);

¬T(T. s∨. F. s)
5.2.1 & K2⇔ ¬Ts◦ ∧ ¬Fs◦ 5.2.1 & K2 & K3⇔ ¬T(¬. F. s∨. ¬. T. s).

The claim follows from these by logic. �

7.2. Reduction of CD+ to CT[[KF + Cons]]. In the present subsection, we give an
interpretation of CD+ in CT[[KF + Cons]] that preserves L0. For this purpose, we
need a few preliminary definitions.

By the recursion theorem we obtain a recursive function f that satisfies the
following condition:

fx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x, ifx ∈ AtFml0,
T.f. y, ifx = T. y for y ∈ Term,
T.f. y∨. F.f. y, ifx = D. y for y ∈ Term,
¬.fy, ifx = ¬. y ∈ Fml,
(fy)∧. (fz), ifx = y∧. z ∈ Fml,
∀.v(fv), ifx = ∀.vy ∈ Fml,
�0 �= 0�, otherwise.

(12)

Here f. is an arithmetical representation of the syntactic operation of applying the
function f to terms so that (f. s)

◦ = f(s◦) is provable in PA for each s ∈ ClTerm.9

We can show that f is provably total in PA and thus f is a PA-definable function.
Obviously we have fx ∈ FmlT for every x ∈ Fml (provably in PA), and, as in
the case for the function k, we have ∀z

(
Free(z, x) ↔ Free(z, fx)

)
; hence, we have

fx ∈ SentT for every x ∈ Sent (provably in PA).
The next is shown by routine induction on the complexity of x (cf. Lemma 5.7).

Lemma 7.4. PA 
 (∀x ∈ Fml)∀s(∀v ∈ Var)
(
f(x(s/v)) = (fx)(s/v)

)
.

9The language L0 may not possess a function symbol for f depending on how one defines L0. In such
a case, f is defined by some L0-formula φ(x, y), and T.f. z means �∀w(φ(x, w) → Tw)�(z/�x�). Then,
we can easily verify that KF proves that T�∀w(φ(x, w) → Tw)�(z/�x�) is equivalent to Tf(z◦).
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Now, we define a translation � of L into L+
T as follows: for each term a,

D�a := Tfa ∨ Ffa and T�a := Tfa;

� preserves all the L0-vocabulary. By (11), we have

KF + Cons 
 (∀x ∈ Sent)
(
D�x ↔ D+(fx)

)
. (13)

We will show that � is a relative interpretation of CD in CT[[KF + Cons]].

Lemma 7.5. The following are provable in KF + Cons.

1. ∀s∀tD�(s=. t); by (12) and K1.
2. ∀s

(
D�(T. s) ↔ D�s◦

)
; by (12), (13), and Lemma 7.1.1.

3. (∀x ∈ Sent)
(
D�(¬. x) ↔ D�x

)
; by (12), (13), and Lemma 7.1.2.

Hence, the �-translations of D1, D2, and D4 are provable in KF + Cons.

Lemma 7.6. KF + Cons 
 ∀s
(
D�(D. s) ↔ D�s◦

)
. Hence, the �-translations of D3

is provable in KF + Cons.

Proof. The claim is readily observed from the following equivalences:

D�(D. s)
(13)⇔ D+f(D. s)

(12)⇔ D+(T.f. s∨. F.f. s)
7.3⇔ D+(f. s)

◦ ⇔ D+f(s◦)
(13)⇔ D�s◦.

�

Lemma 7.7. The following are provable in CT[[KF + Cons]].

1. ∀s ∀t(T�(s=. t) ↔ s◦= m◦).
2. ∀s

(
T�(D. s) ↔ D�s◦

)
.

3. (∀x ∈ Sent)
(
T�(¬. x) ↔ ¬T�x)

)
.

4. (∀x, y ∈ Sent)
(
T�(x∧. y) ↔ (T�x ∧ T�y)

)
.

5. ∀v∀x
(
∀. vx ∈ Sent →

(
T�(∀. vx) ↔ ∀sT�x(s/v)

))
.

Hence, the �-translation of T1 and T2 and T4–T6 are provable in CT[[KF + Cons]].

Proof. We work within CT[[KF + Cons]]. Claim 1 is obvious by T1. For claim 2,
take any s ∈ ClTerm, and then we infer

Tf(D. s)
(12)⇔ T(T.f. s ∨. F.f. s)

5.4.1⇔ T(T.f. s) ∨ T(F.f. s)
T1⇔ Tf(s◦) ∨ Ff(s◦) ⇔ D�s◦.

Claims 3 and 4 readily follow from T2 and T3, respectively, together with the
definition (12) of f. For claim 5, let v and x be such that ∀.vx ∈ Sent. Then, we have

Tf(∀.vx)
(12)⇔ T∀.vf(x) T4⇔ ∀sT(fx)(s/v) 7.4⇔ ∀sTf(x(s/v)). �

Lemma 7.8. CT[[KF + Cons]] 
 ∀x
(
D�(x) → (Tf(x) ↔ Tf(x))

)
.

Proof. If x �∈ Sent thenf(x) = �0 �=0� and thusTf(x) ∧ Tf(x). Let x ∈ Sent.
The claim is shown by induction on the complexity of x. For the base step, assume
x ∈ AtSent. The case where x ∈ AtSent0 is obvious. Next, if x = T. s for some
s ∈ ClTerm, then we have

Tf(x)
(12)⇔ T(T.f. s)

T1⇔ Tf(s◦) K2⇔ TT.f. s
(12)⇔ Tf(x).
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Lastly, let x = D. s for some s ∈ ClTerm. Then, we have

Tf(x)
(12) & 5.4.1⇔ T(T.f. s) ∨ T(F.f. s)

T1⇔ Tfs◦ ∨ Ffs◦
K2⇔ T(T.f. s) ∨ T(F.f. s)

5.2.1 & (12)⇔ Tf(x).

For the induction step, we first let x = ¬. y and assume D�x. We have D�y by Lemma
7.5.3 and thus D+f(y) by (13). Hence, we have

Tf(x)
(12)⇔ T¬.f(y) T2⇔ ¬Tf(y) IH⇔ ¬Tf(y)

D+f(y)⇔ Ff(y)
(12)⇔ Tf(x);

note that the assumption D�x is crucial here. The other cases can be shown similarly,
but without the need to use the assumption D�x. �

Lemma 7.9. CT[[KF + Cons]] 
 ∀s
(
D�(s◦) → (T�(T. s) ↔ T�(s◦))

)
. Hence, the �-

translation of T3 is provable in CT[[KF + Cons]].

Proof. Take any s ∈ ClTerm and suppose D�(s◦). Then, we have

Tf(T. s)
(12)⇔ TT.f. s

T1⇔ Tf(s◦) 7.8⇔ Tf(s◦). �

Lemma 7.10. CT[[KF + Cons]] proves the following.

1. (∀x, y ∈ Sent)
(

D�(x∧. y) ↔
(
(D�x ∧ D�y) ∨ (D�x ∧ F�x) ∨ (D�y ∧ F�y)

))
.

2. ∀v∀x
(
∀. vx ∈ Sent →

(
D�(∀. vx) ↔

(
∀sD�x(s/v) ∨ ∃s(D�x(s/v) ∧ F�x(s/v))

)))
.

Hence, the �-translations of D5 and D6 are provable in KF + Cons.

Proof. 1. Let x, y ∈ Sent. Then, we have

D�(x∧. y)
(12) & (13)⇔ D+(fx∧. fy)

7.2.1⇔ (D+fx ∧D+fy) ∨ (D+fx ∧ Ffx) ∨ (D+fy ∧ Ffy)

(12) & (13) & 7.8⇔ (D�x ∧ D�y) ∨ (D�x ∧ F�x) ∨ (D�y ∧ F�y).

2. Let ∀.vx ∈ Sent. Then, we similarly obtain

D�(∀.vx)
(12) & (13) & 7.2.3⇔

(
∀sD+(fx)(s/v) ∨ ∃s

(
D+(fx)(s/n) ∧ Ff(x)(s/v)

))

(12) & (13) & 7.4 & 7.8⇔
(
∀sD�x(s/v) ∨ ∃s

(
D�x(s/v) ∧ F�x(s/v)

))
. �

By Lemmata 7.5–7.7, 7.9, and 7.10, we obtain the next theorem.

Theorem 7.11. The translation � is a relative interpretation of CD+ in CT[[KF +
Cons]]. Hence, in particular, CD+ is arithmetically conservative over CT[[KF + Cons]].

Combining this theorem with Corollary 5.10 and Fact 5.11, we obtain the next.

Theorem 7.12. CD+
2 and CD+ are arithmetically equivalent to RA<εε0 and RT<εε0 .

As before, our proofs actually establish that all these systems are proof-
theoretically reducible to each other in the sense of Feferman [7, 9].
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§8. Some supplementary results.

8.1. An interpretation of CD+ in CT[[KF + Comp]]. Preliminarily, we give an
interpretation of CD+ in CT[[KF + Comp]].10

Similarly to the function f, introduced in (12) above, we define a recursive function
h by the recursion theorem so that the following condition obtains:

h(x) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x, ifx ∈ AtFml0,
T. h.y, ifx = T. y for y ∈ Term,
¬. T. h.y ∨. ¬. F.f. y, ifx = D. y for y ∈ Term,
¬. h(y), ifx = ¬. y ∈ Fml,
h(y)∧. h(z), ifx = y∧. z ∈ Fml,
∀.v.h(y), ifx = ∀.vy ∈ Fml,
0, otherwise.

(14)

Using h, the translation � of L into LT is defined as follows: for each term a,

D�a = ¬Tha ∨ ¬Fha and T�a = Th(a);

all theL0-vocabulary, logical connectives, and quantifiers are preserved by �. By (11),
we have KF + Comp 
 ∀x

(
D�x ↔ D+(hx)

)
.

The proof of the next theorem is completely dual to that of Theorem 7.11, and
we omit the details.

Theorem 8.1. � is a relative interpretation of CD in CT[[KF + Comp]].

8.2. Liars and truth tellers. In previous section we compared CD and its variants
with other truth theories with respect to their strength. Truth theories are often
compared by the way liar and truth teller sentences behave. In the present section
we establish a few results about their behaviour in CD and its variants.

Let l and t be closed L0-terms with the following properties:

PA 
 l = �¬Tl� and PA 
 t = �Tt�. (15)

Hence, we have

CD 
 Tl ↔ ¬T�Tl� and CD 
 Tt ↔ T�Tt�. (16)

Therefore, ¬Tl and Tt are a liar and a truth-teller sentence, respectively.11

10Cantini’s [5] ‘dual’ interpretation of KF + Cons in KF + Comp induces an interpretation of CD+

in CT[[KF + Comp]], but we will need a different interpretation for our purposes, namely, � defined here.
11If theL0-vocabulary does not have l and t as genuine closed terms, they can still be taken as definable

closed terms: in such a case, we take L0-formulae φ(x) and �(x) with exactly one free variable such that

PA 
 ∀x
(
φ(x) → x = �∀x(φ(x) → ¬Tx)�

)
and PA 
 ∀x

(
�(x) → x = �∀x(�(x) → Tx)�

)
,

and (16) means that

CD � ∀x
(
φ(x) → (Tx ↔ ¬T�∀x(φ(x) → ¬Tx)�)

)
and CD � ∀x

(
�(x) → (Tx ↔ ¬T�∀x(�(x) → Tx)�)

)
,

both of which are readily verified. All the results in this section are true in terms of these paraphrases.
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Proposition 8.2.

1. CD 
 ¬Dl.
2. CD+ �
 Dt.
3. CD+ �
 Tt and CD+ �
 ¬Tt.
4. CD+ �
 ¬Tl and CD+ �
 Tl.

Proof. 1. Provably in CD, if Dl were the case, then we would have Tl ↔ T�Tl�
by T3, which contradicts (16).

2. Using (15), we can show that t �∈ D	 for all 	 by straightforward induction
on 	.

3. For the function f defined in Section 7.2, we observe that PA proves the
following:

f(t) = f(�Tt�) = �Tf(t)� and h(t) = h(�Tt�) = �Th(t)�; (17)

hence, both f(t) and h(t) are also truth-tellers. Let I be the least Kripkean fixed
point, namely, the least set I ⊂ � such that (N, I ) |= KF, where I interprets the
truth predicate T. It is known that (N, I ) |= Cons. By the standard argument, we
can show that f(t) �∈ I and ¬. h(t) �∈ I . Let J := {#¬φ | #φ �∈ I }; hence, (N, J ) is
the LT-structure induced from (N, I ) by Cantini’s dual interpretation, and thus
(N, J ) |= KF + Comp. Then, we have

(N, I ) �|= Tf(t) and (N, J ) |= Th(t). (18)

Now, by (17), we have the following:

CT[[KF]] 
 Tf(t) ↔ Tf(t) and CT[[KF]] 
 Th(t) ↔ Th(t). (19)

Let I+ := {#φ | (N, I ) |= φ} and J+ := {#φ | (N, J ) |= φ}; then, the L+
T -structures

(N, I, I+) and (N, J, J+), in which T is interpreted by I+ and J+ respectively, are
models of CT[[KF + Cons]] and CT[[KF + Comp]], respectively. It follows from (18)
and (19) that

(N, I, I+) �|= Tf(t) and (N, J, J+) �|= ¬Th(t).

Hence, CD+ �
 Tt and CD+ �
 ¬Tt by Theorems 7.11 and 8.1.
4. Observe that PA proves the following:

f(l) = f(�¬Tl�) = �¬Tf(l)� and h(l) = h(�¬Tl�) = �¬Th(l)�; (20)

namely, f(l) and h(l) are also liar sentences. Hence, we obtain

KF 
 Tf(l) ↔ Ff(l) and KF 
 Th(l) ↔ Fh(l), (21)

which implies KF + Cons 
 ¬Tf(l) and KF + Comp 
 Th(l). Finally, it follows
from (20) that CT[[KF]] proves

Tf(l) ↔ T�¬Tf(l)� ↔ ¬Tf(l) and Th(l) ↔ T(�¬Thl�) ⇔ ¬Th(l).

Hence, we have CT[[KF + Cons]] 
 Tf(l) and CT[[KF + Comp]] 
 ¬Th(l), which
implies CD+ �
 ¬Tl and CD+ �
 Tl by Theorems 7.11 and 8.1. �
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Proposition 8.3. Let us write � for ¬Tl. We have the following:
1. CD+ �
 T�T�� ∨ ¬��� and CD+ �
 ¬T�T�� ∨ ¬���; hence, the truth of some

logical truth is neither provable nor refutable in CD.
2. CD+

� T � ( T �¬�� ↔ ¬T ���) �; hence, not all CD-axioms are provably true in
CD.

3. CD+ 
 ¬D � ( T �¬�� ↔ ¬T ���) �; hence, not all CD-axioms are provably
determinate in CD.

Proof. 1. CT[[KF]] proves the following equivalences:

T��T�� ∨ ¬��� ⇔ T�Tf(�� ∨ ¬��)� ⇔ Tf(�� ∨ ¬��) ⇔ Tf(�) ∨ Ff(�),

T��T�� ∨ ¬��� ⇔ T�Th(�� ∨ ¬��)� ⇔ Th(�� ∨ ¬��) ⇔ Th(�) ∨ Fh(�).

By (15) and (21), KF + Cons 
 ¬(Tf(�) ∨ Ff(�)) and KF + Comp 
 Th(�) ∨
Fh(�). Hence, CT[[KF + Cons]] 
 ¬T��T�� ∨ ¬��� and CT[[KF + Comp]] 

T��T�� ∨ ¬���; thus, CD+ �
 T�T�� ∨ ¬��� and CD+ �
 ¬T�T�� ∨ ¬��� by
Theorems 7.11 and 8.1.

2. CT[[KF]] derives the following:

T�� ( T �¬�� ↔ ¬T ���)� ⇔ Tf(�T �¬���) ↔ ¬Tf(�T ����)

⇔ Ff(�) ↔ ¬Tf(�)
(15) & (21)⇔ Tf(�) ↔ ¬Tf(�).

Hence, we haveCT[[KF + Cons]] 
 ¬T�� ( T �¬�� ↔ ¬T ���)�, from which the claim
follows by Theorems 7.11.

3. Provably in CD, if D � ( T �¬�� ↔ ¬T ���) �, then D�¬T���� and thus Dl by
(15), which contradicts Proposition 8.2.1. �

8.3. Additional axioms. In this subsection, we will consider a few conservative
extensions of CD+ with additional axioms about iterations of truth.

Lemma 8.4.

1. CT[[KF + Cons]] 
 ∀s(T�T. s → T�s◦).
2. CT[[KF + Cons]] 
 ∀s(F�s◦ → F�T. s).

Proof. We work within CT[[KF + Cons]]. Take any s ∈ ClTerm. We have

Tf(T. s)
(12) & T1⇔ Tf(s◦)

by logic⇔ D+f(s◦) ∧ Tf(s◦) 7.8⇒ Tf(s◦);

recall that T�a := Tfa and D�a := D+fa. Similarly, for each s ∈ ClTerm, we have

¬Tf(¬. T. s)
(12) & T2⇔ TT.f. s

T1⇔ Tf(s◦)
by logic⇔ D+f(s◦) ∧ Tf(s◦) 7.8⇒ Tf(s◦)

(12) & T2⇔ ¬Tf(¬. s◦).

This completes the proof. �
By the dual argument, we can also show the following.

Lemma 8.5.

1. CT[[KF + Comp]] 
 ∀s(F�T. s → F�s◦).
2. CT[[KF + Comp]] 
 ∀s(T�s◦ → T�T. s).
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Let num(n) represent the function n �→ #n and thus it is the code of the numeral
for n. Following the notation of [21], given a formula φ(x) with a distinguished
free variable x, �φ(ż)� denotes �φ(x)�(num(z)/�x�) and also �φ(s. )� denotes
�φ(x)�(s/�x�) for s ∈ ClTerm. We will occasionally write �φ(ż)� or �φ(s. )�without
specifying the distinguished free variable of φ, but in doing so we always assume
that φ contains some free variable to be substituted for.

Lemma 8.6. CT[[KF]] 
 ∀s(T��TT. ṡ� ↔ T�T. s) ∧ ∀s(T��TT. ṡ� ↔ T�T. s).

Proof. Take any s ∈ ClTerm. The first conjunct is shown as follows:

Tf(�TT. ṡ�) ⇔ T�Tf(T. ṡ)� ⇔ Tf(T. s) ⇔ TT.f. s ⇔ Tfs◦ ⇔ Tf(T. s).

The second conjunct can be shown similarly by just replacing f above with h. �
We conclude with the next theorem, which immediately follows from the last three

lemmata and Theorems 7.11 and 8.1.

Theorem 8.7. The following two systems are both conservative over CD+:
1. CD+ + ∀s(TT. s → Ts◦) + ∀s(Fs◦ → FT. s) + ∀s(T�TT. ṡ� ↔ TT. s).
2. CD+ + ∀s(FT. s → Fs◦) + ∀s(Ts◦ → TT. s) + ∀s(T�TT. ṡ� ↔ TT. s).

Hence, either set of the new axioms can be consistently added to CD.

§9. The minimality axiom. The axioms for determinateness postulate that certain
sentences are determinate; but CD lacks axioms that tell us that no other sentences
are determinate. For instance, our axioms for determinateness do not rule out
that truth teller sentences or similar sentences are determinate. Only in the case of
sentences, such as liar sentences, where the assumption of determinateness leads to
inconsistency, can we prove in CD that they are not determinate.

Theorem 4.13 says that no matter what model (N, X, Y ) of CD we choose, D∞ is
the least fixed point of ΓD[Y ] and can be inductively defined ‘from the bottom up’
in Y. Hence, D∞ seems to be a natural candidate for the ‘intended’ interpretation
of the determinateness predicate D. In this section, we present an axiomatization of
this conception of determinateness, which allows us to refute the determinateness of
truth tellers, and state the proof-theoretic strength of the resulting system; however,
the full analysis of the system goes beyond limited space of the present paper and is
left for the Part II.

The system ID1 of (positive arithmetical) inductive definitions contains an axiom
schema expressing that each fixed point expressed by a predicate of ID1 is the least,
inductively defined, one. We use the same strategy for expressing the leastness of D.
We remind the reader of the definition of ID1. The language Lfix of ID1 has a
predicate symbol JA for each second-order arithmetical formula A(x,X ) with only
the displayed variables free in which X occurs only positively. ID1 comprises the
following axioms for each predicate JA together with the axioms of PA and full
induction for Lfix:

ID1 ∀x
(
A(x, JA) → JAx

)
,

ID2 ∀x
(
A(x,Φ) → Φ(x)

)
→ ∀x

(
JAx → Φ(x)

)
, for all Φ ∈ Lfix,

where A(x,Φ) for an Lfix-formula Φ(u) with a designated variable u is the result
of substituting Φ(a) for each occurrence of a ∈ X in A(x,X ) for each term a
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(with renaming of bound variables as necessary to avoid collision). Inspired by ID2,
Burgess [4] proposes the following axiom schema as an axiomatic characterization
of the groundedness of the truth predicate T in Kripke’s [28] sense:

∀x
(
B(x,Φ) → Φ(x)

)
→ ∀x

(
Tx → Φ(x)

)
, for all Φ ∈ LT,

where B(x,X ) is taken so that ∀x
(
B(x,X ) → X

)
expresses that X is closed under

the strong Kleene evaluation schema of truth values. Burgess’s schema expresses
that the extension of T is the least Kripkean fixed point under the strong Kleene
evaluation schema; the system obtained by augmentingKFwith this schema is called
KFB. We follow the lead of Burgess’s idea toward an axiomatic characterization of
D as the least set that satisfies the closure conditions of determinateness relative to
the truth predicate T (but recall that the least such set is invariant across the choice
of T).

For each L-formula Φ(u) with a designated variable u, we write D(x,Φ) for the
result of substituting Φ(a) for each occurrence of Da in D(x) for each term a (with
renaming of bound variables as necessary to avoid collision). For the uniformity
of notation, we will write D(x,D) for D(x) in (and only in) the present section.
Thereby we introduce two new axioms.

D�1 ∀x(D(x,D) → Dx).

D�2 ∀x
(
D(x,Φ) → Φ(x)

)
→ ∀x(Dx → Φ(x)), for all Φ ∈ L.

Note that D�2 is not a single axiom but an axioms schema.

Definition 9.1. We define the system CD� as CD + D�1 + D�2. We can easily
show that D�1 is derivable from CD and thus CD� is identical with CD + D�2. The
system CD+

� is defined as CD+ + D�2.

The next follows from Theorems 4.8 and 4.13.

Corollary 9.2. (N, D∞,T) |= CD+
� .

The system CD� has some desirable properties. For example, we have the
following.

Proposition 9.3. CD� 
 ¬Dt; see Section 8.2 for the definition of t.

Proof. Suppose Dt for contradiction. Let Φ(x) := Dx ∧ x �= t. Since D(t,Φ)
implies Φ(t) by (15), we have ¬D(t,Φ) and thus ∀x(D(x,Φ) → Φ(x)) by D�1,
which would imply ∀x(Dx → Φ(x)); a contradiction. �

In fact, all the underivability results proved in Section 8.2 still hold in CD� and
CD+
� , and the additional axioms considered in Section 8.3 are also consistent with

CD� and CD+
� .

The full proof-theoretic analyses of these new systems are left for the Part II. We
state the main results below without giving their proofs.

Theorem 9.4.

1. CD� is proof-theoretically equivalent to ID1.
2. CD+

� is proof-theoretically equivalent to BID2
1 (see [36] for its definition and

Fujimoto [15] for its proof-theoretic analysis), and thus its proof-theoretic ordinal
(if appropriately defined ) is �Ω(εε0 ).
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§10. Comparison with other axiomatizations of truth. We think that CD is more
promising than many other systems found in the literature. This section contains
brief comparisons with such systems. We leave a more thorough discussion of the
philosophical aspects for another paper.

10.1. Comparison with the Friedman–Sheard system. The Friedman–Sheard
system FS features all the truth axioms of CD, except for the truth iteration axiom
T3 and all axioms involving D, which is not in the language of FS. Axiom T3 is
replaced with two rules called Necessitation NEC and Conecessitation CONEC:

φ

T�φ� NEC
T�φ�
φ

CONEC.

Adding these two rules for all sentences to T1 and T4 – T6 yields the Friedman–
Sheard system FS, which was analyzed by Friedman and Sheard [13] with a different
axiomatization. McGee [31] showed that a subsystem of FS is �-inconsistent and
thus does not have a standard model, that is, the standard model of arithmetic
cannot be expanded to a model of FS by specifying a suitable extension for the truth
predicate. Halbach [18] determined the proof-theoretic strength of FS as ramified
analysis RA<� up to � or �-times iterated typed truth (see Halbach [21, Section
14.2]).

A neat feature of FS is its symmetry: What is provable in FS and what is provably
true in FS coincide. Moreover, if φ is a classical tautology such as � ∨ ¬� (for a liar
sentence �), the sentence

T�T�...T︸ ︷︷ ︸
n iterations of T

�φ� ...��

is provable in FS. In CD T�φ� is provable for every classical tautology, but T�T�� ∨
¬��� and further iterations are not, as was shown in Proposition 8.3. In FS no
transfinite iterations of truth can be proved. Hence neither is FS a subsystem of CD
nor is CD a subsystem of FS. Moreover, neither can the truth predicate of FS be
defined in CD nor can the truth predicate of CD be defined in FS. This follows from
general arguments by Fujimoto [14] (see also Halbach [21]). We will show in Part
II that CD can be consistently closed under NEC and CONEC. The result is a system
that properly contains FS and is consequently �-inconsistent.

The systemFShas rightly been criticized by various authors. Barrio and Picollo [2]
list some of the problematic features of FS caused by the �-inconsistency. In
particular, the rule NEC can naturally be replaced with an�-times iterated reflection
axiom. If the reflection axiom is iterated into the transfinite, an inconsistency ensues
(Halbach and Horsten [3] and Halbach [21, Corollary 14.39]). These shortcomings
of FS prompted our search for an alternative to FS without giving up the thorough
classicality of FS and endorsing the internal non-classicality of systems such as KF.

Some alternative systems have been developed that prove the truth of classical
tautologies, but are�-consistent such as Cantini’s [6]VF and Stern’s [41] IT and their
variants. For these systems �-models can be obtained via constructions involving
supervaluations.

10.2. Comparison with Kripke–Feferman. Feferman [8] defined a determinateness
predicate D in terms of a truth and a falsity predicate within the Kripke–Feferman
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system KF.12 Understanding the falsity of a sentence as the truth of its negation,
Feferman defined D as the formula we called D+ above:

Dx ↔ Sent(x) ∧ (Tx ∨ Fx) ∧ ¬(Tx ∧ Fx).

The schemaD�φ� → (T�φ� ↔ φ) becomes provable in KF with this definition. The
schema had been mentioned by Kripke [28] already.

Reinhardt [37, 38] takes the determinateness predicate to express meaningful
applicability or significance; and truth is only meaningfully applicable to determinate
sentences.13 In particular, the liar sentence is not in the range of significance of the
truth predicate. Reinhardt concludes that the system KF, which is formulated in
classical logic, is not sound in the sense that it proves only true theorems, where truth
is understood in the sense of the truth predicate T of KF. According to Reinhardt,
one might hope that the sentences φ with KF 
 T�φ� are true and significant. The
set of these sentences is not closed under classical logic. The theorems of KF itself
need not be significant or trustworthy; only those whose truth can be proved are.
Generally, it is very hard to avoid the provability of sentences that are not ‘significant’
or not ‘healthy’, as Reinhardt [37] and Bacon [1] have argued.

In contrast to Reinhardt, we do not think that the range of significance of the truth
predicate is restricted in any way; the determinateness predicate cannot be seen as
indicating the range of significance of T. For instance, truth should commute with
connectives for all sentences, not just with those in some range of significance.
However, some sentences, including liar sentences, are sensitive to the addition of
another layer of truth. Stacking an additional layer of truth onto the liar sentence will
change its semantic status; but that does not mean that the truth predicate cannot
meaningfully applied to it. We would only run into the Reinhardt–Bacon problem by
postulating that only insensitive sentences ought to be provable. We reject this kind
of soundness condition. We endorse sensitive sentences such as the compositional
axioms or classical tautologies as theorems. However, we may not be able to ascend
semantically from such sentences and add a further level of truth. It is not possible to
ascend semantically from the compositional axiom; they are already at the highest
level of generality and further semantic ascend and generalization is not possible.

10.3. Comparison with Feferman’s DT. Feferman [10, p. 205] originally intro-
duced KF as an instrument to explain ‘what notions and principles one ought to
accept if one accepts the basic notions and principles of the theory’, the foundational
question which had long been one of the central themes of Feferman’s work.14

As a theory of truth per se, Feferman later proposed another system DT. Again,
each predicate is assumed to have a domain of significance and to be meaningfully
applicable only to objects in that domain. In the case of the truth predicate T, its
domain D of significance is taken to consist of the sentences that are meaningful

12The system is not called KF in [8]. Moreover, different systems have been called KF. See Halbach
[21] for more on the history of KF and its variants.

13That predicates have a domain of significance has been part of the philosophy of type theory since
[39]. Feferman [10] explicitly refers to Russell.

14However, Feferman [10, p. 205] expressed ‘I always thought that the KF axioms were a bit artificial
for that purpose’ and abandoned KF as such an instrument in the end. In place of KF, he proposed a
new notion of unfolding of a schematic system in place of KF for the purpose in question.
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and determinate, and all the principles of truth are only applicable to the sentences
in the domain D. Accordingly, the system DT comprises two groups of axioms: the
axioms characterizing the domain D and the axioms expressing the T-schema and
the compositional axioms for all sentences in D.

Feferman’s axioms for determinateness differ from ours in particular with respect
to the determinateness of sentences formed with binary connectives. In his system
a disjunction is determinate if, and only if both disjuncts are; and a conjunction is
determinate if, and only if both conjuncts are. We discussed our choice of axiom D5
on page 6 and justified its endorsement with the generalizing function of truth. Many
harmless generalizations would become indeterminate (and consequently the system
proof-theoretically weak) if generalization were expressed with conjunction and
disjunction and Feferman’s concept of determinateness. To overcome the problem,
he introduced a special conditional → as a primitive logical connective so that
the truth and determinateness of a conditional sentence φ → � is characterized
independently and differently from its usual definition ¬(φ ∧ ¬�) in terms of
negation and conjunction (or ¬φ ∨ � in terms of negation and disjunction) by
the following axioms:

∀x ∀y
(
Sent(x) ∧ Sent(y) → (D(x→. y) ↔ (Dx ∧ (Tx → Dy)))

)
,

∀x ∀y
(
Sent(x) ∧ Sent(y) ∧D(x→. y) → (T(x→. y) ↔ (Tx → Ty))

)
.

Feferman’s approach diverges from ours in two crucial respects: First, he took
D as the range of all the principles of truth comprehensively and restricted every
principle of truth to the class of determinate sentences D, whereas we take the class
of determinate sentences only as the range of the disquotation schema and postulate
the compositional axioms unrestrictedly for every sentence. Secondly, he took D as
definable in terms of truth by stipulating Dx ↔ Tx ∨ Fx; but this definition does
not yield the desired properties of D in our theory and we consequently introduce
determinateness as a primitive notion.

Fujimoto [14] observed that DT is identical with the system FKF + Cons of
non-classical partial truth whose evaluation rule is given by the Aczel–Feferman
evaluation schema. The Aczel–Feferman evaluation schema is the same as the
weak Kleene evaluation schema, with the exception of the evaluation rule of the
conditional. FKF is a variant of KF with the Aczel–Feferman evaluation schema:
FKF is to the Aczel–Feferman evaluation schema is what KF is to the strong Kleene
evaluation schema.

10.4. Comparison with the Leitgeb–Schindler system. Schindler [40] defined a
group of systems that resemble ours. They differ from CD in restricting the
compositional principles T4 –T6 to grounded sentences. The predicate symbol G for
groundedness plays a role comparable to that of D inCD. The full system is calledCG.
All the unrestricted compositional axioms T4–T6 are provable except for the right-
to-left direction of the negation axiomT4. That is,∀x

(
Sent(x) → (¬Tx → T(¬. x))

)
is not provable in CG. In this sense Schindler’s system fails to be thoroughly classical.

One of the axioms of CG is a ‘definitional’ axiom of groundedness [40, p. 77]:

∀x (Gx ↔ (Tx ∨ T¬. x)).
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This axiom of CG is not a theorem (with D for G) of our theory CD, because
the full negation axiom T4 and thus ∀x (Sent(x) → (Tx ∨ T¬. x)) are theorems of
CD and therefore Schindler’s definitional axiom would imply ∀x (Sent(x) → Gx).
Consequently, Schindler’s system does not really require a primitive predicate for
groundedness, while the definition of determinateness as truth or falsity fails in our
system.

On Schindler’s approach, T applies provably only to sentences without G, because
it lacks an axiom analogous to ourT2. This is in line with the intended interpretation
of G as Leitgeb’s [30] notion of groundedness. Also G cannot be iterated, and axiom
D3 is absent from Schindler’s list of axioms. However, contrary to Schindler’s official
formulation of the system, we could view Gx as a metalinguistic abbreviation for
Tx ∨ T¬. x. Then T provably applies to sentences containing G.

10.5. Comparison with Halbach’s system PUTB. The truth-theoretic axioms of
the system PUTB are given by all instances T�φ� ↔ φ of the T-schema where the
truth predicate occurs only positively in φ and parameters are allowed in φ.

Positiveness has the advantage over determinateness that it is a very simple
syntactic decidable property that is definable in the language of arithmetic. If in
the schema

DDS ∀t1 ... ∀tn
(

D�φ(t.1, ... , t.n)� →
(
T�φ(t.1, ... , t.n)� ↔ φ(t1◦, ... , tn◦)

))
,

the symbol D expresses that T occurs only positively, no primitive predicate D is
needed, as positiveness can be expressed by an arithmetical formula. Consequently,
because D is arithmetical, our axiom T2+, that is, ∀s(TD. s ↔ Ds◦) becomes
provable.

The theory PUTB does not prove the compositional axiom T4 –T6. To obtain a
system closer to CD, one could add the compositional axioms to PUTB or derive
them from reflection principles, as Horsten and Leigh [27] suggest.

However, T-positiveness and determinateness differ significantly: In particu-
lar, truth-teller sentences are provably T-positive, while they are not provably
determinate in our sense; in fact we can refute their determinateness in CD�
as was shown in proposition 9.3. The proof-theoretic strength of PUTB relies
crucially on indeterminate instances that allow one to mimick positive inductive
definitions. Overall the restriction to determinate instead of positive sentences is
better motivated.

10.6. Comparison with Picollo’s systemWFUTB. Picollo [34, 35] defines a notion
of referential well-foundedness, which is related to determinateness in our sense.
Here we do not go into the details of its definition and only highlight some
differences to our approach. First, the notion of well-foundedness is defined in
such a way that it becomes arithmetically definable. Thus only a truth predicate
needs to be added and no separate predicate for referential well-foundedness as
our primitive predicate D. Roughly, the main axiom schema of her system WFUTB
then states the T-sentences for sentences that are referentially well-founded in her
sense (or PA- provably equivalent to such a sentence).15 WFUTB does not feature

15Strictly, speaking there are two conditions on the permissible instances of the T-schema: The uniform
T-sentences are postulated for instances that are provably r-stable and well-founded in PA. By referential
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any compositional axioms, and it can be shown that they are not provable in it,
although the system was shown by Picollo to be proof-theoretically at least as
strong as ramified analysis RA<Γ0 up to Γ0 and thus much stronger than PUTB and
compositional theories such as KF.

10.7. Comparison with Field’s systems Int. The most fundamental decision for the
truth theorist is whether to sacrifice classical logic for transparency or transparency
for classical logic. By transparency we mean here some equivalence of φ with
T�φ� for all φ. Field [11] sacrifices classical logic; we sacrifice transparency. Field
saves truth from paradox; we save logic from paradox. We regain transparency for
determinate sentences; Field regains classical logic for what he calls strongly classical
sentences.

Field employs a new primitive predicate Scl for strongly classical truth. Although
Field’s and our approach are pulling in exactly opposite directions, Field’s axioms
for Scl and ours for D have a striking resemblance. As Field in footnote 6 mentions,
he and we arrived at our axiomatizations independently. Of course, a serious
comparison of Int and CD leads back to the most fundamental decision that truth
theorists face, and we do not enter the discussion here.

§11. Further perspectives. In the part II of this paper, we will give proof-theoretic
analysis of variants of CD. In particular, among many others, we will give a proof
of Theorem 9.4. We conclude the paper by listing two open problems.

(I) We may consider CD and its variants with the schema of induction restricted
to the arithmetical sentences. In many cases, the restriction of induction to
the arithmetical sentences results in a proof-theoretically conservative theory
(overPA). We conjecture that the same holds forCD. Conservativeness proofs
in the analogous case ofKF can be given in a model-theoretic way by showing
how to extend a given model of PA to a model of KF with arithmetical
induction only. This is not possible in the case of CD because Lachlan’s
theorem [29] applies and nonstandard models that can be expanded to CD
with restricted induction have to be recursively saturated.

(II) It may be of interest to replace the axiom D3 of CD with an alternative axiom
∀s DD. s . Together with DDS this would yield our additional axiom T2+.
Thus, adding ∀s DD. s may be more natural than adding T2+. We do not
know how strong CD becomes if ∀s DD. s is added.
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well-foundedness we mean the conjunction of the two conditions. Unlike most notions of groundedness
and determinateness, referential well-foundedness is sensitive to the base theory.
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