LARGE MATCHINGS IN GRAPHS

J. WEINSTEIN

1. Introduction. How large a matching must a graph have?

We consider graphs G (finite, undirected, with no loops or multiple edges), with order $n G$ (always $\geqq 1$) and $m G$ the maximum number of edges in a matching of G. The matchability μG of G is the fraction $(2 m / n)$ of nodes covered by a maximum matching. For any class S of graphs we define the matchability μS, the essential (or limit or large-graph) matchability $\mu^{*} S$, and the class wS of worst-matched graphs:
μS is the greatest lower bound of the values μG for $G \in S$, with $\mu S=0$ if S is empty.
$\mu^{*} S$ is the least upper bound for positive k of the values $\mu\left(S_{k}\right)$, where S_{k} comprises all graphs in S of order $\geqq k$.
$w S$ is the class of all $G \in S$ with $\mu G=\mu S$.
We study matchability in the attempt to generalize [4] (which looked at matching in order to study critical graphs in coloring problems). We shall seek a nontrivial lower bound for μG in terms of the "local structure" of G. Concerning this "local structure" we assume given both a uniform lower bound i and a uniform upper bound j for the degrees of all nodes of G (else, for all we know, G has very few edges, making μG close to 0 , or G has a small set of nodes of high degree which intercept all edges, again making μG close to 0). We shall also use the additional information that G is h-connected (where $h \leqq i$ and " h-connected" is taken in any of several senses, cf. § 2, 8). Given such h, i, j, and letting T be the class of all graphs satisfying these conditions for h, i, j, we shall determine the values $\mu T, \mu^{*} T, w T$: in this sense we shall determine just how the local structure of a graph controls the matchability.
$\S 2$ gives needed preliminaries. $\S 3$ gives some reductions of the problem. In § 4, our main result, 4.8 , gives lower bounds for μ which are shown exact by the examples of $\S 5$. In § 6 we calculate μ^{*} for cases not already resolved. § 7,8 treat variations of the problems relating to the condition "trianglefree" and to connectivity conditions.

We gratefully acknowledge public financial support received through the U.S. National Science Foundation during certain stages in the preparation of this paper.

2. Preliminaries.

2.1 Generalities. For any set $X,|X|$ is its cardinal number. For any number i,
i^{*} is the least greater odd integer ($=i+1$ for i even and $i+2$ for i odd $)$.
We sometimes use a 3 -vector formalism. Let U, V be any real 3 -vectors. Then: $U=\left(U_{1}, U_{2}, U_{3}\right)$, where the U_{k} are the coordinates of $U ; U \geqq V$ if and only if $U_{k} \geqq V_{k}$ for each $k \in\{1,2,3\} ; U * V$ is the inner product

$$
U_{1} V_{1}+U_{2} V_{2}+U_{3} V_{3}
$$

O is the vector $(0,0,0)$.
2.2 Graphs. Let G be any graph. If nodes x and y adjoin in G, we take the edge joining them to be $\{x, y\} . N G$ is the set of nodes of $G, E G$ is the set of edges of $G, n G=|N G|, e G=|E G| . d x G$ is the degree (number of incident edges) of the node x in G. Extending this notation, suppose X any set of nodes of G. $d X G$ is the number of edges joining nodes of X to nodes of G not in X. G / X (the "restriction" of G to X, or the "section" subgraph "induced" by X) is the largest subgraph of G having X as nodes. $G-X$ is $G /(N G-X)$.

A matching in G is a set of pairwise disjoint edges of G. Matchings having the maximum possible number $m G$ of edges are maximum matchings.

When the choice of the graph G either is immaterial or is clear from context we of ten omit final " G " from the notation and write $N, E, n, e, d x, d X, m$ for $N G, E G$, etc.

The union $H \cup K$ of graphs H, K is the graph G with $N G=N H \cup N K$ and $E G=E H \cup E K$.

If X, Y are disjoint sets with union $N G$, and every edge of G joins a node of X with a node of Y, G is bipartite with bipartition (X, Y). If G has bipartition (X, Y) and $d x=i$ and $d y=j$ for each $x \in X$ and $y \in Y$, then G is (i, j) bipartite with (i, j)-bipartition (X, Y).
2.3 Types. In terms of any integer k we formulate several connectivity and degree conditions for a graph G. Each such condition holds strictly if it holds for k but fails for at least one of $k-1, k+1$.
G is h-node-connected if $G-X$ is a nontrivial connected graph whenever X is a set of nodes with $|X|<h . G$ is h-edge-connected if $d X G \geqq h$ whenever X is a nonempty proper subset of G. G is h-odd-connected if both: $d X G \geqq h$ whenever X is a proper subset of G with $|X|$ odd, and when $h \geqq 1 G$ is connected. Note that h-node-connected implies h-edge-connected, and that h-edge-connected implies h-odd connected.
G is i-lower if $d x \geqq i$ for every node of G. G is j-upper if $d x \leqq j$ for every node of G. A pair (i, j) of integers with $0 \leqq i \leqq j$ is a degree. G is of degree (i, j) (or is an (i, j)-graph) if G is i-lower and j-upper. If G is of degree (i, i), G is of degree i or is i-regular.

A triple (h, i, j) of integers with $0 \leqq h \leqq i \leqq j$ is a type. A graph G is of type (h, i, j) (or is an (h, i, j)-graph) if G is h-odd-connected and of degree (i, j). The class $T(h, i, j)$ comprises all graphs of type (h, i, j). We write $\mu(h, i, j)$ in place of $\mu(T(h, i, j))$, and similarly for μ^{*}, w.
3. The problem and some reductions. Our main task in this paper is to determine $\mu(h, i, j), \mu^{*}(h, i, j)$ and $w(h, i, j)$ for all types (h, i, j). In $\S \S 7,8$ we show how to calculate μ, μ^{*}, w for classes S defined by other (perhaps to the reader more "natural") " h-connectivity" and " (i, j)-degree" conditions.

Call a type (h, i, j) trivial if $h=0$ or $i \leqq 1$ or $j \leqq 2$; or if $i=j$ and $i-h$ is odd. For trivial types, calculation of μ, μ^{*}, w is either trivial or reduces easily to calculation for nontrivial types. Thus, it is easily shown that when $i=j$ and $i-h$ is odd we have $T(h, i, j)=T(h+1, i, i)$. Suppose $h=0: \mu(0,0, j)$ and $\mu^{*}(0,0, j)$ are 0 and $w(0,0, j)$ comprises all 0 -graphs; for $i \geqq 1, \mu(0, i, j)$ and $\mu^{*}(0, i, j)$ are both $\mu(1, i, j)$, and $w(0, i, j)$ comprises all graphs each of whose components is in $w(1, i, j)$. Suppose now that $h=1$ and $j \leqq 2$. Up to isomorphism $T(1,1,1)$ contains just a single graph, a complete graph on 2 nodes. $T(1,1,2)$ comprises all paths and circuits, $T(2,2,2)$ comprises all circuits; these two types each satisfy $\mu=2 / 3, \mu^{*}=1$.

The following lemmas treat the remaining trivial types, viz. types $(1,1, j)$, $j \geqq 3$, and aid later constructions.
3.1 Lemma. Every connected j-upper graph G satisfies $j m+1 \geqq n$.

Proof. A connected j-upper graph G with fewest edges such that $j m+1 \geqq n$ fails must be a tree with a non-end node x which adjoins exactly one non-end node. Delete x and all adjoining end nodes and all edges incident to x to obtain a j-upper tree H; since H satisfies $j m+1 \geqq n$ so does G.
3.2 Lemma. For each $j \geqq 2$ there are arbitrarily large j-upper trees satisfying $j m+1=n$. In fact, whenever $2 \leqq i \leqq j$ and $p \geqq 0$ we may construct a j-upper tree G with bipartition (X, Y) in which: $d y=j$ for all $y \in Y, d x=1$ or i for all $x \in X, m=1+(i-1) p, n=j m+1$.

Proof. We construct G by induction on p. For $p=0$ take G a star with center of degree j. Having constructed H for p we construct G for $p+1$ as follows. Let x be any end node of H and K a graph with no node in common with H and having $i-1$ components, each a star with center of degree $j-1$. Obtain G from $H \cup K$ by adding an edge from x to each stellar center of K.
3.3 Remark. Can "elementary" methods be used to determine $\mu(h, i, j)$ for non-trivial (h, i, j)? In particular, we know that for appropriate k the edges of a j-upper graph G can be colored with k "colors" so that distinct intersecting edges are never colored alike. Then $m \geqq e / k, \mu \geqq 2 e / k n$. If G is i-lower, $2 e \geqq i n$, so $\mu \geqq i / k$. However, even if we use Vizing's theorem and take $k=j+1$ (see, e.g., [3, p. 248]) we find only that $\mu \geqq i /(j+1)$, in general not a sharp result (except when $j=i, i$ even).

4. Bounds for matchability.

4.1 Concepts. In $\S \$ 4,5,6(h, i, j)$ is a fixed non-trivial type. G a fixed (h, h, j)-graph, and Y a fixed set of nodes of G. G will usually be a graph of
type (h, i, j), but we do not assume this now. We now introduce concepts which depend on some or all of h, i, j, G, Y; this dependence will not appear in the notation.

Let K be any subgraph of G. K is small if $n K \leqq i$, large if $n K>i$, odd if $n K$ is odd, even if $n K$ is even. A county is a component of $G-Y$. $c K$ is the number of odd counties included as subgraphs of $K . r K=c K-|Y \cap N K|$. The quasi-join $q K$ of K is the sum for $x \in N K$ of $\max (d x G, i)-d x K$. Note that $q K \geqq d(N K) G$, with equality if and only if all nodes of K have degree $\geqq i$ in G; and $q G=0$ if and only if G is i-lower, i.e., if and only if G is of type (h, i, j). The match vector $M K$ of K is $(n K, q K,-r K)$. We sometimes write M, r for $M G, r G$, etc.

If, among subsets of $N G$, the choice of Y makes $r G$ largest possible, Y is r-maximum. Y is singular if Y is empty and G consists of one large odd county.
4.2 Procedure. Observe that a matching fails to cover at least $r G$ nodes, in fact at least $r G$ odd counties. The key result on matching to be used in this paper is the generalized result of Tutte (see [1, pp. 179-181]): if Y is r-maximum, a maximum matching fails to cover exactly $r G$ nodes. Thus, to obtain a lower bound for μ it suffices to obtain an upper bound for r / n. For Y singular, $r / n=1 / n$; for G nonsingular we shall establish a linear inequality $A * M \geqq 0$, where A is a vector $\geqq O$ and dependent only on (h, i, j); when G is of type (h, i, j) (so that $q G=0$) we then have $r / n \leqq A_{3} / A_{1}$.

The following heuristics motivate the procedures and results.
4.3 Heuristics. Which data influence r / n ? Consider the match vector of a county K. The larger each coordinate, the more K "helps" the cause of making r / n small. Indeed this is true of the coordinates $n K$ and $-r K$. A large $q K$ helps indirectly: when G is i-lower, $d(N K) G$, $=q K$, is "evidence" for additional nodes of Y, hence for smaller r and larger n.

We shall define a vector U^{0} which will be the "least helpful" match vector of an even county; U^{1}, U^{2}, U^{3} will be defined similarly for a small odd county, a large odd county (for nonsingular Y) and a node of Y, respectively.

Suppose that G is worst-matched, of type (h, i, j). We find that each county K will have a very special structure, with no even counties, and with $M K=U^{1}$ (for K small) or $=U^{2}$ (for K large). Further, when a small county is less help than a large county (or vice versa), G has only small counties (or only large counties). Roughly speaking, when the connectivity h is "big" ($h>h_{0}, h_{0}$ defined in 4.4), all counties are rather well-joined to Y and only their size has influence, so that only small counties occur; G is then a bipartite graph (with (i, j)-bipartition $(N-Y, Y)$). When the connectivity h is "small" ($h<h_{0}$), the fact that G is i-lower forces small counties to be well-joined to Y but not the large counties, and thus only large counties occur (and they have smallest possible size, i^{*}). When $h=h_{0}$, both large and small counties can occur.
4.4 Definition of A. In order to define A so that $A * M \geqq 0$, we first observe that $M(G-Y)=\sum(M K: K$ a county $)$. Hence it suffices to define A so that: $A * M K \geqq 0$ for each county K, and $A *(M-M(G-Y)) \geqq 0$.

We next observe the following facts. Define $U^{0}=(2,0,0), U^{1}=(1, i,-1)$, $U^{2}=\left(i^{*}, h,-1\right), U^{3}=(1,-j, 1)$. Then:
(0) If K is an even county, $M K \geqq U^{0}$.
(1) If K is a small odd county, $M K \geqq U^{1}$.
(2) If K is a large odd county and Y is nonsingular, $M K \geqq U^{2}$.
(3) $M-M(G-Y) \geqq|Y| U^{3}$.

Indeed, in the first and third vector coordinate these assertions are trivial, and in the second coordinate (0) is trivial. For (1), $q K$ is the sum of $n K$ terms, each at least $i-(n K-1)$, where $1 \leqq n K \leqq i$; hence $q K \geqq i$. For (2), $N K \neq N G$, so $q K \geqq d(N K) G \geqq h$. For (3), we must verify that $q(G-Y)-$ $q G \leqq j|Y|$. Now $q(G-Y)-q G \leqq \operatorname{sum}$ for $x \in N-Y$ of $d x G-d x(G-Y)$; this sum is $d Y G, \leqq j|Y|$.

Hence it suffices to define A so that $A * U^{k} \geqq 0$ for each $k \in\{0,1,2,3\}$. We first define vectors $A^{1} \geqq O, A^{2} \geqq O$ such that $A^{1} * U^{1}=A^{1} * U^{3}=0=$ $A^{2} * U^{2}=A^{2} * U^{3}$. For this it suffices to take $A^{1}=(j-i, 2, j+i)$, and $A^{2}=\left(j-h, i^{*}+1, i^{*} j+h\right)$. Finally, if we put $h_{0}=\frac{1}{2}\left(j+i-i^{*}(j-i)\right)$, we have $A^{1} * U^{2}=2\left(h-h_{0}\right)=-A^{2} * U^{1}$, so it suffices to take $A=A^{1}$ for $h \geqq h_{0}$ and $A=A^{2}$ for $h<h_{0}$.
4.5 Theorem. Suppose Y nonsingular. Then $A * M \geqq 0$.
4.6 Corollary (Tutte). Suppose $h=i=j$. Then $r \leqq 1$. Further, if i is odd, $\mu G=1$, and if i is even $\mu G \geqq i /(i+1)$.

Proof. When Y is singular, $r G=1$. When Y is nonsingular, 4.5 yields -2 ir $\geqq 0$, whence $r \leqq 0$. When i is odd, n (the number of nodes of odd degree) must be even, whence r must be even, hence $\leqq 0$, so $\mu=1$. When i is even, the complete graph on $i+1$ nodes is the unique example of a worst-matched singular G.

Henceforth in §§ 4-6 we assume that $h \neq j$. Hence each $A_{k}>0$.
4.7 Remarks. When Y is singular, we have n odd and $\geqq i^{*}, r=1$, and $A * M \geqq A_{1} n-A_{3}$. Thus, by 4.5 the inequality $A * M \geqq 0$ fails, if at all, only for Y singular and G one of a few graphs satisfying $i^{*} \leqq n$ (odd) $<A_{3} / A_{1}$. These conditions are impossible for $j \geqq i+2$ or for $j=i$ (odd); but possible (in fact with $n=i^{*}$) when $j=i+1$ or when $j=i$ (even).

When G is i-lower, we have: $q G=0, A * M=A_{1} n-A_{3} r$; further, when Y is r-maximum, $A * M \geqq 0$ if and only if $\mu \geqq 1-\left(A_{1} / A_{3}\right)$.

These remarks yield the following main result.
4.8 Theorem. Suppose G of type (h, i, j). Then:
(1) For $j \geqq i+2, \mu \geqq 2 i /(i+j)$.
(2) For $j=i(o d d), \mu \geqq 1-\left(A_{1} / A_{3}\right)$.
(3) For $j=i+1$, or for $j=i$ (even), $\mu \geqq 1-\left(1 / i^{*}\right)$.
4.9 Remarks. (1) The bound in 4.8 (3) is clearly exact. In § 5 we verify that the bounds of 4.8 (1) and (2) are exact. (2) Taking $i=2,4.8$ (1) specialises to the main result 3.5 of [4]. (3) When $j \geqq i+2$ we see that a singular graph G of type (h, i, j) satisfies $\mu \leqq 2 i /(i+j)$ just when $j=i+2$ (i even) and G is complete on $i+1$ nodes. (4) For $j=i$ (even), A_{3} / A_{1} is at most its value for $h=i-2$, viz. $\frac{1}{2}\left(i i^{*}+i-2\right)$. For $j=i+1, A_{3} / A_{1}$ is at most $2 i+1$. (5) Suppose an (h, h, j)-graph satisfies $A * M<0$. We must have Y singular, and $q G<h$ (else $M \geqq U^{2}$ and then $A * M \geqq 0$). Suppose $h=1$. Then $q G=0$ and G is i-lower. From 4.7 and the triviality of ($1, i, i$) (i even), we must have $j=i+1$. We must have $n=i^{*}$: else $M-U^{2} \geqq(2,-1,0)$, and since both $A * U^{2} \geqq 0$ and $A *(2,-1,0) \geqq 0$ we would have $A * M \geqq 0$. When i is even, G must be complete on $i+1$ nodes. Specializing to type $(1,2,3)$: every connected graph of degree $(2,3)$ other than a triangle satisfies $\mu \geqq 4 / 5$. [4, 3.6], conjectured that every such graph satisfies $\mu>2 / 3$.
5. Examples. We have what seem to be good bounds for $\mu(h, i, j)$ but for most types we do not know yet that the bound is in fact exact, nor do we know $\mu^{*}(h, i, j)$. We know that among (h, i, j)-graphs with singular r-maximum only finitely many satisfy $\mu \leqq 1-\left(A_{1} / A_{3}\right)$. If we seek many examples of equality, we must consider nonsingular Y. In $\S 5$ we assume G of type (h, i, j).
5.1 Definition. Y is exact if and only if $A * M=0 . G$ is exact if some subset of $N G$ is exact.
5. 2 Remark. If Y is exact and $n>A_{3} / A_{1}$, then Y is r-maximum and $\mu G=$ $1-\left(A_{1} / A_{3}\right)$. This assertion has an easy proof but a notable effect: to construct examples of graphs with $\mu=1-\left(A_{1} / A_{3}\right)$ we need only construct (large enough) G with a set of nodes Y satisfying certain readily verified structural criteria. Namely, consulting the argument in 4.4 we see that nonempty Y is exact if and only if all the following conditions hold: if $h>h_{0}$ there are no large counties; if $h<h_{0}$ there are no small counties; every small county K satisfies $n K=1, d(N K) G=i$; every large county K satisfies $n K=i^{*}, d(N K) G=h$; every node of Y has degree j and adjoins no other node of Y.
5.3 Definition. A nontrivial type (h, i, j) is special if $h=1$ and $j \leqq i+1$, provided that $(i, j) \neq(2,3)$ and $\neq(3,4)$.
5.4 Preview. We shall show that, for every nontrivial type (h, i, j) with $h \neq j$; (1) An exact graph exists. (2) Infinitely many nonisomorphic exact graphs exist if (h, i, j) is not special. (3) If (h, i, j) is special, all exact graphs are of order $A_{3}=i^{*} j+1$ and satisfy $|Y|=1$. Indeed, for $j=i$ (odd), all exact graphs are isomorphic.

By 5.4 (1) we see that in cases (1) and (2) of 4.8 we have $\mu=1-\left(A_{1} / A_{3}\right)$, and the worst-matched (h, i, j)-graphs are the exact graphs. By 5.4 (2), for nonspecial $(h, i, j), \mu^{*}(h, i, j)=1-\left(A_{1} / A_{3}\right) .5 .4$ (3) follows from 5.2. In § 6 we compute $\mu^{*}(h, i, j)$ for (h, i, j) special.

We now verify 5.4 (1) and (2) by construction of (h, i, j) graphs G with exact set Y.
5.5 Construction for $h \geqq h_{0}$. We take G an i-node-connected bipartite graph with (i, j)-bipartition $(N-Y, Y)$. For $i=1$ there is only one possible such graph: a star with central node y of degree j, with $Y=\{y\}$. For $i \geqq 2$ and any positive integer p we may take $N G$ the set of numbers (nonnegative integers) $<(i+j) p$ and Y the even numbers $<2 i p$; to describe the edges, write $+^{\prime}$ for addition $(\bmod 2 i p)$ (so that $s+^{\prime} t$ is the unique z with $0 \leqq z<2 i p$ such that $2 i p$ divides $(s+t)-z) . G$ has edges of the following two kinds:
(1) $\left\{y, y+^{\prime} 1+^{\prime} 2 k\right\}, y \in Y$ and $0 \leqq k<i$;
(2) $\{x, y\}$ where $x \geqq 2 i p, y \in Y$ and $y \equiv x(\bmod p)$.
5.6 Construction for $h<h_{0}$. Let H be a bipartite graph with (h, j)-bipartition ($N H-Y, Y$), as constructed in 5.5 for type (h, h, j). We obtain G by "replacing" each node x of $N H-Y$ by a copy K_{x} of a certain graph K of order i^{*}.
K has nodes $\left\{1,2, \ldots, i^{*}\right\}$. Let T be the set $\{1,2, \ldots, h\}$. K will be a graph with $i-1 \leqq d x K \leqq j-1$ for $z \in T$ and $i \leqq d z K \leqq j$ for $z \in N K-T$. We construct the complement L of K. When $h=1$ and i is odd, L has (all but one) components of order 2 and a star component of order 3 with center node 1. In all other cases, $L=(L / T) \cup(L-T)$, where:
(1) For h even: L / T is a 1 -graph, $L-T$ is a 0 -graph.
(2) For h odd, i even: L is a 0 -graph.
(3) For h odd and $\geqq 3, i$ odd: L / T is a circuit, $L-T$ is a 1 -graph.

For each $x \in N H-Y$, let K_{x} be an isomorph of K such that K_{x} has no node in common with H or with any $K_{x^{\prime}}, x^{\prime} \neq x$. Obtain G from the union H / Y and of the $K_{x}(x \in N H-Y)$ by adding for each x a set E_{x} of h edges obtained as follows. Let $y_{1 x}, \ldots, y_{h x}$ be the distinct nodes which adjoin x in H and let E_{x} comprise all edges $\left\{k_{x}, y_{k x}\right\}(1 \leqq k \leqq h)$, where k_{x} is the node k in the copy K_{x} of K.

The construction makes G-node-connected, because H is h-node-connected and so is the graph K^{*} obtained by adding to K a new node z and joining z to each node of T.
6. Special types. We have now determined μ, μ^{*}, w for all nontrivial types except μ^{*} for special types (cf. $5.3,5.4$). Now assume (h, i, j) special. Only finitely many nonisomorphic exact graphs exist. To deal with this difficulty, we modify the procedure of $\S 4$ for the vector A. We shall define a vector B and a constant B_{0} such that $B_{k}>0$ for $k \in\{0,1,2,3\}$ and such that the
inequality $B * M \geqq-B_{0}$ holds, with equality for infinitely many ($1, i, j$)graphs. We then will have $\mu^{*}(h, i, j)=1-\left(B_{1} / B_{3}\right)$.
6.1 Definitions. The B_{k} are defined so that:

$$
B *\left(U^{2}-U^{1}\right)=0=B *\left(U^{3}+(j-1) U^{1}\right) ; B_{0}=-B * U^{1}
$$

These conditions imply that $B * U^{2}=-B_{0}, B * U^{3}=(j-1) B_{0}$.
It suffices to define:

$$
\begin{aligned}
& B_{0}=2\left(h_{0}-1\right) ; B_{1}=(j-2)(i-1) ; B_{2}=(j-2)\left(i^{*}-1\right) ; \\
& B_{3}=i+i^{*}(i j-i-j) .
\end{aligned}
$$

6.2 Theorem. Suppose Y nonsingular. Then $B * M \geqq-B_{0}$.

Proof. By the statements (0)-(3) of 4.4 and the conditions of $6.1, B * M \geqq$ $B_{0}((j-1)|Y|-c)$. Obtain H from G by contracting counties to single nodes H is connected, so $n H \leqq e H+1$ (with equality if and only if H is a tree). Now $n H \geqq c G+|Y|, e H \leqq \sum(d y G: y \in Y) \leqq j|Y|$. Hence

$$
(j-1)|Y|-c \geqq-1
$$

so $B * M \geqq-B_{0}$.
6.3 Remarks. (1) In particular, taking $i=j=3$: all connected 3 -upper graphs satisfy $9 m+1 \geqq 2 e+n$; all connected 3-graphs satisfy $9 m+1 \geqq 4 n$, and $\mu^{*}(1,3,3)=8 / 9$.
(2) As noted in 4.9 (5) (for A in place of B) every connected j-upper graph G with $B * M<-B_{0}$ is i-lower of order i^{*} (so that for i even, G is complete on $i+1$ nodes).
6.4 Definition. Suppose G of type $(1, i, j) . Y$ is B-exact if $B * M=-B_{0}$. G is B-exact if some subset of $N G$ is B-exact.
6.5 Remark. Analogously with 5.2 et seq., if Y is B-exact, and $n G>\left(B_{3}-\right.$ $\left.B_{0}\right) / B_{1}$ then Y is nonsingular and r-maximum and then $\mu G=1-\left(\left(B_{1}+\right.\right.$ $\left.\left(B_{0} / n G\right)\right) / B_{3}$. Further, nonempty Y is B-exact if and only if all the following conditions hold: every small county K satisfies $n K=1, d(N K) G=i$; every large county K satisfies $n K=i^{*}, d(N K) G=1$; every node of Y has degree j and adjoins no other node of Y; and each node $y \in Y$ is a cut node of G (or, equivalently, the result H of contracting counties to single nodes is a tree).

We now wish to construct infinitely many B-exact graphs.
6.6 Construction. Let H be a tree (with $Y \subseteq N H$) as constructed in 3.2 for (i, j). Obtain G by "replacing" each end node x with a copy of the graph K, with K and "replacement" defined as in 5.6.
6.7 Alternative construction. Call a connected j-upper graph G closed if G is i-lower, and open otherwise. Define $M^{\prime} G=(n G, q G, 2 m G-n G)$ (so that $M G=M^{\prime} G$ if Y is r-maximum). Two graphs with the same value for $A * M^{\prime}$
(or $B * M^{\prime}$) are A-equivalent (or B-equivalent). We know that for nonspecial type infinitely many graphs of that type can be A-equivalent (with $A * M^{\prime}=0$), and that for a special type infinitely many can be B-equivalent (with $B * M^{\prime}=-B_{0}$).

Proposition. (Within the type $(1, i, j)$) every open graph is B-equivalent with infinitely many open graphs and with infinitely many closed graphs.

Proof. Consider two "graph extension relations":
(1) H ope-extends G if G is a subgraph of H and $N H-N G$ comprises exactly j distinct nodes x_{1}, \ldots, x_{j}; and for some node x_{0} of G with $d x_{0} G<i$ we have $E H-E G$ comprising all pairs $\left\{x_{1}, x_{k}\right\}$ with $0 \leqq k \leqq j, k \neq 1$.
(2) H clo-extends G if H results from G by "replacing" some node x with $d x G=1$ by a copy of K, as in 5.6.

Note that if H ope-extends G then H is open and H and G are B-equivalent (since $M^{\prime} H-M^{\prime} G=(j-1) U^{1}+U^{3}$); and if H clo-extends G then H and G are B-equivalent (since $M^{\prime} H-M^{\prime} G=U^{2}-U^{1}$) and H is "more closed" than G : fewer nodes have degree $<i$ in H than do in G. To obtain an open graph H_{1} and a closed graph H_{2} each B-equivalent with G, take H_{1} any iterated ope-extension of G, take $H_{1}{ }^{\prime}$ an iterated ope-extension of H_{1} in which all nodes of degree $<i$ have degree 1 , and take H_{2} an appropriate closed iterated clo-extension of H_{1}. The closed graphs so obtained from the trivial graph are precisely the B-exact graphs.
7. Triangle-free graphs. How are μ, μ^{*}, w affected if in $\S 2$ we add to the definition of $T(h, i, j)$ the requirement that the member graphs be trianglefree? The answer is easily determined when (h, i, j) is trivial or $j \geqq i+2$ or $h=j$. Indeed (except when $j=2$) the values of μ, μ^{*} are not altered at all, and when $j \geqq i+2$, w is altered only in that, for i even and $j=i+2$, wnow excludes complete graphs on $i+1$ nodes.

For remaining types, i.e. nontrivial types with $j \leqq i+1$ and $h \neq j$, one may carry out the procedures of $\S \S 4-6$ with the definitions of 4.1 and 4.4 slightly modified as follows: "small" now means $n \leqq 2 i$, "large"' means $n>2 i$,

$$
\begin{aligned}
U^{2} & =(2 i+1, h,-1), \quad h_{0}=i(i+1-j), \\
A^{2} & =(j-h, 2 i+2,(2 i+1) j+h)
\end{aligned}
$$

The other statements of 4.1 remain in force. Theorem 4.5 remains true. Its proof (in 4.4) has to be modified to show that an odd county (triangle-free) K with $i<n K<2 i$ satisfies $q K \geqq i$. To show this, write s for $(n K-1) / 2$ and note that K would include a triangle if more than s nodes x satisfied $d x K>s$. Hence, at least $s+1$ nodes x of K satisfy $\max (d x G, i)-d x K \geqq$ $i-s$; whence $q K \geqq(s+1)(i-s)$. Since $i<n K<2 i, q K \geqq i$.

When $j=i+1, A=A^{1}$ and we have $A * M \geqq 0$ even for Y singular (with strict inequality with Y singular and $n>2 i+1$). Hence, for $j=i+1$,
$\mu=2 i /(2 i+1)$; and w consists of graphs which are (i, j)-bipartite or of order $2 i+1$. When $j=i, A=A^{2}=\left(i-h, 2 i+2,2 i^{2}+i+h\right)$. As in 5.6 we obtain graphs which make exact the bound $\mu \geqq 1-\left(A_{1} / A_{3}\right)$, except that now: H is chosen of even order (so that "replacement" preserves h-oddconnectedness), K is chosen of order $2 i, N K=\{1,2, \ldots, 2 i\}$ and G is obtained by adding sets E_{x} to the disjoint union of H and of all the K_{x}. To describe E_{x} and $E K$, write s for $(i-h) / 2: s$ is a positive integer. E_{x} comprises all $\left\{x, k_{x}\right\}$, where $1 \leqq k \leqq s$ or $i+1 \leqq k \leqq i+s$. $E K$ comprises all $\left\{x_{k}, x_{i}\right\}$, where: $k \leqq i$ and $l>i$ and not both $k \leqq s$ and $l=i+k . G$ is in general not h-edgeconnected but is h-odd-connected: the proof uses the fact that H, K are both h-odd-connected and of even order. For μ^{*} when $j=i$ and (h, i, j) is special, i.e., is ($1, i, i$) with i odd and $\geqq 3$-we carry out the procedure of $\S 6$ with

$$
B=\left((i-1)(i-2), 2 i(i-2), i\left(2 i^{2}-3 i-1\right)\right)
$$

and

$$
B_{0}=2\left(h_{0}-1\right)=2(i-1) .
$$

8. Variations.

8.1 Density. Let (h, i, j) be a type. A class S of graphs is dense (for (h, i, j)) if $S \subseteq T(h, i, j)$ and $\mu^{*} S=\mu^{*}(h, i, j)$. We contend that almost any nonempty "interesting" class S which one is likely to define by " h-connectivity" and " (i, j)-degree" conditions can in fact be verified to be dense (or sometimes dense for ($h+1, i, j)$). Now, for any class S known to be dense we not only know $\mu^{*} S$ but also can determine μS (and then $w S$). The reason for this is that we now know (or can readily deduce) that for certain (known) numbers $b \geqq 0$ and $n_{0}>0$ every (h, i, j)-graph of order $\geqq n_{0}$ satisfies $\mu \geqq \mu^{*}(h, i, j)$ (b / n); and the set of (h, i, j)-graphs of order $\geqq n_{0}$ for which equality holds is dense and comprises graphs of known structure. Hence, to find μS we need only try to find graphs of S for which $\mu<\mu^{*}(h, i, j)$. When $b=0$ (which is the case for all nontrivial nonspecial types with $h \neq j$) we need examine only the finitely many graphs of S of order $<n_{0}$. Even when $b>0$ it suffices to find but one graph G_{1} in S with $\mu G_{1}<\mu^{*}(h, i, j)$ and thereafter to examine only the finitely many other graphs of S of order $<\max \left(n_{0}, n_{1}\right)$, where $n_{1}=b /\left(\mu^{*}(h, i, j)-\mu G_{1}\right)$.

To verify density of S it suffices to check that $S \subseteq T(h, i, j)$ and to construct arbitrarily large graphs G in S with μG "close" to $\mu^{*}(h, i, j)$. We give one example of such construction.
8.2 Construction. Suppose (h, i, j) a type with $i<j$ and f, g integers with $2 \leqq f \leqq g \leqq h$. We may construct an (h, i, j)-graph G as large as desired and with μG as close as desired to $\mu^{*}(h, i, j)$, and with G strictly f-node-connected, strictly g-edge-connected, strictly h-odd-connected. Indeed, G can be constructed "almost biregular": each node but at most four will have degree i or j.

Further, if type $T(h, i, j)$ is defined to comprise only triangle-free graphs, G can be constructed triangle-free.

From 5.5 or 5.6, there is a large h-node-connected (h, i, j)-graph H_{0} of even order with μH_{0} "close" to $\mu^{*}(h, i, j)$. Let T be a "large enough" set of nodes of degree i in H_{0}, no pair of which adjoin each other or a common third node. Obtain from H_{0} a graph H_{1} by adding a new node x and joining x to i nodes of T. Define t to be 0 if f is even and 1 if f is odd. For any integer k and set X and graph H write X^{k} for $X x\{k\}$ and H^{k} for the isomorph of H under the map

$$
[x \rightarrow(x, k): x \in N H] .
$$

Let G_{1} be the union of the graphs $H_{0}{ }^{1}, H_{t}{ }^{2}, H_{1}{ }^{3}, H_{1}{ }^{4}$.
We obtain G from G_{1} by joining: $H_{0}{ }^{1}$ to $H_{t}{ }^{2}$ with an " f-node-cut"; $H_{t}{ }^{2}$ to $H_{1}{ }^{3}$ with a " g-edge-cut"; and $H_{1}{ }^{3}$ to $H_{1}{ }^{4}$ with an " h-edge-cut". More precisely, let X be a set of f new nodes not in G_{1}. Obtain G by adding to G_{1} the nodes X and new edges as follows: join each $x \in X$ to [$j / 2]$ nodes of T^{1} and to $j-[j / 2]$ nodes of T^{2}, and join T^{2} to T^{3} with g edges and T^{3} to T^{4} with h edges, with at most one new edge incident with any node in any of the T^{k}.

When T is large enough, G can be taken "almost biregular" by adding edges joining nodes within each T^{k}. This can be done so that: at most one node in each T^{k} does not have degree i or degree j, global connectivities are not altered, and triangles are not introduced.
8.3 Full localization. One might object to our definition of $T(h, i, j)$ for $h>1$ on the grounds that h-odd-connectivity is not a "local" property, i.e. a property of connected graphs which depends only on the connected subgraphs of diameter less than some fixed bound D. However, given (h, i, j) with $1<h<j$ we can find D such that all arguments and proofs of $\S \S 4-7$ (and values of $\left.\mu, \mu^{*}, w\right)$ are valid with $T(h, i, j)$ replaced with the larger class of all connected graphs G having the following local property: G is of degree (i, j) and every connected proper odd-order subgraph K of diameter $<D$ satisfies $d(N K) G \geqq h$. It suffices to take D so that $A *(D, 1,-1)>A * U^{2}$, i.e., so that $D>U_{1}{ }^{2}+(h-1) A_{2} / A_{1}$. If we are willing to take D somewhat larger, we can "localize" all connectivities in the above Construction 8.2. In that construction we can replace each of the H^{k} for $k \neq 1$ by fixed graphs of not too large order, independent of $H_{0}{ }^{1}$.

References

1. C. Berge, The theory of graphs and its applications (Methuen, London, 1962 ; reprinted 1966).
2. J. Moon, On independent complete subgraphs in a graph, Can. J. Math. 20 (1968), 95-102.
3. O. Ore, The four-color problem (Academic Press, New York-London, 1967).
4. J. Weinstein, On the number of disjoint edges in a graph, Can. J. Math. 15 (1963), 106-111.

St. Mary's College of Maryland,
St. Mary's City, Maryland

