A TAUBERIAN THEOREM FOR BOREL-TYPE METHODS OF SUMMABILITY

D. BORWEIN

1. Introduction. Suppose throughout that $\alpha>0, \beta$ is real, and N is a non-negative integer such that $\alpha N+\beta>0$. A series $\sum_{0}^{\infty} a_{n}$ of complex terms is said to be summable (B, α, β) to l if, as $x \rightarrow \infty$,

$$
\alpha e^{-x} \sum_{n=N}^{\infty} \frac{s_{n} x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta)} \rightarrow l
$$

where $s_{n}=a_{0}+a_{1}+\ldots+a_{n}$. The Borel-type summability method (B, α, β) is regular, i.e., all convergent series are summable (B, α, β) to their natural sums; and $(B, 1,1)$ is the standard Borel exponential method B.

Our aim in this paper is to prove the following Tauberian theorem.
Theorem. If
(i) $\rho \geqq-\frac{1}{2}, a_{n}=o\left(n^{\rho}\right)$, and
(ii) $\sum_{0}^{\infty} a_{n}$ is summable (B, α, β) to l, then the series is summable by the Cesàro method $(C, 2 \rho+1)$ to l.

The case $\alpha=\beta=1$ of the theorem is known (3, Theorem 147), and the case $\alpha>1$ is a consequence of this case and the following established result (1, result (I) ; 2, Lemma 4).
(I) If $\alpha>\gamma>0$ and, for any non-negative integer $M>-\delta / \gamma$,

$$
\sum_{n=M}^{\infty} \frac{a_{n} x^{n}}{\Gamma(\gamma n+\delta)}
$$

is convergent for all x, then hypothesis (ii) implies that $\sum_{0}^{\infty} a_{n}$ is summable (B, γ, δ) to l.
The proof in this paper of the theorem, however, makes no appeal to result (I) and is valid for all $\alpha>0$.

The theorem remains true if hypothesis (ii) is replaced by
(ii)' $\sum_{0}^{\infty} a_{n}$ is summable $\left(B^{\prime}, \alpha, \beta\right)$ to l,
by which it is meant that, as $y \rightarrow \infty$,

$$
\int_{0}^{y} e^{-x} d x \sum_{n=N}^{\infty} \frac{a_{n} x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta)} \rightarrow l-s_{N-1} \quad\left(s_{-1}=0\right)
$$

This is a consequence of the following known result ($\mathbf{2}$, Theorem 2).
(II) A series is summable $(B, \alpha, \beta+1)$ to l if and only if it is summable $\left(B^{\prime}, \alpha, \beta\right)$ to l.

Received January 5, 1968.

2. Preliminary results.

Lemma 1. (i) $x^{v} \Gamma(y-v) \geqq \Gamma(y)$ if $x \geqq y>v \geqq 0$,
(ii) $x^{v} \Gamma(y-v) \leqq \Gamma(y)$ if $v \geqq 0,0<x \leqq y-v-1$.

Proof. Let $\psi(v)=x^{v} \Gamma(y-v)$. In case (i), we have, by standard results (4, §§ 12.3, 12.31):

$$
\begin{aligned}
\frac{\psi^{\prime}(v)}{\psi(v)} & =\log x-\frac{\Gamma^{\prime}(y-v)}{\Gamma(y-v)} \\
& =\log x-\int_{0}^{\infty}\left[\frac{e^{-t}}{t}-\frac{e^{-(y-v) t}}{1-e^{-t}}\right] d t \\
& \geqq \log x-\int_{0}^{\infty} \frac{e^{-t}-e^{-(y-v) t}}{t} d t \\
& =\log x-\log (y-v) \\
& \geqq 0
\end{aligned}
$$

so that $\psi(v) \geqq \psi(0)$, as required.
Similarly, in case (ii) we have:

$$
\begin{aligned}
\frac{\psi^{\prime}(v)}{\psi(v)} & =\log x-\int_{0}^{\infty}\left[\frac{e^{-t}}{t}-\frac{e^{-(y-v-1) t}}{e^{t}-1}\right] d t \\
& \leqq \log x-\int_{0}^{\infty} \frac{e^{-t}-e^{-(y-v-1) t}}{t} d t \\
& =\log x-\log (y-v-1) \\
& \leqq 0
\end{aligned}
$$

from which the required inequality follows.
Lemma 2 (cf. 3, Theorem 137). Let $x>0$, let

$$
u_{n}=u_{n}(x)=\alpha e^{-x} \frac{x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta)} \quad(n=N, N+1, \ldots)
$$

and let

$$
0<\delta<1 / \alpha, \quad \gamma=\frac{1}{3}(\alpha \delta)^{2}, \quad \frac{1}{2}<\zeta<\frac{2}{3}, \quad 0<\eta<2 \zeta-1
$$

Then
(a) $\quad \sum_{n=N}^{\infty} u_{n} \rightarrow 1$ as $x \rightarrow \infty$;
(b) $\quad u_{n} \leqq u_{n+1} \quad$ when $n \leqq \frac{x}{\alpha}-\frac{\beta}{\alpha}-1$, and

$$
u_{n+1} \leqq u_{n} \quad \text { when } n \geqq \frac{x}{\alpha}+\frac{1-\beta}{\alpha}
$$

(c) $\sum_{|n-x / \alpha|>\delta x} u_{n}=O\left(e^{-\gamma x}\right)$;
(d) $\sum_{|n-x / \alpha|>x^{5}} u_{n}=O\left(e^{-x^{\eta}}\right)$;
(e) $\quad u_{n}=\frac{\alpha}{\sqrt{(2 \pi x)}} e^{-\alpha^{2}(n-x / \alpha)^{2} / 2 x}\left\{1+O\left(x^{3 \zeta-2}\right)\right\} \quad$ when $\left|n-\frac{x}{\alpha}\right| \leqq x^{\zeta}$.

Proof. Part (a). This result is well known (see 1, p. 130).
Part (b). Since

$$
\frac{u_{n+1}}{u_{n}}=\frac{x^{\alpha} \Gamma(\alpha n+\beta)}{\Gamma(\alpha n+\beta+\alpha)},
$$

the required results follow from Lemma 1 with $v=\alpha, y=\alpha n+\beta+\alpha$.
Part (c). Let n_{1} and n_{2} be the integers such that

$$
n_{1}>\frac{x}{\alpha}+\delta x \geqq n_{1}-1 \quad \text { and } \quad n_{2}<\frac{x}{\alpha}-\delta x \leqq n_{2}+1
$$

By Stirling's theorem, we have:

$$
\Gamma(\alpha n+\beta)=(2 \pi)^{1 / 2} e^{-\alpha n}(\alpha n)^{\alpha n+\beta-1 / 2}\left\{1+O\left(\frac{1}{n}\right)\right\},
$$

and hence

$$
\begin{aligned}
u_{n_{1}}=O\left[\frac{e^{-x} x^{\alpha n_{1}+\beta-1}}{e^{-\alpha n_{1}}\left(\alpha n_{1}\right)^{\alpha n_{1}+\beta-1 / 2}}\right] & =O\left(e^{\alpha n_{1}-x} x^{-1 / 2}\left(\frac{x}{\alpha n_{1}}\right)^{\alpha n_{1}+\beta-1 / 2}\right) \\
& =O\left(e^{\alpha \delta x}\left(\frac{x}{\alpha n_{1}}\right)^{\alpha n_{1}}\right)=O\left(e^{\alpha \delta x-\alpha n_{1} \log \left(\alpha n_{1} / x\right)}\right) \\
& =O\left(e^{\alpha \delta x-(x+\alpha \delta x) \log (1+\alpha \delta)}\right)=O\left(e^{-\Delta_{1} x}\right),
\end{aligned}
$$

where
$\Delta_{1}=-\alpha \delta+(1+\alpha \delta) \log (1+\alpha \delta)=\frac{(\alpha \delta)^{2}}{1 \cdot 2}-\frac{(\alpha \delta)^{3}}{2 \cdot 3}+\frac{(\alpha \delta)^{4}}{3 \cdot 4}-\ldots>\frac{1}{3}(\alpha \delta)^{2}$.
Similarly,
where

$$
u_{n_{2}}=O\left(e^{-\Delta_{2} x}\right),
$$

$$
\Delta_{2}=\alpha \delta+(1-\alpha \delta) \log (1-\alpha \delta)=\frac{(\alpha \delta)^{2}}{1 \cdot 2}+\frac{(\alpha \delta)^{3}}{2 \cdot 3}+\ldots>\frac{1}{2}(\alpha \delta)^{2}
$$

Next, for $r \geqq 0, x \geqq 2(1-\beta) / \alpha \delta$, we have, by Lemma 1 (ii) with $v=\alpha r$, $y=\alpha n_{1}+\beta+\alpha r:$

$$
\frac{u_{n_{1}+r}}{u_{n_{1}}}=\frac{x^{\alpha r} \Gamma\left(\alpha n_{1}+\beta\right)}{\Gamma\left(\alpha n_{1}+\beta+\alpha r\right)} \leqq\left(1+\frac{1}{2} \alpha \delta\right)^{-\alpha \tau},
$$

since $0<x\left(1+\frac{1}{2} \alpha \delta\right) \leqq \alpha n_{1}+\beta-1$. It follows that

$$
\sum_{n-x / \alpha>\delta x} u_{n}=\sum_{r=0}^{\infty} u_{n_{1}+r} \leqq u_{n_{1}} \sum_{r=0}^{\infty}\left(1+\frac{1}{2} \alpha \delta\right)^{-r}=O\left(e^{-\Delta_{1} x}\right)=O\left(e^{-\gamma x}\right) .
$$

Finally, by part (b), we have:

$$
\sum_{n-x / \alpha<-\delta x} u_{n}=\sum_{n<x / \alpha-\delta x} u_{n} \leqq x u_{n_{2}}=O\left(x e^{-\Delta_{2} x}\right)=O\left(e^{-\gamma x}\right)
$$

This completes the proof of part (c). We shall prove part (e) before part (d). Part (e). Let $h=n-x / \alpha$, so that $|h| \leqq x^{\zeta}$.

By Stirling's theorem, we have:

$$
\begin{aligned}
\log \Gamma(\alpha n+\beta)= & \frac{1}{2} \log 2 \pi-\alpha n+\left(\alpha n+\beta-\frac{1}{2}\right) \log \alpha n+O\left(\frac{1}{n}\right) \\
= & \frac{1}{2} \log 2 \pi-x-\alpha h \\
& \quad+\left(\alpha h+x+\beta-\frac{1}{2}\right) \log (\alpha h+x)+O\left(\frac{1}{x}\right) \\
= & \frac{1}{2} \log 2 \pi-x-\alpha h+\left(\alpha n+\beta-\frac{1}{2}\right) \log x \\
& \quad+\left(\alpha h+x+\beta-\frac{1}{2}\right)\left\{\frac{\alpha h}{x}-\frac{\alpha^{2} h^{2}}{2 x^{2}}+O\left(\frac{|h|^{3}}{x^{3}}\right)\right\}+O\left(\frac{1}{x}\right) \\
= & \frac{1}{2} \log 2 \pi-x-\alpha h+\left(\alpha n+\beta-\frac{1}{2}\right) \log x+\alpha h+\frac{\alpha^{2} h^{2}}{2 x} \\
& \quad+O\left(\frac{1}{x}\right)+O\left(\frac{|h|}{x}\right)+O\left(\frac{|h|^{3}}{x^{2}}\right) \\
= & \frac{1}{2} \log 2 \pi-x+\left(\alpha h+x+\beta-\frac{1}{2}\right) \log x+\frac{\alpha^{2} h^{2}}{2 x}+O\left(x^{35-2}\right)
\end{aligned}
$$

since $\frac{1}{2}<\zeta<\frac{2}{3}$ and $|h| \leqq x^{\zeta}$.
Consequently,

$$
\begin{aligned}
\log u_{n} & =\log \alpha-x+(\alpha n+\beta-1) \log x-\log \Gamma(\alpha n+\beta) \\
& =\frac{1}{2} \log \frac{\alpha^{2}}{2 \pi x}-\frac{\alpha^{2} h^{2}}{2 x}+O\left(x^{3 \zeta-2}\right)
\end{aligned}
$$

and therefore

$$
u_{n}=\frac{\alpha}{\sqrt{(2 \pi x)}} e^{-\alpha^{2} h^{2} / 2 x}\left\{1+O\left(x^{3 \xi-2}\right)\right\}
$$

as required.
Part (d). Since $e^{-\gamma^{x}}=O\left(e^{-x^{\eta}}\right)$, it suffices, in view of Part (c), to prove that

$$
\sum_{\delta x \geqq|n-x / \alpha|>x^{s}} u_{n}=O\left(e^{-x^{\eta}}\right)
$$

By Parts (b) and (e), the largest term in this sum is $O\left(e^{-\alpha^{2} x^{25-1 / 2}}\right)$, and the required estimate is an immediate consequence.
3. Cesàro sums. In this section we prove some lemmas about the Cesàro sums s_{n}^{λ} of a given series $\sum_{0}^{\infty} a_{n}$. These are defined by the formula:

$$
s_{n}^{\lambda}=\sum_{\nu=0}^{n}\binom{\nu+\lambda}{\nu} a_{n-\nu}
$$

so that $s_{n}^{-1}=a_{n}, s_{n}^{0}=s_{n}=a_{0}+a_{1}+\ldots+a_{n}$, and generally,

$$
s_{n}^{\lambda+\delta}=\sum_{\nu=0}^{n}\binom{\nu+\delta-1}{\nu} s_{n-\nu}^{\lambda}
$$

Lemma 3 (cf. 3, Theorem 146). If $k>0$,

$$
\begin{equation*}
\phi_{k}(x)=\alpha^{k} \sum_{n=0}^{\infty} \frac{\Gamma(n+k)}{\Gamma(\alpha n+k)} \frac{x^{\alpha n}}{n!}, \tag{1}
\end{equation*}
$$

$\sum_{n=N}^{\infty}\left(a_{n} t^{\alpha n} / \Gamma(\alpha n+\beta)\right)$ is convergent for all positive t, and $a_{n}=0$ for $n<N$, then, for $x>0$,
(2) $\alpha^{k} \sum_{n=N}^{\infty} s_{n}^{k} \frac{x^{\alpha n+\beta+k-1}}{\Gamma(\alpha n+\beta+k)}$

$$
=\frac{1}{\Gamma(k)} \int_{0}^{x}(x-t)^{k-1} \phi_{k}(x-t) d t \sum_{n=N}^{\infty} s_{n} \frac{t^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta)} .
$$

Proof. The convergence of $\sum_{n=N}^{\infty}\left(a_{n} t^{\alpha n} / \Gamma(\alpha n+\beta)\right)$ for all positive t is equivalent to the convergence of $\sum_{n=N}^{\infty}\left(s_{n} t^{\alpha n} / \Gamma(\alpha n+\beta)\right)$ for all positive t (2, Lemma 4). The right-hand side of (2) is thus equal to

$$
\begin{aligned}
& \frac{\alpha^{k}}{\Gamma(k)} \int_{0}^{x}(x-t)^{k-1} d t \sum_{n=N}^{\infty} \frac{s_{n} n^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta)} \sum_{m=0}^{\infty} \frac{\Gamma(m+k)}{\Gamma(\alpha m+k)} \frac{(x-t)^{\alpha m}}{m!} \\
&=\frac{\alpha^{k}}{\Gamma(k)} \sum_{n=N}^{\infty} \frac{s_{n}}{\Gamma(\alpha n+\beta)} \sum_{m=0}^{\infty} \frac{\Gamma(m+k)}{\Gamma(\alpha m+k) m!} \int_{0}^{x} t^{\alpha n+\beta-1}(x-t)^{\alpha m+k-1} d t \\
&=\frac{\alpha^{k}}{\Gamma(k)} \sum_{n=N}^{\infty} s_{n} \sum_{m=0}^{\infty} \frac{\Gamma(m+k) x^{\alpha n+\alpha m+\beta+k-1}}{m!\Gamma(\alpha n+\alpha m+\beta+k)} \\
&=\alpha^{k} \sum_{n=N}^{\infty} s_{n} \sum_{m=N}^{\infty}\binom{m-n+k-1}{m-n} \frac{x^{\alpha m+\beta+k-1}}{\Gamma(\alpha m+\beta+k)} \\
&=\alpha^{k} \sum_{m=N}^{\infty} \frac{x^{\alpha m+\beta+k-1}}{\Gamma(\alpha m+\beta+k)} \sum_{n=N}^{m}\binom{m-n+k-1}{m-n} s_{n} \\
&=\alpha^{k} \sum_{m=N}^{\infty} \frac{x^{\alpha m+\beta+k-1}}{\Gamma(\alpha m+\beta+k)} s_{m}^{k}
\end{aligned}
$$

as required.
Lemma 4. If $k \geqq 0$ and $\sum_{0}^{\infty} a_{n}$ is summable (B, α, β) to l, then

$$
\begin{equation*}
\Gamma(k+1) \alpha^{k+1} e^{-x} \sum_{n=N}^{\infty} s_{n}^{k} \frac{x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta+\bar{k})} \rightarrow l \quad \text { as } x \rightarrow \infty . \tag{3}
\end{equation*}
$$

Proof. The case $k=0$ is immediate. Suppose that $k>0$. If $\sum_{0}^{\infty} a_{n}$ is summable (C, k) to l, i.e. if

$$
s_{n}^{k} \sim \frac{n^{k} l}{\Gamma(k+1)} \quad \text { as } n \rightarrow \infty
$$

then

$$
\frac{\alpha^{k} s_{n}^{k} \Gamma(k+1)}{\Gamma(\alpha n+\beta+k)} \sim \frac{l}{\Gamma(\alpha n+\beta)} \quad \text { as } n \rightarrow \infty
$$

and (3) follows by the regularity of the (B, α, β) method.

There is, therefore, no loss in generality in assuming that

$$
a_{n}=0 \text { for } n<N \text {. }
$$

Then, by Lemma 3, it suffices to prove that

$$
\begin{equation*}
k x^{-k} \int_{0}^{x}(x-t)^{k-1} \phi_{k}(x-t) e^{-(x-t)} \sigma(t) d t \rightarrow l \quad \text { as } x \rightarrow \infty, \tag{4}
\end{equation*}
$$

where

$$
\sigma(t)=\alpha e^{-t} \sum_{n=N}^{\infty} s_{n} \frac{t^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta)}
$$

By hypothesis, we have:

$$
\begin{equation*}
\sigma(t) \rightarrow l \text { as } t \rightarrow \infty . \tag{5}
\end{equation*}
$$

Further, since

$$
\frac{\alpha^{k} \Gamma(n+k)}{\Gamma(\alpha n+k) n!} \sim \frac{\alpha}{\Gamma(\alpha n+1)} \quad \text { as } n \rightarrow \infty
$$

we have by (1) and the regularity of the ($B, \alpha, 1$) method, that

$$
\begin{equation*}
e^{-x} \phi_{k}(x) \rightarrow 1 \quad \text { as } \quad x \rightarrow \infty . \tag{6}
\end{equation*}
$$

A straightforward application of a standard result (3, Theorem 6) yields (4) as a consequence of (5) and (6).

Lemma 5. If $\sum_{0}^{\infty} a_{n}$ is summable (B, α, β) to 0 and

$$
\begin{equation*}
s_{n}^{k-\mu}=o\left(n^{\lambda}\right) \quad(k \geqq 0,0<\mu \leqq 1, \lambda>-1, \lambda+\mu>0), \tag{7}
\end{equation*}
$$

then

$$
\begin{equation*}
s_{n}^{k}=o\left(n^{k}\right)+o\left(n^{\lambda+\mu / 2}\right) . \tag{8}
\end{equation*}
$$

Proof. It follows from (7), by a known result (3, Theorem 144), that

$$
\begin{equation*}
s_{n}^{k}=o\left(n^{\lambda+\mu}\right), \tag{9}
\end{equation*}
$$

and that, if $0<H<1 / \alpha$ and $|n-x / \alpha|<H x$, then

$$
\begin{equation*}
s_{n}^{k}-s_{[x / \alpha]}^{k}=o\left\{\left(|n-x / \alpha|^{\mu}+1\right) x^{\lambda}\right\} \tag{10}
\end{equation*}
$$

uniformly as $x \rightarrow \infty$. Let $\frac{1}{2}<\zeta<\frac{2}{3}$, and write

$$
\begin{aligned}
\alpha e^{-x} \sum_{n=N}^{\infty}\left(s_{n}^{k}-s_{[x / \alpha]}^{k}\right) \frac{x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta+} & \overline{k)} \\
& =\alpha e^{-x}\left[\sum_{N \leqq n<x / \alpha-x^{5}}+\sum_{x / \alpha-x \zeta \leqq n \leqq x / \alpha+x^{5}}+\sum_{n>x / \alpha+x^{5}}\right] \\
& =S_{1}+S_{2}+S_{3} .
\end{aligned}
$$

Then

$$
\begin{aligned}
S_{1}+S_{2}+S_{3}+\alpha e^{-x} s_{[x / \alpha]}^{k} \sum_{n=N}^{\infty} & \frac{x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta+k)} \\
& =\alpha e^{-x} \sum_{n=N}^{\infty} s_{n}^{k} \frac{x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta+k)}=o(1) \quad \text { as } x \rightarrow \infty
\end{aligned}
$$

by Lemma 4, and hence we have:

$$
\begin{equation*}
S_{1}+S_{2}+S_{3}+x^{-k} s_{[x / \alpha]}^{k}(1+o(1))=o(1) \quad \text { as } \quad x \rightarrow \infty . \tag{11}
\end{equation*}
$$

Next, by (9) and Lemma 2(d),

$$
\begin{align*}
S_{1}+S_{3}= & O\left[e^{-x} \sum_{N \leqq n<x / \alpha-x} x^{\lambda+\mu} \frac{x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta+k)}\right] \tag{12}\\
& \quad+O\left[e^{-x} \sum_{n>x / \alpha+x} n^{\lambda+\mu} \frac{x^{\alpha n+\beta-1}}{\Gamma(\alpha n+\beta+k)}\right] \\
= & O\left[x^{\lambda+\mu-k} e^{-x} \sum_{N \leqq n<x / \alpha-x^{5}} \frac{x^{\alpha n+\beta+k-1}}{\Gamma(\alpha n+\beta+k)}\right] \\
& \quad+O\left[x^{\lambda+\mu-k} e^{-x} \sum_{n>x / \alpha+x} \frac{x^{\alpha n+\beta+k-\lambda-\mu-1}}{\Gamma(\alpha n+\beta+k-\lambda-\mu)}\right] \\
= & O\left(x^{\lambda+\mu-k} e^{-x^{\eta}}\right) \quad(0<\eta<2 \zeta-1) \\
= & o(1) \quad \text { as } x \rightarrow \infty .
\end{align*}
$$

Further, by (10) and Lemma 2 (e),

$$
\begin{align*}
S_{2} & =o\left[x^{\lambda-k} e^{-x} \sum_{|n-x / \alpha| \leqq x^{5}}\left(\left|n-\frac{x}{\alpha}\right|^{\mu}+1\right) \frac{x^{\alpha n+\beta+k-1}}{\Gamma(\alpha n+\beta+k)}\right] \tag{13}\\
& =o\left[x^{\lambda-k} \sum_{\left|h_{n}\right| \leqq x}\left(\left|h_{n}\right|^{\mu}+1\right) \frac{\alpha}{\sqrt{ }(2 \pi x)} e^{-\alpha^{2} h_{n} / 2 x}\right] \quad\left(h_{n}=n-x / \alpha\right) \\
& =o\left(x^{\lambda-k-1 / 2} \int_{-\infty}^{\infty}\left(|t|^{\mu}+1\right) e^{-\alpha^{2} t^{2} / 2 x} d t\right) \\
& =o\left(x^{\lambda-k+\mu / 2}\right)+o\left(x^{\lambda-k}\right) \\
& =o\left(x^{\lambda-k+\mu / 2}\right) \text { as } x \rightarrow \infty .
\end{align*}
$$

It follows from (11), (12), and (13) that

$$
s_{[x / \alpha]}^{k}(1+o(1))=o\left(x^{k}\right)+o\left(x^{\lambda+\mu / 2}\right) \quad \text { as } x \rightarrow \infty,
$$

and the required conclusion (8) is an immediate consequence.
4. Proof of the theorem. Suppose, without loss of generality, that $l=0$. By hypothesis (i), we have that (7) holds with $k=0, \mu=1$, and $\lambda=\rho$. Hence, by Lemma 5, we have:

$$
\begin{equation*}
s_{n}=s_{n}^{0}=o\left(n^{\rho+1 / 2}\right), \tag{14}
\end{equation*}
$$

since $\rho+\frac{1}{2} \geqq 0$.
Suppose that $m \mu=2 \rho+1$, where m is an integer and $0<\mu \leqq 1$. We shall prove that

$$
\begin{equation*}
s_{n}^{\tau \mu}=o\left(n^{\rho+1 / 2+\tau \mu / 2}\right) \tag{15}
\end{equation*}
$$

for $r=0,1, \ldots, m$. By (14), we see that (15) holds for $r=0$. Assume that it holds for a given $r<m$, so that (7) holds with

$$
k=(r+1) \mu, \quad \lambda=\rho+\frac{1}{2}+\frac{1}{2} r \mu
$$

Since

$$
\frac{1}{2}(r+1) \mu \leqq \frac{1}{2} m \mu=\rho+\frac{1}{2},
$$

it follows, by Lemma 5, that

$$
s_{n}^{(r+1) \mu}=o\left(n^{(r+1) \mu}\right)+o\left(n^{\rho+1 / 2+(r+1) \mu / 2}\right)=o\left(n^{\rho+1 / 2+(r+1) \mu / 2}\right)
$$

which is (15) with $r+1$ replacing r.
Hence, (15) holds for $r=0,1, \ldots, m$; in particular, the case $r=m$ yields:

$$
s_{n}^{2 \rho+1}=o\left(n^{2 \rho+1}\right)
$$

i.e. $\sum_{0}^{\infty} a_{n}$ is summable $(C, 2 \rho+1)$ to 0 .

This completes the proof of the theorem.

References

1. D. Borwein, On methods of summability based on integral functions. II, Proc. Cambridge Philos. Soc. 56 (1960), 125-131.
2. Relations between Borel-type methods of summability, J. London Math. Soc. 35 (1960), 65-70.
3. G. H. Hardy, Divergent series (Oxford, at the Clarendon Press, 1949).
4. E. T. Whittaker and G. N. Watson, A course of modern analysis, 4th ed. (Cambridge Univ. Press, Cambridge, 1927).

University of Western Ontario, London, Ontario

