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RETURN TO THE POISSONIAN CITY

BY WILFRID S. KENDALL

Abstract

Consider the following random spatial network: in a large disk, construct a network using
a stationary and isotropic Poisson line process of unit intensity. Connect pairs of points
using the network, with initial/final segments of the connecting path formed by travelling
off the network in the opposite direction to that of the destination/source. Suppose further
that connections are established using ‘near geodesics’, constructed between pairs of
points using the perimeter of the cell containing these two points and formed using only
the Poisson lines not separating them. If each pair of points generates an infinitesimal
amount of traffic divided equally between the two connecting near geodesics, and if the
Poisson line pattern is conditioned to contain a line through the centre, then what can
be said about the total flow through the centre? In Kendall (2011) it was shown that a
scaled version of this flow has asymptotic distribution given by the 4-volume of a region
in 4-space, constructed using an improper anisotropic Poisson line process in an infinite
planar strip. Here we construct a more amenable representation in terms of two ‘seminal
curves’defined by the improper Poisson line process, and establish results which produce
a framework for effective simulation from this distribution up to an L1 error which tends
to 0 with increasing computational effort.

Keywords: Improper anisotropic Poisson line process; mark distribution; point process;
Poisson line process; Poissonian city network; Mecke–Slivnyak theorem; seminal curve;
spatial network; traffic flow
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Secondary 90B15

1. Introduction

What can be said about flows in a random network? Aldous et al. [3] discussed maximum
flows achievable on a complete graph with random capacities; Aldous and Bhamidi [1] consid-
ered the joint distribution of edge flows in a complete network with independent, exponentially
distributed edge lengths. But what can be said about flows in a suitable random spatial network?
In previous work with Aldous [2], it was shown that sparse Poisson line processes could be used
to augment minimum-total-length networks connecting fixed sets of points in such a manner
that (a) the total network length is not appreciably increased, but (b) the average network
distance between two randomly chosen points exceeds the average Euclidean distance by only
a logarithmic excess. This result debunks an apparently natural network efficiency statistic, but
also indicates attractive features of networks formed using Poisson line processes.

The analysis in [2] used the notion of ‘near geodesics’ as noted in the abstract: these are
paths constructed between pairs of points using the perimeter of the cell containing these two
points and formed using only the Poisson lines not separating them. Follow up work in [7]
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298 W. S. KENDALL

introduced the notion of a ‘Poissonian city’, namely a planar disk of radius n, connected by a
random pattern of lines from a stationary and isotropic Poisson line process. Pairs of points
in the disk are connected by near geodesics, with initial/final segments of the connecting path
formed by travelling off the network in the opposite direction to that of the destination/source.
Conditioning on one of the Poisson lines passing through the centre, and supposing that each pair
of points in the disc generates an infinitesimal flow shared equally between two near geodesics
derived from the line pattern, it can be shown that the mean flow at the centre is asymptotic
to 2n3; moreover, the scaled flow has a distribution which converges to a proper nontrivial
distributional limit [7, Section 3]. Thus, the asymptotic flow at the centre of this random spatial
network is well behaved. The distribution can be realized in terms of the 4-volume of an
unbounded region in R

4 determined by an improper anisotropic Poisson line process defined
on an infinite strip; however, it is a challenge to compute directly with this representation. In
this paper we show how to represent the volume of this region in terms of a pair of monotonic
concave curves (‘seminal curves’); moreover, we establish results which demonstrate that a
calculation in terms of initial segments of these seminal curves can be used to approximate the
4-volume up to an explicit L1 error, which can be made as small as desired.

The paper is organized as follows: in Section 2 the Poissonian city and the improper line
process are defined; in Section 3 we describe the representation in terms of seminal curves; in
Section 4 we discuss the stochastic dynamics of a seminal curve; and in Section 5 we apply this
to determine explicit L1 error bounds. The paper concludes with Section 6, a brief discussion
which mentions an open question related to exact simulation.

2. Traffic in the improper Poissonian city

A ‘Poissonian city’ [7] is a disk of radius n with connectivity supplied by lines from a
unit-intensity stationary and isotropic Poisson line process. Recall that such a line process has
intensity 1

2 dr dθ , where the (undirected) lines are parameterized by the angle θ ∈ [0, π) and
signed distance r from the origin. (The factor 1

2 ensures that the number of hits on a unit segment
has unit mean.) Traffic flow in the Poissonian city is supplied by so-called ‘near geodesics’,
constructed between pairs of points using the perimeter of the cell containing these two points
and formed from lines not separating them. Short Euclidean connections can be added [7,
Section 1.2] so as to connect any pair of points whatsoever, whether the points lie on or off the
Poisson line pattern. Conditioning on a line running through the origin o, one can then study
the flow through o which results if each pair of points contributes the same infinitesimal amount
of flow divided equally between two alternate near geodesics [7, Section 3]. Asymptotics at
n → ∞ are studied using the limit obtained by considering x → x/n together with y → y/

√
n:

the result in the limit is an ‘improper Poissonian city’ formed from an improper anisotropic
Poisson line process observed within an infinite strip of width 2. Coupling and symmetry
arguments are used to show that the asymptotic mean flow in the centre is 2n3 (with limiting
distribution when scaled accordingly), corresponding to a mean flow at the centre of 2 in the
improper Poissonian city conditioned to have a horizontal line through o [7, Theorems 5 and 7].

In this section we give a direct description of the improper Poissonian city and its associated
improper anisotropic Poisson line process, now observed in the whole plane R

2. We first con-
sider the intensity measure for the improper line process, using a natural choice of coordinates,
namely the heights of intercepts on the two boundary lines of the infinite strip.

Definition 2.1. Consider the lines in R
2 which are not vertical (which is to say, not parallel to

the y-axis), and parameterize these lines by their intercepts y± on the x = ±1 axes. Denote by
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x � +1x � 1−

x1

x2

Figure 1: Indicative illustration of the construction of near geodesics between points x1 = (x1, y1) and
x2 = (x2, y2) in the improper Poissonian city. The two broken lines indicate the pair of near geodesics
between the two points. Necessarily, this indicative illustration omits most of the dense countably infinite

set of near-vertical lines contained in �∞; it also omits all lines separating x1 and x2.

�∞ the improper anisotropic Poisson line process, composed only of nonvertical lines, whose
intensity measure ν is given in the coordinates y− and y+ by

dν = 1
4 dy− dy+. (2.1)

Limiting and coupling arguments show that �∞ arises as the limiting line process on the
infinite strip for large n if a Poissonian city within a disc of radius n is subject to inhomogeneous
scaling x → x/n together with y → y/

√
n. The factor 1

4 arises (a) from the factor 1
2 in the

formula for the intensity measure of the Poisson line process of unit intensity given above, and
(b) from the choice of coordinates determined by the two boundary lines of the strip, which are
separated by distance 2 (contrast the expressions for ν in other coordinate systems discussed at
the start of Section 4).

This line process is improper only in the sense of possessing a dense infinity of nearly vertical
lines: once one removes from the line pattern all lines with absolute slope greater than a fixed
constant, then the result is locally finite.

It is immediate from (2.1) that �∞ is statistically invariant under translations, shears along
the y-axis, and reflections in the x- and y-axes. Calculations also show its statistical invariance
under symmetries of the form y → cy together with x → c2x for c �= 0 (these symmetries are
exploited in [7, Section 3]).

Following [2, 7], we use �∞ to construct paths between distinct points x1 and x2 in R
2

which can be thought of as ‘near geodesics’ in the network supplied by �∞, and correspond to
near geodesics in the original Poissonian cities under the coupling arguments referred to above.
This construction is illustrated in Figure 1.

Definition 2.2. Fix x1, x2 ∈ R
2, and consider the tessellation generated by all the lines of �∞

which do not separate x1 and x2. Let C(x1, x2) be the (open) tessellation cell whose closure is
the intersection of all the closed half-planes that are bounded by lines of �∞ and that contain
both x1 and x2. The pair of near geodesics between x1 and x2 is given by the two connected
components obtained by removing x1 and x2 from the perimeter ∂C(x1, x2).

In contrast to the case of [2, 7] (where initial/final segments of the connecting path have
to be formed off the Poisson line process, by travelling in the opposite direction to that of
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the destination/source), the points x1 and x2 belong to the closed set ∂C(x1, x2), since there
are infinitely many nearly vertical lines arbitrarily close to x1 (respectively, x2) which do not
separate x1 and x2.

We use these near geodesics to define a flow over the whole plane R
2: the infinitesimal flow

between x1 and x2 amounts to the infinitesimal quantity dx1 dx2, and this is divided equally
between the two near geodesics between x1 and x2. We focus attention on the total amount of
flow passing through the origin o that is produced by pairs of points lying on the infinite vertical
strip {x = (x, y) : −1 < x < 1}, when we condition on there being a horizontal line �∗ ∈ �∞
which passes through o (so in fact �∗ is the x-axis). Under this conditioning, the total flow of
interest is given by

T =
∫ ∞

−∞

∫ +1

−1

∫ ∞

−∞

∫ x2

−1

1

2
1[o∈∂C((x1,y1),(x2,y2))] dx1 dy1 dx2 dy2. (2.2)

Here the factor 1
2 allows for the splitting of the flow between the two possible near geodesics.

Note for future use the Slivynak–Mecke theorem [5, Example 4.3]: if �∞ is so conditioned
then �∞ \ {�∗} is distributed as the original unconditioned improper anisotropic Poisson line
process. So, from henceforth, the construction of near geodesics, as in Definition 2.2, is based
on �∞ ∪ {�∗} rather than �∞.

An interaction between the improper nature of �∞ and its statistical symmetries can be used
to somewhat simplify the quantity (2.2). If one of x1 or x2 lies in the open upper half-plane
and the other lies in the open lower half-plane, then the perimeter ∂C(x1, x2) of the (convex)
cell will almost surely (in x1 and x2) not contain o. This is a consequence of the horizontal
translation symmetry of the statistics of �∞ ∪ {�∗}. Accordingly, we can divide the multiple
integral (2.2) into two nonzero and identically distributed parts, integrating respectively over
y1 > 0 and y2 > 0, and y1 < 0 and y2 < 0. We shall see in the next section that the
contributions from these two parts are independent.

Suppose that x1 and x2 both lie in the open right-hand half of the open upper half-plane,
namely, {(x, y) : x > 0, y > 0}. Since the improper line process �∞ contains infinitely many
arbitrarily steep lines with x-intercepts dense on the x-axis, it follows that the near geodesics
between such x1 and x2 cannot pass through o, and so such configurations cannot contribute
to (2.2). Similarly, no contribution can be made from configurations in which x1 and x2 both
lie in the left-hand half of the upper half-plane, namely, {(x, y) : x < 0, y > 0}.

Accordingly, the properties of (2.2) will follow from analysis of

F =
∫

Q+

∫
Q−

1

2
1[o∈∂C(x1,x2)] dx1 dx2, (2.3)

where Q+ = {(x, y) : 0 < x < 1, y > 0} and Q− = {(x, y) : − 1 < x < 0, y > 0}. In
fact the quantity in (2.2) will be the independent sum of two copies of F , one for the upper
and one for the lower half-planes. In [7] this representation is used to establish some general
properties of the flow at the centre. However, it is desirable to construct a representation of F

more amenable to quantitative arguments and effective approximation. We will now show how
to do this.

3. Separation and seminal curves

We focus on the upper half-plane case, and the 4-volume 2F of the subset Dupper ⊂ Q−×Q+
given by

Dupper = {(x1, x2) ∈ Q− × Q+ : o ∈ ∂C(x1, x2)}.
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x � 1− x � +1

�+�−
	n
~

	n

x � 0

Cn

Figure 2: The two seminal curves �− and �+, and the regions 	n = 	+
n , Cn = C+

n , and 	̃n = 	̃+
n .

Note that 	n and 	̃n are triangular regions determined using only lines that are components of �+, the
x-axis, and the x = 1 axis. The region Cn is contained in the triangular region 	̃n, and uses lines that are
components either of �+ or of �−, as well as the x-axis. Note that in fact �± have vertical asymptotes

at 0.

Thus, Dupper is composed of point pairs (x1, x2) ∈ Q− × Q+ such that the line segment
connecting x1 with x2 is not separated from o by �∞. Note that such separation fails if and
only if no one line � ∈ �∞ simultaneously separates x1 and x2 from o.

Consider a dual construction, using the lines of �∞, that builds sets of lines of positive and
negative slopes which could in principle separate the origin o and some line segment between
some x1 ∈ Q− and some x2 ∈ Q+:

�∞,+ = {� ∈ �∞ : � has positive slope, � intercepts the negative x-axis},
�∞,− = {� ∈ �∞ : � has negative slope, � intercepts the positive x-axis}.

The lines relevant to the case of x1 and x2 lying in the lower half-plane lie in �∞ \ (�∞,− ∪
�∞,+); hence (as mentioned in Section 2), the total flow (2.2) is indeed the sum of two
independent copies of the upper half-plane contribution 2F , for F as specified in (2.3).

Now define the seminal curves �± as the concave lower envelopes of the unions of lines in
�∞,±: for s ∈ (0, 1],

�−(−s) = inf{height of intercept of � on x = −s : � ∈ �∞,−}, (3.1)

�+(s) = inf{height of intercept of � on x = s : � ∈ �∞,+}. (3.2)

These curves are illustrated in Figure 2. It is immediate that both curves are concave and
continuous, and that �− is strictly monotonically decreasing and �+ is strictly monotonically
increasing. Therefore, the inverses �−1− (ε) and �−1+ (ε) are well defined for 0 < ε ≤ �−(−1)

and 0 < ε ≤ �+(1), respectively: it is convenient to adopt the convention that �−1± (ε) = ±1
for ε > �±(±1).

A simple lower bound for the quantity (2.3) arises from the observation that

{(x, y) ∈ Q− : 0 < y < �−(x)} × {(x, y) ∈ Q+ : 0 < y < �+(x)} ⊂ Dupper. (3.3)

From this inclusion relation we deduce that∫ 0

−1
�−(s) ds

∫ 1

0
�+(s) ds < Leb4(D

upper) = 2F. (3.4)

Evidently, it is feasible to approximate both
∫ 0
−1 �−(s) ds and

∫ 1
0 �+(s) ds to within an additive

absolute error of ε > 0 using only finitely many lines from �∞, namely the lines involved in
the initial segments {�−(s) : − 1 ≤ s ≤ �−1− (ε)} and {�+(s) : �−1− (ε)) ≤ s ≤ 1}. We will see
in Section 5 how this leads to an effective approximation.
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We therefore turn attention to the difference between the two sides of (3.4), or, equivalently,
the 4-volume of the difference between the two regions in (3.3). The difference region splits
into two disjoint parts whose definitions are related by the mirror symmetry around the y-axis.
First observe that if x1 = (x1, y1) ∈ Q− lies above �−, and x2 ∈ Q+ lies above �+, then the
line segment connecting x1 with x2 is separated from o. Indeed, we can use any line realizing
the infimum in the definition of �−(x1) (or any analogous line realizing the infimum in the
definition of �+(x2)). So we can focus on the case when x2 = (x2, y2) lies above �+ while
x1 = (x1, y1) lies below �−, and use mirror symmetry to deal with the opposite case. Consider
the lines �0, �1, �2, . . . of �∞,+ which are components of {�+(s) : 0 < s ≤ 1}, enumerated
according to the increasing heights of their intercepts on x = 1. Then o ∈ ∂C(x1, x2) if and
only if any �n lying below x2 has to pass above x1. As a consequence of the infimum-based
definition (3.2) of �+ and of the concavity of �+, �n+1 must intersect �n, and it must do so at
a larger x-coordinate than where it intersects �+. Using concavity and monotonicity of �+, it
may be deduced that the intercept of �n on the x = x1 < 0 axis must be decreasing in n. Let
n(x2) be the largest n such that �n lies below x2; then the set C+

n(x2)
of x1 with o ∈ ∂C(x1, x2)

is exactly the set of those points in Q− which lie below �− and also below �n(x2). Let 	+
n be

the triangle formed by �n, �n+1, and the x = 1 axis. These regions are illustrated in Figure 2,
as well as the further region 	̃+

n to be defined below.
Let C−

n and 	−
n be the analogous regions for lines that are components of �−. Evidently,

the areas of both C−
n and C+

n for any fixed n can be approximated to within an additive
absolute error of ε > 0, using only the lines involved in {�−(s) : − 1 ≤ s ≤ �−1− (ε)} and
{�+(s) : �−1− (ε) ≤ s ≤ 1}, and the same is trivially true of the triangles 	±

n .
It now follows that we can represent F in (2.3) in a way that lends itself to an effective

approximation so long as we have a useful representation of the curves �± viewed as continuous
piecewise-linear random processes; we summarize this in the following theorem.

Theorem 3.1. Given the analysis below of �± as continuous piecewise-linear random pro-
cesses,

2F =
∫

Q+

∫
Q−

1[o∈∂C(x1,x2)] dx1 dx2

=
∫ 1

0
�−(−s) ds

∫ 1

0
�+(t) dt +

∞∑
n=0

Leb2(C
+
n ) Leb2(	

+
n ) +

∞∑
n=0

Leb2(C
−
n ) Leb2(	

−
n )

(3.5)

enables an effective computation of the left-hand side 2F ; indeed, finite truncations of the
convergent infinite sums use calculations based on only finitely many of the lines involved in
the constructions of �±.

Proof. Using the calculations of [7, Section 3], we can deduce that E[F ] < ∞ and, therefore,
that the infinite sums of nonnegative terms on the right-hand side are convergent. By the
above arguments, given the subsequent stochastic analysis of �±, we may then approximate∫ 1

0 �−(−s) ds to within an additive absolute error of
√

ε/2/�+(1) and
∫ 1

0 �+(t) dt to within an
additive absolute error of

√
ε/2/�−(−1). Since

∫ 1
0 �−(−s) ds < �−(−1) and

∫ 1
0 �+(t) dt <

�+(1), it follows that the product of integrals on the right-hand side of (3.5) can be approximated
to within an additive absolute error of ε/2. Moreover, we can choose to approximate each term
Leb2(C

±
n ) in the two infinite sums to within an additive absolute error of 2−n−2ε/Leb2(	

±
n ).

Accordingly, the entire expression can be approximated to within an additive absolute error
of ε. While this approximation uses all of �±, we may truncate the absolutely convergent sums
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as required to produce an approximation of any required accuracy using only finitely many of
these lines.

In the remainder of this paper we improve on this result by showing that we can provide
an explicit L1-approximation, by bounding the mean tails of the infinite sums in (3.5). To
prepare for this, consider the region C+

n . We can produce a simple triangular approximation
region as follows: for each n ≥ 0, let 	̃+

n be the triangle formed by �n, the x-axis, and the
x = 0 axis; note that this region contains C+

n . Again, this region is illustrated in Figure 2. We
can then replace the regions involved in the tails of the infinite sums in (3.5). For example,

∞⋃
n=N

(C+
n × 	+

n ) ⊆
∞⋃

n=N

(	̃+
n × 	+

n ). (3.6)

Note that the approximating sets 	̃+
n are now formed entirely from lines in �∞,+. A similar

argument applies for the sum involving C−
n rather than C+

n , resulting in an approximating
tail using regions formed entirely from lines in �∞,−, and, therefore, the two corrections are
independent. If we can obtain a priori bounds for the two correction regions then we have an
effective truncated approximation for (3.5), namely,∫ 1

0
�−(−s) ds

∫ 1

0
�+(t) dt +

N∑
n=0

Leb2(C
+
n ) Leb2(	

+
n ) +

N∑
n=0

Leb2(C
−
n ) Leb2(	

−
n ). (3.7)

This truncated approximation can then itself be approximated in finitary terms, in the sense of
involving the use of only a finite number of lines of �∞ obtained from {�−(s) : − 1 ≤ s ≤
1/m−} and {�+(s) : 1/m+ ≤ s ≤ 1} for suitable m±.

To complete our analysis of the 4-volume specified in (3.6), we now need to determine the
dynamics of the random processes {�±(s) : s ∈ (0, 1]}, both to show that the computations
involved in the representation given by Theorem 3.1 can be achieved effectively, and to obtain
explicit control of the mean behaviour of the tails of the infinite sums using the upper bounds

∞∑
n=N

Leb2(	̃
+
n ) Leb2(	

+
n ). (3.8)

4. Seminal curve dynamics

To prepare for the calculation of the seminal curve dynamics, we first compute expressions
for the intensity measure ν in two different coordinate frames. Consider first the coordinates
arising from intercepts y0 and ys on x = 0 and x = s for some fixed s > 0. This is a linear
transformation of coordinates, resulting in

dν = dy0 dys

2s
. (4.1)

Equation (4.1) makes it evident that ν and, thus, �∞ satisfy the (statistical) symmetry y → cy,
x → c2x for nonzero c. Now consider new coordinates given by slope σ and intersection x

with a fixed reference line of slope σ0, and intercepts b0 and bs on x = 0 and x = s for some
fixed s > 0. In y0, ys coordinates we find that

(s − x)b0 + xbs = (s − x)y0 + xys, y0 + σx = b0 + σ0x.

Now examine ν∞,+ obtained as the intensity measure of �∞,+. We obtain different answers
for the regions in which σ is less than or greater than σ0; recalling that all lines in �∞,+ are of
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positive slope and intersect the negative part of the x-axis, calculations yield

dν∞,+ = 1
2 (σ0 − σ) dσ dx for 0 < σ < σ0, (4.2)

dν∞,+ = 1
2 (σ − σ0) dσ dx for σ0 < σ < σ0 + b0/x. (4.3)

For convenience, we focus on the � = �+ case. We now calculate the one-point joint
distribution of (�(s), �′(s)) for 0 < s ≤ 1, bearing in mind that the two-sided derivative �′(s)
exists only almost surely for each fixed nonzero s.

Lemma 4.1. For s ∈ (0, 1],
P{�(s) > γ } = e−γ 2/(4s) for γ > 0, (4.4)

L(�′(s)) = Uniform

[
0,

�(s)

s

]
.

In particular, �(s) has a Rayleigh(
√

2s ) distribution.

Proof. Consider the intensity measure ν in y0, ys coordinates, as specified in (4.1). It
follows that the point process of intersections of the x = s axis with lines from �∞,+, with
each intersection marked by the slope of the corresponding line, is given by an inhomogeneous
Poisson process of points 0 < t1 < t2 < · · · , with intensity measure (t/2s) dt , such that each
point tm is independently marked by a slope with distribution Uniform[0, tm/s]. The result
follows immediately.

These arguments can be extended to determine the two-point joint distribution of the pair of
pairs (�(s), �′(s)) and (�(t), �′(t)). However, for the purposes of Theorem 3.1, we need to
understand the dynamical behaviour of the random process {�(s) : s ∈ (0, 1]}. It turns out to be
most convenient to study this process in reversed time, so we take �′(s) to be continuous from
the left and to have right limits (‘càglàd’, in the common French probabilistic terminology).

Theorem 4.1. Let the times of changes in the slope of {�(s) : 0 < s ≤ 1} in reversed time be

1 = S0 > S1 > S2 > · · · > 0.

Then the tangent lines �0, �1, �2, . . . , enumerated as in Section 3, have respective slopes �′(s)
for Sn ≥ s > Sn+1. With Yn = �(Sn) − Sn�

′(Sn) denoting the intercept of �n on the y-axis,
(Sn+1, �

′(Sn+1)) is expressible as

1

Sn+1
= 1

Sn

+ 4

Y 2
n

En+1, (4.5)

�′(Sn+1) = �′(Sn) + Yn

Sn+1

√
Un+1, (4.6)

where each En has the standard exponential distribution and Un the Uniform[0, 1] distribution,
all {En} and {Un} are independent of each other and of �(S0) = �(1) and �′(S0) = �′(1),
and (�(S0), �

′(S0)) has the joint distribution given in Lemma 4.1.

This yields a dynamical algorithm to simulate �(s) segment-by-segment as s decreases to 0.
This is what is required in order to generate a simulation recipe for approximation (3.7).

Proof of Theorem 4.1. Again, the proof follows from re-expressing the intensity measure ν

in new coordinates, this time as given by (4.3). This calculation can be applied to the point
process of intersections of �∞,+ with a fixed reference line of slope σ0, and intercepts b0
and bs on x = 0 and x = s for some fixed s > 0. Restrict attention to the case when the
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intercepting line has slope greater than σ0. Considering the point process of intercepts with
each intersection marked by the slope of the corresponding line, the subprocess of intercepts
0 < x1 < x2 < · · · with slope greater than σ0 has intensity measure 1

4 (b0/x)2 dx, and each
point xm is independently marked by a slope with density 2(σ − σ0)/(b0/x)2 for 0 < σ0 <

σ < σ0 + b0/x. The result follows by calculation.

These dynamics are ‘reverse-time dynamics’. The calculations of (4.2) could be applied to
determine ‘forward-time dynamics’; however, these are not useful for our current purposes.

We now state and prove three corollaries about the behaviour of the system {(Sn, Yn) : n ≥ 0}.
The recursive system (4.5) and (4.6) leads to a delightfully simple expression for the intercept
process {Yn : n ≥ 0} as a perpetuity [11].

Corollary 4.1. In the notation of Theorem 4.1,

Yn+1 = Yn(1 − √
Un+1 ) = Y0

n+1∏
m=1

(1 − √
Um ). (4.7)

In particular, lim supn→∞ 3nYn is a finite random variable, so that, almost surely, Yn converges
to 0 geometrically fast.

Proof. The perpetuity equation (4.7) can be deduced directly from the expression for Yn and
(4.6). It follows from E[1 − √

Un ] = 1
3 that {3nYn : n ≥ 0} is a nonnegative martingale, and,

therefore, converges to a nonnegative random limit.

From (4.5) we can deduce that

Y 2
n+1

Sn+1
= Y 2

n+1

Sn

+ 4
Y 2

n+1

Y 2
n

En+1 = Y 2
n+1

Y 2
n

(
Y 2

n

Sn

+ 4En+1

)
= (1 − √

Un+1 )2
(

Y 2
n

Sn

+ 4En+1

)
.

Consequently, we can take conditional expectations, and use independence and a Foster–
Lyapunov argument (see [8, Chapter 15, especially Theorem 15.0.1] or [10, Theorem 3.1])
to reveal the following.

Corollary 4.2. {Y 2
n /Sn : n ≥ 0} forms a geometrically ergodic Markov chain.

One further step is useful in understanding the error bound.

Corollary 4.3. {E[Y 3
n /Sn]} converges to 0 geometrically fast. Indeed,

E

[
Y 3

n

Sn

]
≤ (constant) 3−n

and {Y 3
n /Sn} almost surely converges to 0 geometrically fast.

Proof. Applying (4.5),

E

[
3n Y 3

n

Sn

]
= E

[
3n Y 3

n

Y 3
n−1

(
Y 3

n−1

Sn−1
+ 4Yn−1En

)]

= E

[
3n(1 − √

Un)
3
(

Y 3
n−1

Sn−1
+ 4Yn−1En

)]

= 3

10
E

[
3n−1 Y 3

n−1

Sn−1
+ 4Y0

]
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= E

[(
3

10

)n Y 3
0

S0
+ 4

((
3

10

)n

+
(

3

10

)n−1

+ · · · + 3

10

)
Y0

]

≤ E

[(
3

10

)n Y 3
0

S0
+ 12

7
Y0

]
.

But S0 = 1 while Y0 has a Rayleigh(
√

2 ) distribution and, therefore, has finite moments of all
orders.

5. Flow in the centre of the city

From the above work, we can represent the flow at the centre of the city in terms of the
seminal curves. Here we establish an explicit upper bound on the L1 error that arises if we use
only finite portions of the seminal curves.

Consider the tail sum (3.8), from which we can obtain an L1 upper bound on the error term.
This can be expressed in terms of the quantities studied in the dynamical system given by (4.5)
and (4.6). That is,

∞∑
n=N

Leb2(	̃
+
n ) Leb2(	

+
n ) = 1

4

∞∑
n=N

(1 − Sn+1)
2 Y 2

n

(
�′(Sn+1)

�′(Sn)
− 1

)

since

Leb2(	̃
+
n ) = 1

2
Yn × Yn

�′(Sn)
,

Leb2(	
+
n ) = 1

2 (1 − Sn+1) × (�′(Sn+1) − �′(Sn))(1 − Sn+1).

We now estimate the nth summand of (3.8) for any n ≥ N , using the fact that 0 < Sn ≤ 1, the
above details about the stochastic dynamics, and the fact that �′ is monotonically decreasing.
Using (4.5) and (4.6),

(1 − Sn+1)
2Y 2

n

(
�′(Sn+1)

�′(Sn)
− 1

)

≤ Y 2
n

(
�′(Sn+1)

�′(Sn)
− 1

)

= Y 3
n

( √
Un+1

�′(Sn)Sn+1

)

= Y 3
n

√
Un+1

�′(Sn)

(
4

Y 2
n

En+1 + 4

Y 2
n−1

En + · · · + 4

Y 2
N

EN+1 + 1

SN

)

≤ 4Yn

√
Un+1

�′(SN)

[
En+1 +

(
Yn

Yn−1

)2

En + · · · +
(

Yn

YN

)2

EN+1

]
+ Y 3

n

√
Un+1

�′(SN)SN

.

Now take conditional expectations given �′(SN), SN , and YN, and use the independence of
En and Yn/YN (for n ≥ N ) to convert the conditional expectations into absolute expectations,
using also the product expression (4.7) for the perpetuity Yn and the fact that �′(SN) ≥ �′(S0)

for N ≥ 0:

E

[
(1 − Sn+1)

2Y 2
n

(
�′(Sn+1)

�′(Sn)
− 1

) ∣∣∣∣ �′(SN), SN, YN

]

≤ 2

3

YN

�′(SN)

{
4 E

[
Yn

YN

(
1 +

(
Yn

Yn−1

)2

+ · · · +
(

Yn

YN

)2)]
+ E

[(
Yn

YN

)3]Y 2
N

SN

}
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≤ 2

3

YN

�′(SN)

{
4

[
1 + 3

10
+ · · · +

(
3

10

)n−N](
1

3

)n−N

+
(

1

10

)n−N Y 2
N

SN

}

≤ 2

3

YN

�′(SN)

[
40

7

(
1

3

)n−N

+ Y 2
N

SN

(
1

10

)n−N]
.

Hence,

E

[ ∞∑
n=N

Leb2(	̃
+
n ) Leb2(	

+
n )

∣∣∣∣ �′(SN), SN, YN

]
≤ 5

�′(SN)

(
2

7
YN + 1

27

Y 3
N

SN

)
(5.1)

≤ 5

�′(S0)

(
2

7
YN + 1

27

Y 3
N

SN

)
. (5.2)

Now YN and Y 3
N/SN almost surely converge geometrically fast to 0 (use Corollaries 4.1 and

4.3). Hence, almost surely, the above conditional expectation tends to 0 as N → ∞. Moreover,
we have the following explicit L1 error bound, converging geometrically fast to 0 with N .

Theorem 5.1. The L1 error of the approximation at (3.7) for the quantity 2F at (3.5) is bounded
above by

20

7
× 3−N + 20

27
× 6−N.

Proof. By our previous work, notably (5.2), we can obtain a bound on the approximation
error for (3.7) by replacing N by N − 1 in the sum of (a) the term

5

�′(SN)

(
2

7
YN + 1

27

YN
3

SN

)
from the right-hand side of (5.1), and (b) the corresponding term for the left seminal curve �−
as opposed to �+ = �. We now estimate the quantity in (a).

First, observe that (4.6), and the fact that Y0 ≤ �(1), allows us to deduce that

E

[
Y 3

N

�′(SN)SN

]
≤ E

[
Y 3

N

YN−1
√

UN

]

= E

[
(1 − √

UN)3

√
UN

]
(E[(1 − √

U1 )2])N−1
E[Y 2

0 ]
≤ 1

2 × 6−(N−1)
E[�(1)2]

= 2 × 6−(N−1),

where in the last step we used the fact that �(1) has a Rayleigh(
√

2 ) distribution; see (4.4).
Second, consider

E

[
YN

�′(SN)

]
≤ E

[
YN

�′(S1)

]

≤ E

[
YNS1

Y0
√

U1

]

≤ E

[
YN

Y0
√

U1

]

= (E[1 − √
U2 ])N−1

E

[
1 − √

U1√
U1

]
= 3−(N−1).
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The result follows by calculating the contribution from (a) and then doubling to account for the
contribution from (b).

A variation on this argument gives a geometrically decaying conditional L1 error bound
given SN, YN, and �′(SN), and their counterparts for the left seminal curve �− as opposed
to �+. However, this conditional L1 error bound is rather inelegant, since the quantities C±

n in
(3.7) depend on Sm, Ym, and �′(Sm) for m ≥ N .

We can summarize these results as follows: the 4-volume given by (2.2) can be approximated
to any desired accuracy in L1, based on the construction of initial segments of the seminal
curves {�−(s) : − 1 ≤ s ≤ 1/m−} and {�+(s) : 1/m+ ≤ s ≤ 1}, and their lower half-plane
counterparts, for suitable m±, using Theorem 3.1, Lemma 4.1, Theorem 4.1, and Theorem 5.1.

6. Conclusion

The asymptotic traffic flow in a Poissonian city has been represented as the 4-volume of a
stochastic geometric object in [7], but the object itself (an unbounded region in R

4) is somewhat
intransigent. The above work shows how to represent the volume in terms of integrals involving
the strictly monotonic continuous concave seminal curves �±, and, furthermore, establishes
approximations which supply the theory necessary to approximate and effectively simulate the
4-volume with explicit L1 error.

Work for a future occasion includes investigation of the amount of computational effort
required to achieve stage-N approximations corresponding to (3.7). This is a nontrivial task,
since account must be taken of the effort required to approximate each of the C±

n for n =
0, 1, . . . , N .

It is natural then to ask whether it might be possible to translate this work into the construction
of a perfect simulation algorithm. For example, Møller’s nearly perfect simulation algorithm
for conditionally specified models [9] (simulating to within floating point error) was improved
by Wilson to an efficient and exactly perfect simulation algorithm using multishift coupling
[12]. Certainly, Fill and Huber [6] have shown how to use dominated coupling from the past to
generate exact draws from recursive definitions of perpetuities (see also the work of Blanchet
and Sigman [4]); this is suggestive, since the system for �′(Sn) and Sn ((4.5) and (4.6)) is
a similar if more complicated recursive construction. However, in the present case, interest
lies in integral quantities derived from (4.5) and (4.6), and it is not obvious how to generate a
perfect simulation algorithm from the approximate simulation algorithm implied by the results
of Theorem 3.1, Lemma 4.1, Theorem 4.1, and Theorem 5.1. The matter of whether or not
such a perfect simulation algorithm exists is left as a significant open question for future work.
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