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LARGE MATCHINGS IN GRAPHS 

J. WEINSTEIN 

1. I n t r o d u c t i o n . How large a matching mus t a graph have? 
We consider graphs G (finite, undirected, with no loops or multiple edges), 

with order nG (always ^ 1) and mG the maximum number of edges in a ma tch
ing of G. T h e matchability \xG of G is the fraction (2m/n) of nodes covered by 
a maximum matching. For any class S of graphs we define the matchability /x5, 
the essential (or limit or large-graph) matchability JJL*S, and the class wS of 
worst-matched graphs: 

fxS is the greatest lower bound of the values fxG for G G S, with fxS = 0 if 
S is empty . 

jit*5 is the least upper bound for positive k of the values ii(Sk), where Sk 

comprises all graphs in S of order ^k. 
wS is the class of all G £ S with JJLG = fxS. 

We s tudy matchabi l i ty in the a t t e m p t to generalize [4] (which looked a t 
matching in order to s tudy critical graphs in coloring problems) . We shall 
seek a non trivial lower bound for fiG in terms of the "local s t ruc tu re" of G. 
Concerning this "local s t ruc tu re" we assume given both a uniform lower 
bound i and a uniform upper bound j for the degrees of all nodes of G (else, 
for all we know, G has very few edges, making \xG close to 0, or G has a small 
set of nodes of high degree which intercept all edges, again making JJLG close 
to 0) . We shall also use the addit ional information t h a t G is /^-connected 
(where h ^ i and "/^-connected" is taken in any of several senses, cf. § 2, 8 ) . 
Given such h, i,j, and let t ing T be the class of all graphs satisfying these 
conditions for h, i,j, we shall determine the values JJLT, IJL*T, WT: in this sense 
we shall determine jus t how the local s t ruc ture of a graph controls the ma tch-
ability. 

§ 2 gives needed preliminaries. § 3 gives some reductions of the problem. 
In § 4, our main result, 4.8, gives lower bounds for /x which are shown exact 
by the examples of § 5. In § 6 we calculate /x* for cases not a l ready resolved. 
§§ 7, 8 t rea t var ia t ions of the problems relating to the condition " t r iangle-
free" and to connectivi ty conditions. 

We gratefully acknowledge public financial suppor t received through the 
U.S. Nat ional Science Foundat ion during certain stages in the prepara t ion of 
this paper. 

2. P r e l i m i n a r i e s . 

2.1 Generalities. For any set X, \X\ is its cardinal number . For any number i, 
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LARGE MATCHINGS IN GRAPHS 1499 

i* is the least greater odd integer (= i + 1 for i even and i + 2 for i odd). 
We sometimes use a 3-vector formalism. Let U, V be any real 3-vectors. 

Then: U = (t/i, t/2, t/3), where the £/* are the coordinates oî U; U ^ V if 
and only if Uk ^ FA for each k 6 {1, 2, 3} ; [7 * F is the inner product 

tfi7i+ C/2F2+ UzVf, 

0 is the vector (0, 0, 0). 

2.2 Graphs. Let G be any graph. If nodes x and y adjoin in G, we take the 
edge joining them to be {x, y}. NG is the set of nodes of G, EG is the set of 
edges of G, nG = \NG\, eG = |£G|. dxG is the degree (number of incident 
edges) of the node x in G. Extending this notation, suppose X any set of nodes 
of G. dXG is the number of edges joining nodes of X to nodes of G not in X. 
GIX (the "restriction" of G to X, or the * 'section" subgraph "induced" by X) 
is the largest subgraph of G having X as nodes. G — X is G/(NG — X). 

A matching in G is a set of pairwise disjoint edges of G. Matchings having 
the maximum possible number mG of edges are maximum matchings. 

When the choice of the graph G either is immaterial or is clear from context 
we often omit final "G" from the notation and write N, E, n, e, dx, dX, m for 
NG,EG, etc. 

The union H^J K of graphs H, K is the graph G with NG = NH W NK 
and EG = EH \J EK. 

If X, Y are disjoint sets with union NG, and every edge of G joins a node 
of X with a node of F, G is bipartite with bipartition (X, 7) . If G has bipartition 
(X, F) and dx = i and d;y = j for each x Ç X and y (z Y, then G is (i,j)-
bipartite with (i, j)-bipartition (X, F). 

2.3 Types. In terms of any integer & we formulate several connectivity and 
degree conditions for a graph G. Each such condition holds strictly if it holds 
for k but fails for at least one of k — 1, k + 1. 

G is h-node-connected if G — X is a nontrivial connected graph whenever 
X is a set of nodes with |X| < h. G is h-edge-connected if dXG ^ h whenever 
X is a nonempty proper subset of G. G is h-odd-connected if both: dXG ^ h 
whenever X is a proper subset of G with |X| odd, and when h ^ 1 G is con
nected. Note that /^-node-connected implies /^-edge-connected, and that 
^-edge-connected implies h-odd connected. 

G is i-lower if dx ^ i for every node of G. G is j-upper if dx ^ j for every 
node of G. A pair (i, j) of integers with 0 ^ i ^ j is a degree. G is of degree 
(i,j) (or is an (i, j)-graph) if G is i-lower and j-upper. If G is of degree (i, 2*), 
G is of degree i or is i-regular. 

A triple (A, i, j ) of integers with 0 ^ / ^ ^ i ^ j i s a ty^e. A graph G is of 
type (h,i,j) (or is an (h, i,j)-graph) if G is ^-odd-connected and of degree 
(i,j). The class T(h,i,j) comprises all graphs of type (h,i,j). We write 
n(h, i,j) in place of n(T(h, hj)), and similarly for /x*, ze;. 
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3. The problem and some reductions. Our main task in this paper is to 
determine n(h,i,j), n*(h,i,j) and w(h,i,j) for all types (h,i,j). In §§7,8 
we show how to calculate /x, /x*, w for classes 5 denned by other (perhaps to the 
reader more "natural") "/^-connectivity" and u(i,j)-degree" conditions. 

Call a type (h, i,j) trivial if h = 0 or i S 1 or j ^ 2; or if i = j and i — h is 
odd. For trivial types, calculation of /x, /x*, w is either trivial or reduces easily 
to calculation for nontrivial types. Thus, it is easily shown that when i = j 
and i — his odd we have T(h, i,j) = T(h + 1, i, i). Suppose h = 0: /x(0, 0, j) 
and M*(0, 0, j ) are 0 and w(0, 0, j ) comprises all 0-graphs; for i ^ 1, /x(0, i, j ) 
and /x*(0, z, j ) are both ju(l, z,j) , and w(0, i,j) comprises all graphs each of 
whose components is in w(l, i,j). Suppose now that h = 1 and j ^ 2. Up to 
isomorphism T(l, 1,1) contains just a single graph, a complete graph on 
2 nodes. jf(l, 1, 2) comprises all paths and circuits, T(2, 2, 2) comprises all 
circuits; these two types each satisfy /x = 2/3, /x* = 1. 

The following lemmas treat the remaining trivial types, viz. types (1, l , i ) , 
j ^ 3, and aid later constructions. 

3.1 LEMMA. Every connected j-upper graph G satisfies jm + 1 ^ n. 

Proof. A connected j-upper graph G with fewest edges such that jm + 1 ^ n 
fails must be a tree with a non-end node x which adjoins exactly one non-end 
node. Delete x and all adjoining end nodes and all edges incident to x to obtain 
a j-upper tree H; since H satisfies jm + 1 ^ n so does G. 

3.2 LEMMA. For each j ^ 2 //zere are arbitrarily large j-upper trees satisfying 
jm + 1 = n. In fact, whenever 2 ^ i S j and p ^ 0 we may construct a j-upper 
tree G with bipartition (X, Y) in which: dy = j for all y G Y, dx = 1 or i for all 
x G X, m = 1 + (i — l)p, n = jm + 1. 

Proof. We construct G by induction on £. For p = 0 take G a star with 
center of degree j . Having constructed H for p we construct G for £ + 1 as 
follows. Let x be any end node of H and K a graph with no node in common 
with H and having i — 1 components, each a star with center of degree j — 1. 
Obtain G from H\J Kby adding an edge from x to each stellar center of K. 

3.3 Remark. Can "elementary" methods be used to determine n(h, i,j) for 
non-trivial (h, i,j)? In particular, we know that for appropriate k the edges 
of a j-upper graph G can be colored with k "colors" so that distinct inter
secting edges are never colored alike. Then m ^ e/k, /x ^ 2e/kn. If G is 
i-lower, 2e ^ in, so /x ^ i/&. However, even if we use Vizing's theorem and 
take k = j + 1 (see, e.g., [3, p. 248]) we find only that tx ^ i / ( j + 1), in 
general not a sharp result (except whenj = i, i even). 

4. Bounds for matchability. 

4.1 Concepts. In §§4, 5, 6 (h,i,j) is a fixed non-trivial type. G a fixed 
(&, /z,7)-graph, and Y a fixed set of nodes of G. G will usually be a graph of 
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type (h,i,j), but we do not assume this now. We now introduce concepts 
which depend on some or all of h, i,j, G, F; this dependence will not appear in 
the notation. 

Let K be any subgraph of G. K is small if nK ^ i, large if nK > i, odd if 
nK is odd, even if nK is even. A county is a component of G — F. cK is the 
number of odd counties included as subgraphs of K. rK = cK — \ Y C\ NK\. 
The quasi-join qK of K is the sum for x G NK of max(dxG, i) — dxK. Note 
that qK ^ d(NK)G, with equality if and only if all nodes of K have degree 
Tti in G; and çG = 0 if and only if G is i-lower, i.e., if and only if G is of type 
(h, i,j). The match vector MK of i£ is (nK, qK, —rK). We sometimes write 
M, r for MG, rG, etc. 

If, among subsets of NG, the choice of F makes rG largest possible, F is 
r-maximum. Y is singular if F is empty and G consists of one large odd county. 

4.2 Procedure. Observe that a matching fails to cover at least rG nodes, in 
fact at least rG odd counties. The key result on matching to be used in this 
paper is the generalized result of Tutte (see [1, pp. 179-181]): if Y is r-maxi
mum, a maximum matching fails to cover exactly rG nodes. Thus, to obtain a 
lower bound for ix it suffices to obtain an upper bound for r/n. For F singular, 
r/n = 1/n; for G nonsingular we shall establish a linear inequality A * M ^ 0, 
where A is a vector ^ 0 and dependent only on (h, i,j); when G is of type 
(h, i,j) (so that qG = 0) we then have r/n S Az/Ai. 

The following heuristics motivate the procedures and results. 

4.3 Heuristics. Which data influence r/n? Consider the match vector of a 
county K. The larger each coordinate, the more K "helps" the cause of making 
r/n small. Indeed this is true of the coordinates nK and —rK. A large qK 
helps indirectly: when G is i-lower, d(NK)G, = qK, is l'evidence" for addi
tional nodes of F, hence for smaller r and larger n. 

We shall define a vector U° which will be the "least helpful" match vector 
of an even county; U1, U2, Ud will be defined similarly for a small odd county, 
a large odd county (for nonsingular F) and a node of F, respectively. 

Suppose that G is worst-matched, of type (h, i,j). We find that each county 
K will have a very special structure, with no even counties, and with MK = U1 

(for K small) or = U2 (for K large). Further, when a small county is less help 
than a large county (or vice versa), G has only small counties (or only large 
counties). Roughly speaking, when the connectivity h is "big" (h > h0, h0 

defined in 4.4), all counties are rather well-joined to F and only their size 
has influence, so that only small counties occur; G is then a bipartite graph 
(with (i,j)-bipartition (N — Y, F)) . When the connectivity h is "small" 
(h < h0), the fact that G is i-lower forces small counties to be well-joined to Y 
but not the large counties, and thus only large counties occur (and they have 
smallest possible size, i*). When h = h0, both large and small counties can 
occur. 
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4.4 Definition of A. In order to define A so that A * M ^ 0, we first observe 
that M(G — F) = Yl (MK : K a county). Hence it suffices to define A so 
that: A * MK è 0 for each county K, and A * ( i f - M(G - F)) ^ 0. 

We next observe the following facts. Define U° = (2, 0, 0), U1 = (1, z, — 1), 
[72 = (i*,ft, - 1 ) , IP = (1, - j , 1). Then: 

(0) If K is an even county, MK è U°. 
(1) If i^ is a small odd county, MX ^ C71. 
(2) If K is a large odd county and F is nonsingular, MK ^ J/2. 
(3) M - M(G - F) è |F|C/3. 

Indeed, in the first and third vector coordinate these assertions are trivial, and 
in the second coordinate (0) is trivial. For (1), qK is the sum of nK terms, 
each at least i — {nK — 1), where 1 ^ nK ^ i; hence qK ^ i. For (2), 
NK j£ NG, so qK ^ d(NK)G ^ h. For (3), we must verify that q(G - F) -
gG g j | F | . N o w g ( G - F) - gG ^ sum for x £ N - Y of dxG - dx(G - F) ; 
this sum is dYG, Sj\ Y\. 

Hence it suffices to define A so that A * Ï7* ^ 0 for each jfe Ç {0, 1, 2, 3}. 
We first define vectors A1 ^ 0, A2 ^ 0 such that A1 * Ï/1 = A1 * J/3 = 0 = 
^42 * £/2 = A2 * £/3. For this it suffices to take A1 = (j — i, 2, j + i) , and 
^42 = (J — h> i* + 1» i*j + ^)- Finally, if we put h0 = | ( i + i ~ i*(j — 0)> 
we have A1 * U2 = 2(h — h0) = —A2 * C71, so it suffices to take 4̂ = yl1 for 
h ^ h0 and yl = A2 for h < h0. 

4.5 THEOREM. Suppose Y nonsingular. Then A * M ^ 0. 

4.6 COROLLARY (Tutte). Suppose h = i = j . Then r ^ 1. Further, if i is odd, 
ixG = 1, a ^ if i is eue» juG ^ i / (i + 1 ). 

Proof. When F is singular, rG = 1. When F is nonsingular, 4.5 yields 
— 2ir ^ 0, whence r S 0. When i is odd, w (the number of nodes of odd degree) 
must be even, whence r must be even, hence 5^0, so /x = 1. When i is even, 
the complete graph on i + 1 nodes is the unique example of a worst-matched 
singular G. 

Henceforth in §§ 4-6 we assume that h ^ j . Hence each Ak > 0. 

4.7 Remarks. When F is singular, we have n odd and *zi*f r = 1, and 
A * M ^ Ain — A3. Thus, by 4.5 the inequality A * M è 0 fails, if at all, 
only for F singular and G one of a few graphs satisfying i* ^ n (odd) < yl 3/011. 
These conditions are impossible for j ^ i + 2 or for 7 = i(odd); but possible 
(in fact with n = i*) when j = i + 1 or when j = i (even). 

When G is i-lower, we have: qG = 0, A * M = Ain — Asr; further, when 
F is r-maximum, A * M ^ 0 if and only if /* ^ 1 — (Ai/Az). 

These remarks yield the following main result. 

4.8 THEOREM. Suppose G of type (h, i,j). Then: 
(1) For3 ^ i + 2, M è 2i /( i + j ) . 
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(2) Forj = i (odd), /x ^ 1 - (A^A,). 
(3) For j = i + 1, or for j = i (even), /x = 1 — (1A*)-

4.9 Remarks. (1) The bound in 4.8 (3) is clearly exact. In § 5 we verify that 
the bounds of 4.8 (1) and (2) are exact. (2) Taking i = 2, 4.8 (1) specialises 
to the main result 3.5 of [4]. (3) When j ^ i + 2 we see that a singular graph 
G of type (ft, i,j) satisfies /x ^ 2i/(i + j) just when j = i + 2 (i even) and G 
is complete on i + 1 nodes. (4) For j = i (even), i 3 / i i is at most its value 
for h = i — 2, viz. | ( i i* + i — 2). For j = i -\- 1, Az/Ai is at most 2i + 1. 
(5) Suppose an (ft, ft, j)-graph satisfies 4̂ * ikf < 0. We must have F singular, 
and qG < ft (else M ^ £/2 and then A * M ^ 0). Suppose ft = 1. Then 
#G = 0 and G is Slower. From 4.7 and the triviality of (1, i, i) (i even), we 
must have j = i + 1. We must have w = i*: else M — U2 ^ (2, —1, 0), and 
since both A * U2 ^ 0 and 4 * (2, — 1, 0) è 0 we would have A * M ^ 0. 
When i is even, G must be complete on i + 1 nodes. Specializing to type 
(1, 2, 3): gvery connected graph of degree (2, 3) 0£ft<?r than a triangle satisfies 
fi ^ 4/5. [4, 3.6], conjectured that every such graph satisfies /x > 2/3. 

5. Examples. We have what seem to be good bounds for ju(ft, i, j) but for 
most types we do not know yet that the bound is in fact exact, nor do we know 
IJL*(h,i,j). We know that among (ft, i,j)-graphs with singular r-maximum 
only finitely many satisfy /x ^ 1 — (^4i/^43). If we seek many examples of 
equality, we must consider nonsingular Y. In § 5 we assume G of type (ft, i,j). 

5.1 Definition. Y is exact if and only if A * M = 0. G is exact if some subset 
of NG is exact. 

5.2 Remark. If Y is exact and n > Az/Ai, then Y is r-maximum and \xG = 
1 — (Ai/Az). This assertion has an easy proof but a notable effect: to con
struct examples of graphs with /x = 1 — (Ai/Az) we need only construct 
(large enough) G with a set of nodes Y satisfying certain readily verified 
structural criteria. Namely, consulting the argument in 4.4 we see that non
empty Y is exact if and only if all the following conditions hold: if ft > ft0 

there are no large counties; if ft < ft0 there are no small counties; every small 
county K satisfies nK = 1, d(NK)G = i\ every large county K satisfies 
nK = i*, d(NK)G = ft; every node of Y has degree j and adjoins no other 
node of F. 

5.3 Definition. A nontrivial type (ft, i,j) is special if ft = 1 and j S i + 1, 
provided that (ij) ^ (2, 3) and ^ ( 3 , 4). 

5.4 Preview. We shall show that, for every nontrivial type (h,i,j) with 
h 7* j \ (1) An exact graph exists. (2) Infinitely many nonisomorphic exact 
graphs exist if (ft, i,j) is not special. (3) If (ft, i,j) is special, all exact graphs 
are of order A% = i*j + 1 and satisfy | F | = 1. Indeed, for j = i (odd), all 
exact graphs are isomorphic. 
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By 5.4 (1) we see that in cases (1) and (2) of 4.8 we have M = 1 — (Ai/A3), 
and the worst-matched (h, i,j)-graphs are the exact graphs. By 5.4 (2), for 
nonspecial (h,i,j), }x*(h,i,j) = 1 — (Ai/Az). 5.4 (3) follows from 5.2. In 
§ 6 we compute fi*(h, i,j) for (h, i,j) special. 

We now verify 5.4 (1) and (2) by construction of (h, i,j) graphs G with 
exact set F. 

5.5 Construction for h ^ h0. We take G an i-node-connected bipartite graph 
with (i,j) -bipartition (N — F, F). For i = 1 there is only one possible such 
graph: a star with central node y of degree 7, with Y = {y}. For i ^ 2 and 
any positive integer p we may take NG the set of numbers (nonnegative 
integers) < (i + j)p and Y the even numbers <2ip; to describe the edges, 
write + ' for addition (mod 2ip) (so that s + ' t is the unique z with 0 ^ z < 2ip 
such that 2ip divides (s + t) — z). G has edges of the following two kinds: 

(1) {y, y +' 1 + ' 2k), y G Y and 0 S k < i; 
(2) {x, y} where x ^ 2ipy y G F and 3/ = x (mod £) . 

5.6 Construction for h < h0. Let i7 be a bipartite graph with (h, j) -bipartition 
(NH — F, F), as constructed in 5.5 for type (h,h,j). We obtain G by 
"replacing" each node x of NH — F by a copy Kx of a certain graph i£ of 
order i*. 

K has nodes {1, 2, . . . , i*}. Let T be the set {1, 2, . . . , h}. K will be a graph 
with i - 1 ^ dxK ^ j - 1 for z G T and i ^ dsi£ ^ 7 for z G iW£ - T. 
We construct the complement L of K. When h = 1 and i is odd, L has (all but 
one) components of order 2 and a star component of order 3 with center node 1. 
In all other cases, L = (L/T) KJ (L — T), where: 

(1) For h even: L/T is a 1-graph, L — T is a 0-graph. 
(2) For /& odd, i even: L is a 0-graph. 
(3) For & odd and ^ 3 , i odd: L / T is a circuit, L — T is a 1-graph. 
For each x G iVi? — F, let i ^ be an isomorph of K such that Kx has no 

node in common with H or with any Kx>, x' 9^ x. Obtain G from the union 
HIY and of the Kx (x G NH — Y) by adding for each x a set Ex of h edges 
obtained as follows. Let yix, . . . , yhx be the distinct nodes which adjoin x in H 
and let E^ comprise all edges {kx, ykx\ (I ^ k ^ h)y where kx is the node k 
in the copy Kx of K. 

The construction makes G /^-node-connected, because H is /^-node-connected 
and so is the graph K* obtained by adding to K a new node z and joining z to 
each node of T. 

6. Special types. We have now determined /*, JJL*, W for all non trivial types 
except /i* for special types (cf. 5.3, 5.4). Now assume (h,i,j) special. Only 
finitely many nonisomorphic exact graphs exist. To deal with this difficulty, 
we modify the procedure of § 4 for the vector A. We shall define a vector B 
and a constant B0 such that Bk > 0 for k G {0, 1, 2, 3} and such that the 
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inequality B * M è —B0 holds, with equality for infinitely many (1, i,j)-
graphs. We then will have n*{h, i,j) = 1 — (Bi/Bz). 

6.1 Definitions. The Bk are defined so that: 

B * (U2 - U1) = 0 = B * (U* + (j - l)Ul)]B, = -B * UK 

These conditions imply that B * U2 = -B0, B * Us = (j - 1)B0. 
It suffices to define: 

Bo = 2 ( A 0 - l ) ; ^ i = (j-2)(i- 1);B2 = ( j - 2 ) ( * * - 1); 

2?3 = i + ^*(y — ^ — j ) . 

6.2 THEOREM. Suppose Y nonsingular. Then B * M ^ — 5 0 . 

Prac/. By the statements (0)-(3) of 4.4 and the conditions of 6.1, B * M ^ 
-So(0' — 1)| y\ — c). Obtain H from G by contracting counties to single nodes 
H is connected, so nH ^ eH + 1 (with equality if and only if H is a tree). 
Now «ff è cG + | F|, off ^ £(*yG : y G F) g j | F|. Hence 

( j - l ) | F | - ^ - 1 , 

soB * M ^ - P 0 . 

6.3 Remarks. (1) In particular, taking i = j = S: all connected 3-upper 
graphs satisfy 9m + 1 ^ 2# + w; all connected 3-graphs satisfy 9m + 1 ^ 4w, 
and n*( l ,3 , 3) = 8/9. 

(2) As noted in 4.9 (5) (for A in place of B) every connected j-upper graph 
G with B * M < —B0 is i-lower of order i* (so that for i even, G is complete 
on i + 1 nodes). 

6.4 Definition. Suppose G of type (1, i,j). F is B-exact if 5 * M = —BQ. 
G is B-exact if some subset of NG is inexact. 

6.5 Remark. Analogously with 5.2 et sea., if F is 12-exact, and nG > (Bz — 
BQ)/BI then F is nonsingular and r-maximum and then /xG = 1 — ((.Si + 
(B0/nG))/Bz). Further, nonempty F is inexact if and only if all the following 
conditions hold: every small county K satisfies nK = 1, d(NK)G = i; every 
large county K satisfies nK = i*, d(NK)G = 1; every node of F has degree j 
and adjoins no other node of F; and each node y £ F is a cut node of G (or, 
equivalently, the result H of contracting counties to single nodes is a tree). 

We now wish to construct infinitely many 5-exact graphs. 

6.6 Construction. Let H be a tree (with F Ç NH) as constructed in 3.2 for 
(i,j). Obtain G by ' 'replacing" each end node x with a copy of the graph K, 
with i£ and "replacement" defined as in 5.6. 

6.7 Alternative construction. Call a connected j-upper graph G closed if G is 
i-lower, and open otherwise. Define M'G = (nG, qG> 2mG — wG) (so that 
MG = ikTG if F is r-maximum). Two graphs with the same value for A * M' 
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(or B * M') are A-equivalent (or 5-equivalent). We know that for nonspecial 
type infinitely many graphs of that type can be A -equivalent (with 
A * Mf = 0), and that for a special type infinitely many can be ^-equivalent 
(with J3 * M ' = -B0). 

PROPOSITION. (Within the type (l,i,j)) every open graph is B-equivalent 
with infinitely many open graphs and with infinitely many closed graphs. 

Proof. Consider two "graph extension relations": 
(1) H ope-extends G if G is a subgraph of H and NH — NG comprises 

exactly j distinct nodes Xi, . . . , Xj\ and for some node x0 of G with dx0G < i 
we have EH — EG comprising all pairs {xi, xk} with 0 ^ k g j , k ^ 1. 

(2) H clo-extends G if H results from G by "replacing" some node x with 
dxG — 1 by a copy of K, as in 5.6. 

Note that if H ope-extends G then H is open and H and G are ^-equivalent 
(since M'H - M'G = (j - 1) U1 + U3); and if H clo-extends G then H and 
G are ^-equivalent (since M'H — M;G = U2 — U1) and H is "more closed" 
than G: fewer nodes have degree <i in H than do in G. To obtain an open 
graph Hi and a closed graph H2 each ^-equivalent with G, take i?i any 
iterated ope-extension of G, take i J / an iterated ope-extension of Hi in which 
all nodes of degree <i have degree 1, and take H2 an appropriate closed iterated 
clo-extension of Hi. The closed graphs so obtained from the trivial graph are 
precisely the B-exact graphs. 

7. Triangle-free graphs. How are /x, M*, w affected if in §2 we add to the 
definition of T(h,i,j) the requirement that the member graphs be triangle-
free? The answer is easily determined when (h, i,j) is trivial or j ^ i' + 2 or 
h = j . Indeed (except when j — 2) the values of /x, n* are not altered at all, 
and when j ^ i + 2, w is altered only in that, for ^ even and j = i + 2, w now 
excludes complete graphs on i + 1 nodes. 

For remaining types, i.e. nontrivial types with j ^ i + 1 and & 9^ j , one 
may carry out the procedures of §§ 4-6 with the definitions of 4.1 and 4.4 
slightly modified as follows: "small" now means n ^ 2i, "large" means n > 2i, 

U* = (2Ï + l,h, - 1 ) , h0 = i(i + l -j), 

A2 = (j-h,2i + 2, (2i + l)j + h). 

The other statements of 4.1 remain in force. Theorem 4.5 remains true. Its 
proof (in 4.4) has to be modified to show that an odd county (triangle-free) K 
with i < nK < 2i satisfies qK ^ i. To show this, write s for (nK — l ) / 2 
and note that K would include a triangle if more than 5 nodes x satisfied 
dxK > s. Hence, at least 5 + 1 nodes x of K satisfy max(dxG, i) — dxK ^ 
i — s\ whence qK ^ (s + l)(i — s). Since i < nK < 2i, qK ^ i. 

When j = i + 1, A = A1 and we have A * M ^ 0 even for Y singular 
(with strict inequality with F singular and n > 2i + 1). Hence, for j = i + 1, 
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fi = 2i/(2i + 1) ; and w consists of graphs which are (i, j)-bipartite or of order 
2i + 1. When j = i, A = A2 = (i - h, 2i + 2, 2i2 + i + h). As in 5.6 we 
obtain graphs which make exact the bound ju iâ 1 — (Ai/A3), except that 
now: H is chosen of even order (so that "replacement" preserves h-odd-
connectedness), K is chosen of order 2i, NK = {1, 2, . . . , 2i\ and G is obtained 
by adding sets Ex to the disjoint union of H and of all the Kx. To describe Ex 

and EK, write s for (i — h)/2: s is a positive integer. Ex comprises all {x, kx}, 
where l ^ k ^ s o r i + l ^ k ^ i + s. EK comprises all {xky xt}y where: 
k ^ i and I > i and not both k ^ s and I = i + k. G is in general not /^-edge-
connected but is /^-odd-connected: the proof uses the fact that H, K are both 
/^-odd-connected and of even order. For /x* when j = i and (h, i,j) is special, 
i.e., is (1, i, i) with i odd and ^3—we carry out the procedure of § 6 with 

B = ((i - \)(i - 2), 2i(i - 2), i(2i2 - 3i - 1)) 

and 

Bo = 2(h0 - 1) = 2(i - 1). 

8. Variations. 

8.1 Density. Let (h, i,j) be a type. A class 5 of graphs is dense (for (h, i,j)) 
if S Ç T(h,i,j) and n*S = ii*(h,i,j). We contend that almost any non
empty "interesting" class S which one is likely to define by "^-connectivity" 
and " (i, j)-degree" conditions can in fact be verified to be dense (or sometimes 
dense for (h + 1, i,j)). Now, for any class 5 known to be dense we not only 
know n*S but also can determine juS (and then wS). The reason for this is 
that we now know (or can readily deduce) that for certain (known) numbers 
b ^ 0 and n0 > 0 every (h, i, j)-graph of order ^w0 satisfies ju ^ v*(h, i,j) — 
(b/n); and the set of (h, i, j)-graphs of order ^n0 for which equality holds is 
dense and comprises graphs of known structure. Hence, to find 11S we need 
only try to find graphs of 5 for which /x < fi*(h, i,j). When b = 0 (which is 
the case for all nontrivial nonspecial types with h 9e j) we need examine only 
the finitely many graphs of S of order <n0. Even when b > 0 it suffices to 
find but one graph G\ in S with fxGi < n*(h, i,j) and thereafter to examine 
only the finitely many other graphs of S of order < max(w0, ni)t where 
«1 = b/(v*(h,i,j) - nGi). 

To verify density of S it suffices to check that S ^ T(h, i,j) and to con
struct arbitrarily large graphs G in S with \iG "close" to n*(h, i,j). We give 
one example of such construction. 

8.2 Construction. Suppose (h,i,j) a type with i <j and f, g integers with 
2 2g / rg g ^ h. We may construct an (h, ifj)-graph G as large as desired and 
with fiG as close as desired to n*(h,i,j), and with G strictly j'-node-connected, 
strictly g-edge-connected, strictly h-odd-connected. Indeed, G can be constructed 
"almost biregular": each node but at most four will have degree i or j . 
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Further, if type T(h, i,j) is defined to comprise only triangle-free graphs, 
G can be constructed triangle-free. 

From 5.5 or 5.6, there is a large /^-node-connected (h, i,7*)-graph H0 of even 
order with nH0 "close" to n*(h, i,j). Let T be a "large enough" set of nodes 
of degree i in H0, no pair of which adjoin each other or a common third node. 
Obtain from H0 a graph Hi by adding a new node x and joining x to i nodes 
of T. Define t to be 0 if / is even and 1 if / is odd. For any integer k and set X 
and graph H write Xk for Xx{k} and Hk for the isomorph of H under the map 

[x -> (x, k) : x G NH], 

Let Gi be the union of the graphs Ho1, Ht
2, Hi\ Hi4. 

We obtain G from Gi by joining: Ho1 to Ht
2 with an "/-node-cut"; i7,2 to 

Hiz with a "g-edge-cut" ; and Hiz to ifi4 with an "/z-edge-cut". More precisely, 
let X be a set of/ new nodes not in G\. Obtain G by adding to Gi the nodes X 
and new edges as follows: join each x ^ I t o [j/2] nodes of T1 and to j — [j/2] 
nodes of T2, and join T2 to T3 with g edges and JT3 to T4 with /̂  edges, with at 
most one new edge incident with any node in any of the Tk. 

When T is large enough, G can be taken "almost biregular" by adding edges 
joining nodes within each Tk. This can be done so that: at most one node in 
each Tk does not have degree i or degree j , global connectivities are not altered, 
and triangles are not introduced. 

8.3 Full localization. One might object to our definition of T(h,i,j) for 
h > 1 on the grounds that /^-odd-connectivity is not a "local" property, i.e. 
a property of connected graphs which depends only on the connected sub
graphs of diameter less than some fixed bound D. However, given (h,i,j) 
with 1 < h < j we can find D such that all arguments and proofs of §§ 4-7 
(and values of /*, /z*, w) are valid with T(h, i,j) replaced with the larger class 
of all connected graphs G having the following local property: G is of degree 
(i,j) and every connected proper odd-order subgraph K of diameter <D 
satisfies d(NK)G ^ h. It suffices to take D so that A * (D, 1, - 1 ) > A * U2, 
i.e., so that D > Ui2 + (h — 1)A2/Ai. If we are willing to take D somewhat 
larger, we can "localize" all connectivities in the above Construction 8.2. In 
that construction we can replace each of the Hk for k 9^ 1 by fixed graphs of 
not too large order, independent of Ho1. 
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