
SUMMABILITY- (Z, p) AND SEQUENCES OF PERIODIC 
TYPE 

J. D. HILL AND W. T. SLEDD 

1. Background. We shall say that the sequence x = {sk} is summable-
(Z, p) to the value s if 

limre Zv
n+P{x) = s, 

where p is a positive integer and 

ZZ+p(x) s 0„+i + sn+2 + . . . + sn+p)/p (n > 1 — p; sk = 0 if k < 0). 

Ignoring the values of n, 1 — p < n < 0, which are clearly irrelevant, the 
transformation (Z, p) coincides with the regular Nôrlund transformation 
defined by the sequence ( 1 , 1 , . . . , 1, 0, 0 , . . .) containing p initial l 's. This 
class of methods was first studied systematically by Silverman and Szâsz 
(8). As our point of departure we quote the following results for reference. 

(1.1) Summability- (Z, p) implies summability-(C f 1) to the same value for 
every p = 1, 2, 3 , . . . (8, Th. 11). 

(1.2) If p is a divisor of q, then the convergence field of (Z, p) is contained in 
that of (Z, q) (8, Th. 14). 

(1.3) If d is the greatest common divisor of p and q, then the convergence fields 
of (Z, p) and (Z, q) intersect in that of (Z, d) (8, Th. 15). 

Note that (Z, 1) is the identity transformation and that each method 
(Z, p > 1) evaluates a bounded divergent sequence; see the proof of (2.1)—(i). 
Moreover, the consistency of the methods (Z, p) is implied by (1.1) although 
it follows as well from known properties of Nôrlund methods. 

With few exceptions our interest is focused on certain subsets of the Banach 
space (m) of real bounded sequences x = {sk} for which \\x\\ = sup* |^ | . We 
denote by Zp the bounded convergence field of (Z,p), by Z the set \JVZV, 
and by Z the closure of Z in (m). For each p > 1 the following equation can 
be verified easily by induction on n: 

Zp
n+P(x) = Zp

p(x) - \ E (sk - sk+p) (p, n = 1, 2, 3 , . . .). 

The sequence x = {sk}, bounded or not, is therefore summable-(Z, p) if and 
only if the series 

00 

(1.4) X) fe - Sk+p) 
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is convergent. We observe that each x £ Z possesses for some p the approximate 
type of periodicity suggested by (1.4). We propose to study the nature of this 
periodic behaviour together with that of certain other classes which we proceed 
to describe. 

For each p > 1 we denote by \ZV\ that subset of Zv of all x = {sk} for which 

CO 

(1.5) X ) \sk - Sk+p\ < oo ; 

and by \Z\ the set KJP \ZP\. Note that \Z\\ is the class of all sequences of bounded 
variation. 

Berg and Wilansky (3) introduced the class (sp) of semiperiodic sequences 
as the closure in (m) of the class (p) of periodic sequences, and gave a precise 
characterization. Somewhat more generally we consider the class (usp) of 
ultimately semiperiodic sequences obtained as the closure in (m) of the class 
(up) of ultimately periodic sequences, namely, those sequences x = {sk\ for 
which there exist two integers p and K, depending on x, such that sk+p — sk 

for all k > K. It may be noted that all convergent sequences belong to (usp) 
but not to (sp). The Berg-Wilansky characterization now takes the following 
form: 

(1.6) A sequence x — \sk) belongs to (usp) if and only if corresponding to 
e > 0 there exist positive integers p and K such that \sk — sk+\p\ < e for all 
k > K and all X = 1,2,3, 

As the closure of a linear set, (usp) is evidently closed and linear. 
A sequence x = {sk} belongs to the class (ap) of almost-periodic sequences 

in the sense of Lorentz (6) if and only if corresponding to e > 0 there exist 
positive integers K and L having the property that every interval (h, h + L) 
for integral h > 0 contains an integer q such that \sk — sk+q\ < e for all 
k > K. It follows at once from this definition that (ap) is closed in (m). 
That (ap) is a linear subset of (m) can be proved by paralleling the corre­
sponding argument for almost-periodic functions. 

Finally, a sequence x = {sk} is said to be almost-convergent to 5 if and only 
if all Banach limits have the value 5 at x (6, p. 169). The set (ac) of all such 
sequences is a linear closed subset of (m) ; it is characterized by the fact that 

limp Zl+P (x) = s uniformly 

for n = 1, 2, 3, . . . (6, Th. 1). I t is apparent that (ac) is a subset of Ci, the 
bounded convergence field of (C, 1). The inclusion is proper since the sequence 
{ak\ defined by ak = 1 if k = n% + j (J — 1, 2, . . . , n; n = 1, 2, 3, . . . ) ; 
ak = 0 otherwise, is summable-(C, 1) to zero but is not almost-convergent. 
Furthermore, it is known that (ap) is a proper subset of (ac) (6, p. 173). 

Before proceeding to investigate further relationships between these classes 
of periodic-type sequences we add a few remarks concerning the methods 
(Z, p). 
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2. Remarks concerning summability-(Z, p). Let Zv* denote the entire 
convergence field of (Z, p) for p > 1. Some questions left open in (1.2) are 
answered in the following proposition. 

(2.1) (i) If p is a proper divisor of q, then Zp* is a proper subset of Zq*. 
(ii) If Zp* C Zff*, then p is a divisor of q. 

Proof of (i). It suffices to observe that a sequence of O's and l's of period q 
containing a single " 1 " per period is in Zg* but not in Zp*. 

Proof of (ii). First of all the condition Zp* C ZQ* implies that p < q. For 
if p > g, the sequence of O's and l's just described, with p in place of q, is 
summable- (Z, p) but not summable-(Z, q). Suppose then that q = rp + d 
(0 < d < p) and consider the equation 

Zn+ff = ~~ (Zn_|_p + Zn+2p + . . . + Zn+rp) + ~~ Zn+r|,+d, 

where for brevity 

^n+Q — ^w+sV^)» e t C . 

This relation shows that if Zp* C Zç*, then Zp* C Zd*, where p > d. This 
contradiction implies d = 0 or q = r£. 

As a consequence of (2.1)—(i) the special set of convergence fields Zp!* 
for p > 1 form a strictly increasing sequence. That is to say, the summability 
methods (Z, pi) steadily increase in strength. More precisely, the convergence 
fields Zp* themselves have the interesting property expressed in the following 
observation. 

(2.2) With appropriate definitions the convergence fields Z* (p = 1, 2, 3, . . .) 
form a lattice isomorphic to the familiar g.c.d.-l.c.m. lattice of the positive integers. 

For set inclusion yields the required partial ordering, and we then define 
l.u.b. (Zp*, Zq*) as ZOT*, where m = \.c.m.(p, q); and g.l.b.(Zp*, Zq*) as Zd*, 
where d = g.c.d.(^>, q). These definitions possess the requisite properties since 
if Zp* C ZM* and ZQ* C ZM*, it follows from (2.1)—(ii) that p\\x and q\/uL so 
that m < fx. Also, if Zô* C Z/ and Zô* C Z,*, then Z5* C Z/ H Z,* = Zd 

by (1.3), and thus Ô < d by (2.1)—(ii). 
We remark in passing that the sets \ZP\, as well as Zp, form lattices in the 

same fashion. 
We show next that the result (1.1) remains true in the case of bounded 

sequences if "summability-(C, 1)" is strengthened to "almost-convergence." 
In fact, we shall prove that 

(2.3) The set Z is a proper subset of (ac). 

Proof. Let p be given and let Zpx be the (Z, £)-transform of x = {sk} as 
defined in §1. For each r > 0 let S~r be the inverse shift operator that prefixes 
r zeros to the sequence x : 
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S~rX = (0, . . . , 0 , 5i, 52, 53, • . •) ; 
then 

Zvx = (x + S~lx + . . . + S~p+1x)/p. 

Let Li(x) and L2(x) be any two Banach limits over (m), and assume that 
x is summable-(Z, p), i.e., that Zpx G (c), the space of convergent sequences. 
By the properties of a Banach limit, Lt(Z

vx) = Lt(x) for i = 1, 2. Since 
Li(Zpx) = Li{Zvx), it follows that Zi(#) = Li(x), which proves that x G (ac). 
Consequently, since £ is arbitrary, Z = \JPZP(Z (ac), and therefore Z 
C (ac), since (ac) is closed in (m). 

I t remains to show that ( a c ) \ Z 9e 0. For this purpose we define V(x), 
the value set of x = {sk}, as the set {z/|s£ = v for some &}, and prove the 
following lemma. 

(2.4) If y = {tk\ G Z and the set V(y) is finite, then y G (up). 

Proof. Define e as the positive number m i n ^ ; \vi. — v3\, where vi, v%, . . . 
are the different elements of V(y). Since j f 2 , there exists a n x = {sk} in 
Z such that 

\\y - x\\ = sup*; | tk — sk\ < e/3. 

For some integer p we have x G Zv so that Condition (1.4) assures the existence 
of an index K for which \sk — sk+p\ < e/3 for all k > K. Then 

\tk h+p\ ^ \tk sk\ H~ |5fc — Sfc+pj ~f" | % f p — ÂH-pl < € 

for all k > K. Therefore, {tk} is ultimately periodic and this completes the 
proof of the lemma. 

To finish the proof of (2.3) we introduce the set of sequences {ak\ of cardinal 
c in which each pair c^- i , an is a permutation of 0, 1. Each such {ak} is almost-
convergent to 1/2, has a finite value set, and only a countable number of them 
are ultimately periodic. The conclusion now follows from the lemma. 

The functionals Zv
n+V(x) for x G (m) also play an important role in the 

theory of Banach limits. If L is the class of these generalized limits and r(x) 
= sup^L^O*;), then Jerison (5, Th. 5) evaluated r{x) as 

limp lim supw Zl+V(x). 

In this connection we state without proof the following related facts which 
appear to have escaped observation. The functional 

P(x) = infp supn Zn+P(x), 

where "sup" appears in place of the usual "lim sup," is positively homogeneous 
and convex, and has the property that any linear functional L(x) < P(x) 
is a Banach limit. Moreover, it can be shown that 

limp supn Zl+P(x) 

exists, and is equal to both P(x) and r(x). 
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As a concluding remark we recall the existence of Banach-Hausdorff limits 
established by Eberlein (4). These are Banach limits L (x) with the additional 
property that L(Hx) = L(x) for every x (E (m) and every regular Hausdorff 
matrix H. It is interesting, but less profound, that a similar fact holds for the 
transformations (Z,p). Thus, L(Zpx) = L(x) for every x £ (m), every 
p > 1, and every L(x) £ L, since Zpx has the simple form in terms of the 
shift operator used in the proof of (2.3). 

3. Sequences of periodic type. We proceed now to develop some of the 
internal properties of sequences in the various classes of §1 and to describe 
some of the interrelationships between these classes. All classes under con­
sideration are linear subsets of (m) and it will appear in due course that they 
are all proper subsets of (ac), a fact already shown for Z in (2.3), and men­
tioned for (ap) in §1. To avoid tiresome circumlocution we introduce the 
following terminology. If a sequence {sk} is visualized as the composition of 
the sequences 

Xi = {$H-Ap}xLo for i = 1, 2, . . . , p, 

we shall say that {sk} is the periodic union of the p sequences Xt. For example, 
if each Xt is a convergent sequence we refer to {sk} as the periodic union of 
p convergent sequences. Also, for brevity, statements involving the index p 
will hold for all positive integers p unless otherwise specified. Finally, in 
several instances where the form of a subscript k is typographically cumber­
some, we use the notation s(k) in place of sk. 

(3.1) A sequence {sk} belongs to \ZP\ if and only if it is the periodic union of p 
sequences of bounded variation. 

This is obvious from (1.5), the defining property of \ZP\. 

(3.2) A sequence {sk} belongs to \ZP\ if and only if it is the periodic union of p 
convergent sequences. 

This follows directly from the fact that |Zi|, the set of all sequences of 
bounded variation, is dense in the space (c) of convergent sequences. 

(3.3) None of the sets \ZV\ is closed. 

From (3.1) and (3.2) it is clear that \Zp] \ \ZV\ ^ 0. 

(3.4) The set \Z\ = \JP \ZP\ is separable but not closed. 

Proof. Let Xn = {sk
n} for n = 1, 2, 3, . . . be a dense subset of \ZX\. Then 

the set Sp of all periodic unions of order p, formed from the Xnj is denumerable 
and dense in \ZP\. Hence, \JPSP is denumerable and dense in \Z\. 

To show that \Z\ is not closed we construct an example that will serve other 
purposes as well. For n = 1, 2, 3, . . . we define by induction a periodic 
sequence yn = {tk

n}, of period 2n, as follows: yi = (0, 1,0, 1,0, 1, . . .); if 
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yn-x of period 2W_1 has already been defined, then the initial period of yn is 
obtained by writing in succession two periods of yn-i and replacing the last 
entry of the second period by half of it. For 1 < k < 2n we have tk

n = 0 if 
k is odd, = 1 if k is an odd multiple of 2, =1 /2 if k is an odd multiple of 4, 
. . . , = l /2*- 2 if k is an odd multiple of 2n~\ = l /2 n ~ 1 if & = 2n. We define 
y0 = {tk

Q\ by setting tk° = 0 if k is odd, = l / 2 i - 1 if k has the form (2a + 1) -2'. 
Then we find that |^° - tk

n\ < 21"" for k = 1, 2, 3, . . . , which implies 
I bo — yn\\ —>0. Since yn G |Z2n| C |Z| it follows that yQ is a limit element of |Z|. 
But 3̂o $ \Z\ since by (3.1) each element of \Z\ has but a finite number of limit 
points on the real line, whereas y0 has the infinite set of limit points (0, 1, 
1/2, 1/4, . . . , 1/2'", . . .). Thus \Z\ is not closed. 

(3.5) If x = {sk} is the periodic union of p convergent sequences, then x G ZP. 

For, in this case Condition (1.4) is evidently satisfied. 

(3.6) Every sequence {sk} G Zv is either (i) the periodic union of p convergent 
sequences; or (ii) its set of limit points contains an interval. 

Proof. Assume that {sk\ G Zv is not of the form (i). Then at least one (in 
fact, at least two) of the component sequences, say {Si+x?} = {̂ x}, must be 
divergent. It is, moreover, bounded and satisfies the condition limx (£\ — £x+i) 
= 0. It follows easily that every point of the interval [lim inf £x, lim sup £x] 
is a limit point of {t\\, and therefore of {sk}. 

(3.7) Each of the sets Zp is closed. 

For each Zv is the bounded convergence field of the regular matrix method 
(z, p). 

(3.8) The set Z = \JV Zv is not separable and not closed. 

Proof. By a result of Agnew (1, p. 99) the convergence field Zv (p > 1) 
is not separable since it contains a divergent sequence; see proof of (2.1)—(i). 
Hence Z is not separable. To see that Z is not closed we refer to the example 
under (3.4). Since yn G Z2n C Z, then ;y0 G Z. But ;y0 $ Z by (3.6). 

(3.9) For each p > 2, \ZJ[ C Zv and Zv \ |Z*j ^ 0. 

Proof. The first follows from \ZP\ C Zv and (3.7). To establish the second 
we consider the following example. For j = 1, 2, 3, . . . let tj = a\ + a2 + . . . 
+ dj be such that {tj} is bounded and divergent, with a3- —* 0. For X = 0, 1, 2, 
. . . let s1+Xp = Jx+i, s2+xP = —k+u and si+xp = 0 for 3 < i < p. Then {sk} 
G Zp since (1.4) holds, but \sk} (£ \ZP\ since (3.2) is violated. 

(3.10) The set \Z\ coincides with (usp). 

Proof. Since (up) C ^P \ZP\ = |Z|, we have (up) = (usp) C |Z|. To reverse 
the inclusion it will suffice to show that \Z\ is contained in the closed set 
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(usp). Hence, let {sk} € \Z\ and let e > 0 be given. Then there exist integers 
p and K such that 

Skp s 2j>* ki — Sj+p\ < € for all k > K. 

For X = 1, 2, 3, . . . and any k > K we have 

\sk Sfc+Xp| ^ \$k sk+p\ "T P*+p ^ + 2 p | + • • • 

+ k*+(X-l)7> "~ Sk+\p\ K Sk
p < €. 

Thus {^} e (usp) by (1.6). 

(3.11) The set \Z\ is a proper subset of Z. 

This is implied by the example in the proof of (3.9). 

(3.12) The set \Z\ is a proper subset of Z. 

Proof. To prove that the inclusion is proper, we construct the sequence 
z s [uk] whose first three groups of terms are as follows: 

| l / 2 , — 1/2U3/4, - 3 / 4 , 2/4, - 2 / 4 , 1/4, - 1 / 4 | 2 

1/8, - 1 / 8 , 2/8, - 2 / 8 , . . . , 7/8, — 7/8|«. 

The nth group, containing 2n+1 — 2 terms, is composed of all positive proper 
fractions m/2n

t each followed by its negative, and arranged so that 1̂*1 is 
non-decreasing if n is odd, and non-increasing if n is even. It is clear that 
(un+i + un+2)/2 - > 0 as w->œ so that z G Z2 C Z C Z. 

To obtain a contradiction suppose that z Ç \Z\ = (usp), and let 0 < e < 1/4. 
Then there exist integers p and K satisfying the condition of (1.6) for s = {uk}. 
We can fix Ki > K so large that if uk is the first term of any 0*W-numbered 
group with k > Ki, then one or more values of X can be found for which 
uk+\p falls in, but beyond the middle of, that group. Then 0 < uk < 1/4 and 
either uk+\p > 1/2 or uk+\p < —1/2. In either case we arrive at the inequality 
\uk — uk+\p\ > 1/4 > e for infinitely many k and certain X for each k. Since 
this is contrary to the condition of (1.6), it follows that z $ (usp), and the 
proof is complete. 

We add here some remarks concerning the structure of the set Z. From 
(3.6) we see that Z — ZF\J Z7, where ZF = {x 6 Z\ x is of the form (3.6)—(i)}, 
Zj ss {x_£ Z\ x is of the form (3.6)—(ii)}, and_ZF H Z7 = 0. By (3.2), ZF 

= Up \ZP\ so that \Z\ C ZF and hence (usp) = \Z\ C ZF. On the other hand, 
since 

Zr=\JP]Zp\C UP \ZV\ = \Z\ = (usp), 

we have ZF C (usp). Consequently, ZF = (usp), and since (usp) is separable, 
the set ZF is non-dense in the non-separable set Z. Therefore, the comple­
mentary set Z 7 is everywhere dense in Z. 

(3.13) The set (usp) is a proper subset of (ap). 
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The inclusion follows in a routine fashion from the definitions. Moreover, 
as indicated in (3, p. 364), the sequence {cos&} belongs to (ap) but not to 
(usp). 

It is clear from what precedes that 

Z F C Z C Z, and ZF C \Z\ = (usp) C (ap). 

The overlapping of these sets is clarified in the next proposition. 

(3.14) The following sets are non-empty: 

(i) Z\WU GO ]Z\\Z; (m) Z \ ( a p ) ; (iv) ( a p ) \ Z . 

Proof, (i) The sequence z of (3.12) belongs to Z but not to \Z\. 
(ii) The sequence yo defined in (3.4) belongs to \Z\ but not to Z. 
(iii) Referring again to the sequence z Ç Z defined in (3.12), let Vi, v2l . . . , 

vkl . . . (k — 1 , 2 , . . . , 2W+1 — 2) denote the terms of the nth group for odd 
n > 1. Assume that z satisfies the definition of almost-periodicity (given in 
§1) for a given e < 1/4. For every odd n sufficiently large we can determine 
hn so that 

2n < hn < hn + L < 2n+* - 2. 

Then for all q, hn < q < hn-\- L, we have 

\i>i - fli+fll > |fi+fl| — v i > è — i > i > € -

This contradiction shows that z $ (ap). 
(iv) Since {cos&} 6 (ap) we assume that {sk} in a certain Zv exists such 

that |cos k — sk\ < 1/4 for all k. We now make use of the known fact that 
the sequence {em}™=1 of complex numbers is everywhere dense on the unit 
circle. As a consequence there exist a sequence of positive integers nk—*<x>, 
and an integer m > 0, such that eipnk —> 1, and such that eipm = eia for some 
a (2TT/3 < a < 4TT/3). Since eiv^nk+m) -> eia, we infer the existence of an 
integer K > 0 such that 

\cospnh — cos p(nk + w)| > 1 

for all k > K. Moreover, in view of (1.4), sk — sk+p—* 0 as k—->°°, so that 
an integer Ko > K exists for which 

D = \s{pnk) - s(pnk + pm)\ < \s{pnk) - s(pnk + p)\ + . . . 
+ \s{pnk + mp — p) — s(pnk + mp)\ < 1/2 

for all k > Ko. On the other hand, the foregoing inequalities imply that 

D > \cospnk — cosp(nk + m)\ — \s(pnk) — cospnk\ 

— |s(pw* + pm) — cosp(nk + m)\ > 1/2 

for all ^ > Ko. This contradiction shows that {cos k) cannot be approximated 
by elements of Z, and the proof is complete. 
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In the light of the information assembled above concerning the various sets 
in question, their mutual relationship on the whole turns out to be rather 
more chaotic than one might desire. Consequently, the following interesting 
relations are somewhat unexpected. 

(3.15) ZF = Zn (usp) = ZC\ (ap). 

In the language of summability the set equations (3.15) may be phrased as 
follows. 

(3.16) An ultimately semiperiodic {or almost-periodic) sequence is summable 
by a method (Z, p) if and only if it is the periodic union of p convergent sequences. 

Proof. In view of ZF C Z C\ (usp) Ç_ Z C\ (ap) it will suffice to show that 
Z C\ (ap) C ZF. The latter inclusion is equivalent to the following assertion 
which we proceed to establish: If x = \sk} Ç Zp \\ZP\ for some p, then 
x (£ (ap). Since {sk} 6 Zp \\ZP\, there exists an index i (1 < i < p) such 
that {SH-XP}XLO diverges, and such that 

(3.17) lim (st+xp - si+ip+p) = 0. 
X->oo 

We introduce an auxiliary sequence y = {tk} Ç \ZP\ by setting tk = M if 
k 9^ i + \p\ =0 if k = i + \p, for all X > 0, where If is a constant at our 
disposal. Defining 

z = \uk\ s \sk + tk} = x + y, 

we note that z is likewise an element of Zp \ \ZP\. We now fix M so large that 

lim supx ui+Xp < — 1 + lim infx uj+Xp 

for a l l j 9e i (1 < 7 < p)\ and observe that the divergence of {sm p} = {ui+\p} 
implies 

a = lim infx ui+\p < lim supx ui+\p = b. 

Then an integer Ni exists such that 

(3.18) Uj+\p > b + 1 for all j ^ i, all X > Nx. 

The object of this manoeuvring is to isolate the relevant terms si+\p = ui+\p 

in an interval by translating all of the troublesome terms to the right a suitable 
distance M. 

In order to arrive at a contradiction we assume now that z G (ap) so that 
for a given e < (b — a)/2 there exist positive integers K and L satisfying 
the definition in §1 for the sequence z = {uk}. Since ui+\p = si+\p, we conclude 
from (3.17) that an integer N > ma.x(K, Ni) exists such that 

(3.19) \ui+Xp - tt<+xp+,| < e/2L2 for all X > N. 

We now fix Xi > iV and X2 > Xi + L so that 

(3.20) u(i + \ip) <a + e/4L, u(i + X2p) > b - e/4L. 
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Let the interval (hy h + L) be defined by h = (X2 — Xi)p — L, and let q 
assume all integral values (X2 — Ai)/> — M (1 < M < L — 1) in this interval. 
If q =z* 0 (mod £), then ix & 0 (mod £), and the subscript i + Xi p + 5 be­
comes i + X2 p — M> which can be put in the form \p + J, where 1 < j < />, 
j ^ i, and X > N. Hence, using (3.18) and (3.20), we find that 

(3.21) \u(i + \ip) - «(i + Xi£ + g)| > e for all g ^ 0 (modp). 

If g == 0 (mod p), then g is of the form (X2 — \i)p — y.p, where 1 < \x < m 
for a certain w < L — 1. The subscript i + Xip + q now takes the form 
i + (X2 — M)£- From the last two inequalities, together with X2 > Xi + L, 
we see that X2 — /x > N for all n in question. Consequently, using (3.19), 
we obtain 

(3.22) \u(i + \2p) - u(i + \2p ~ np)\ < »e/2L2 < e/2L ( 1 < ju < m). 

Finally, from (3.20) and (3.22), we find that 

(3.23) \u(i + \ip) - u(i + \ip + q)\ 

> \u(i + \ip) — u(i + X2£)| - \u(i + \2p) — u(i + Xi p + q)\ 

> b - a - e/L> € 

for all q = 0 (mod £). If we set & = i + Xi p, then k > N > K, and it follows 
from (3.21) and (3.23) that \uk — ^+«1 > e for a certain k > K and a// q 
in the interval (/z, h + L). This contradiction shows that z — {uk\ $ (ap); 
and it follows at once that x = z — y (£ (ap) since y Ç \ZP\ C (ap). This 
completes the proof. 

In view of (2.4), (3.6), and (3.15), the cardinal number and the density of 
the set xf of limit points of x = {sk} appear to play certain roles which we 
now investigate more fully. For example, because of (3.6), we see that if 
x G Z and x' is finite, then x £ ZF. The result (2.4) is of the same type. We 
now establish the following fact. 

(3.24) If x Ç: (ap) and x' is finite, then x Ç ZF. 

Proof. Let c\, c2, . . . , cr be the distinct limit points of x, and choose the 
positive number e smaller than m i n ^ \ct — Cj\/3. With this e we return to 
the definition of (ap) in §1 and choose any admissible q so that we have 
\sk — sk+q\ < e for all k > K. Then for all k > K\ > K every sk will fall in one 
of the intervals {ct — e, ct + e). Let kj — K\ + j (1 < j < q) and notice 
that if skj lies in the interval (ctj — e, ctj + e), then s{k} + \q) will lie in the 
same interval for all X > 0. Since s(kj + \q) —> ctj as X —-><», it is apparent 
that {5fc} 6 |Zff| C ^ F , and that q > r. 

The following corollary is immediate. 

(3.25) If x G (usp) and x' is finite, then x Ç ZF . 
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The sequence y0 = {tk
0} definied in the proof of (3.4) is such that y0 £ (usp) 

C (ap), and its set of limit points y0
f is the denumerably infinite set (0, 1, 

1/2, 1/4, . . .). We have seen in (3.6) that elements of this type do not occur 
in Z. On the other hand, the question arises whether there exist elements 
x £ (usp) for which card(x') is more than denumerable infinite. The next 
examples show not only that such x exist, but that the density of x' can, in a 
sense, be arbitrary. 

(3.26) There exist elements Xi, x0, x$ in (usp), and hence in (ap), such that 
(i) X\ is the closed interval [0, 1]; (ii) x0' is the Cantor ternary set; (iii) x/ is a 
non-dense perfect set on [0, 1] of measure B (0 < 6 < 1). 

Proof, (i) Let sk = 0.a0aia2 • • • (scale 2) if k > 1 has the form 

k = a0 + 2ai + 22a2 + . . . (af = 0 or 1). 

If xi = {sk}, then obviously x\ = [0, 1]. Let e > 0 be given and fix q so that 
2~q < e. In the characterization of (usp) in (1.6) choose K = 1 and p = 2q. 
If X > 0 is given as 

X = bo + 2b! + 22b2 + ... (6i = 0 or 1), 

then k + Xp may be written as a0 + 2a\ + . . . + 2?-1a(?_i + 2qcq + . . . . 
Then 

Sk+\p = O.aoai. . . aq-icg. . . (scale 2), 

and one sees that | ^ — sk+\p\ < 2~Q < e for all k > K and all X > 0. There­
fore Xi 6 (usp). 

(ii) Let k = a0 + 2a\ + 22a2 + . . . as in (i), and set tk = 0.dodid2. . . 
(scale 3; dt = 2a*). The sequence {tk\ is precisely the set of all right end 
points of the open intervals deleted in the geometric construction of C, the 
Cantor ternary set. Consequently, if xo = {tk}, it is clear that #(/ = C 

Before proceeding it will be helpful to make the following obvious remarks. 
The stage-g in the construction of C yields 2a~l new points tk for the values 
of k, 2<z_1 < k < 2Q — 1, obtained by setting aq-i = 1; a0, #i, . . . , a^_2 = 0 
or 1; and at = 0 otherwise. Also at stage-g there remain 2q closed intervals, 
each of length 3~ff, in which the next stage of the construction occurs. 

We now specify e > 0 and fix q so that max(2-31_(Z, 2-/ff_i) < e, where 
Iq-i will be clarified in (iii) and is introduced here for expedience. Let p — 2Q~X 

and consider for the moment only those values of k = a0 + 2ai + . . . 
+ 2q~2aQ-2 + 2q~l corresponding to the right end points tk obtained at stage-g. 
With X as in (i), and p = 2q~\ we find that 

k + \p = a0 + 2fli + . . . + 2*-2a,_2 + 2*~ V + 

Consequently, tk = 0.d0^i . . . dq-2 200 . . . , tk+\p = 0.d0di . . . dq-2d'q-i . . . 
(scale 3), so that 

(3.27) \tk - tk+Xp\ < 31-*, k = p, p + 1, . . . , 2p - 1; all X > 0. 
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Now choose K = 2Q~l and let kt = p + i for i = 0 , 1 , . . . , p - 1. Then 
every j > K is of the form kt + \tp for some i and some X*. Hence, using 
(3.27), 

\tj - tj+xP\ < \t(kt + \ip) - t(kt)\ + \t(kt) - t(kt + \p + \tp)\ 
< 2-31-2 < e 

tor all j > K and all X > 0. Thus {tk} 6 (usp). 
(iii) Let 0 < 6 < 1 and modify the construction of C by removing at stage-1 

a centred open interval of length (1 — 0)/3; by removing at stage-2 a pair of 
centred open intervals, each of length (1 — 0)/32; etc. (By centring we ensure 
the equality of the lengths, Iq, of the residual closed intervals at stage-g— 
merely a matter of convenience.) The resulting set Ce is, of course, a non-
dense perfect set of measure 6. By the familiar pairing of the removed intervals 
in the construction of two non-dense perfect sets, we can enumerate the 
right end points of Ce in such a way that a right end point uk Ç Ce is paired 
with its corresponding point tk G C. Then, evidently, Xe = {uk} is such that 
%e = Ce. Moreover, it is clear from (3.27) that if tk G C is any right end 
point at stage-g, then all of the points tk+\p (X = 0, 1, 2, . . .) lie in a certain 
interval of length 31_<z remaining at stage-(q — 1). By the similarity mapping 
of {uk\ onto \tk\ it follows that all of the points uk+\p (X = 0, 1, 2, . . .) lie 
in the corresponding interval of length /ç_i [ = 0(1)] remaining at stage-
(q — 1) in the construction of Ce. Therefore, recalling the choice of q in (ii), 
we have 

\uk — uk+\p\ < Iq-i < e/2, 

and the details proceed as in (ii). Thus, Xe € (usp). 
As concluding remarks we note that, by (3.15), the elements 

•^1) XQ, XQ 

are not in Z, although, by (3.10) and (3.12), they are in Z. We observe also 
that, by (3.6), elements with the density types of x0 and xe do not occur in Z. 

4. Concerning convergence fields. Is the set (ac) the bounded conver­
gence field of a regular matrix method of summability? This question was 
raised by Lorentz, who proved that the answer is negative (6, §7). We now 
consider the corresponding question with respect to the sets (usp) and Z. 
For (usp) the answer is immediately negative since (usp) is separable by 
(3.4) and (3.10), and the result of Agnew (1, p. 99) cited earlier can be applied. 
With regard to Z we have the following propositions. 

(4.1) The set Z is not the bounded convergence field of any regular matrix 
method with non-negative terms. 

(4.2) The set Z is not the bounded convergence field of any regular Nôrlund 
method. 

Proof of (4.1). Let A = (ank) be any regular matrix of non-negative terms 
whose convergence field %(A) includes Z. For each p > 1 there are p periodic 
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sequences of O's and l's, say X?, containing for each i a single " 1 " per period 
in the ith position (i = 1 , 2 , . . . , p). Since each X? G Zv C Z C \5(A), it 
follows that each X? is summable-A Consequently, the conditions 

CO 

(4.3) lim ] £ an,i+\p = 4 /ex i s t s , i = 1, 2, . . . , p; p = 1, 2, 3 , . . . , 
» x=o 

are necessary in order that }$(A) Z) Z. It is now only a matter of checking 
details to verify that each method (Z, p) is perfect, and therefore consistent 
with every regular matrix method not weaker than (Z, p) (2, pp. 90-95). 
Since each X? is summable-(Z, p) to the value 1/p, we conclude that each limit 
A f in (4.3) must be equal to 1/p. Let e > 0 be given and fix p' so that 2/p' 
< e. Then an integer N(e) exists such that 

OP 

2 an,i+\P' < 2/p' < e for all n > N, and alH = 1, 2, . . . , p'. 
x=o 

In view of the assumption ank > 0, we conclude that ank < e for all n > N 
and all k — 1, 2, 3, . . . . This condition implies that the method A possesses 
summability functions (6, §6), from which it follows that A is effective for 
sequences of O's and l's that are not ultimately periodic. But (2.4) shows that 
no such sequences belong to Z, and this completes the proof. 

Proof of (4.2). Let N = (qn-k/Qn) be a regular Nôrlund matrix such that 
$(N) D Z. Then Qn = q0 + qi + . . . + qn ^ 0 and the following necessary 
and sufficient conditions for regularity are satisfied: 

(4.4) \lmqn.k/Qn = 0 (É = 0, 1, 2, . . .)• 
n 

(4.5) S |2,| = 0(|Q,|) (n->«). 
A;=0 

All methods iV may be separated into two disjoint classes according as (a) 
H Wic\ < °° ; or (b) X) \qk\ = °°, and by (4.5) the condition (b) is equivalent 
to (b') \Qn\ —>°°. To dispose of the case (£') it is sufficient to observe that the 
condition \Qn\ —»°o entails the conditions (4.4), uniformly in & (7, pp. 37-38). 
This, in turn, endows the method N with summability functions, and the 
proof is completed as in the preceding theorem. 

In case (a) we set Q = X) <Z* and notice that (4.5) implies Q 9e 0. Then 
the necessary conditions (4.3), with ^4/ = 1/p, may be written in the form 

(4.6) lim £ g*w, = (>/£ (* = 0 , 1 , . . . , /> - 1; p = 1, 2, 3 , . . .), 
n X=0 

where X̂ ^ is a certain index < ^ . We complete the argument by showing that 
(4.6) implies that all qk are equal, and hence equal to zero, and this contradicts 
q0 y£ 0. Hence, if possible, let m be a. positive integer such that qm ^ q0, and 
fix j > m so that £*>* \qk\ < \qm — qo\/2. If we now fix p > j , then 
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2^J &P ~~ 2-J Q.m+\p > k o - 2m| - 2 Iftl > km - 2 o | / 2 > 0, 

for all n sufficiently large. This involves a contradiction to (4.6) for i = 0 
and i = w, and hence the integer m does not exist. 

As final remarks we conjecture (i) that (4.1) is true without the restriction 
ank > 0; and (ii) that the set (ap) is not the bounded convergence field of any 
regular matrix method. 
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