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Abstract. We investigate the dispersion property of a low-frequency electrostatic
wave in a dense metallic electron-hole-ion plasma with nanoparticles. The latter are
charged due to the field emission, and hence the metallic nanoparticles/nanotubes
can be regarded as charged dust rods surrounded by degenerate electrons and
holes, and non-degenerate ions. By using a quantum hydrodynamic model for the
electrons and holes, we obtain the electron and hole number density perturbations,
while the ion and dust rod number density perturbations follow the classical expres-
sions. A dispersion relation for the low-frequency electrostatic wave in our multi-
species dense metallic plasma is derived and analyzed. The possibility of exciting
non-thermal electrostatic waves is also discussed.

Carbon nanotubes [1] were discovered around 18 years ago. Since then there have
been a great deal of experimental [2, 3] and theoretical [4, 5, 7–10] investigations
of localized collective electronic excitations (plasmon modes) in single- and multi-
walled carbon nanotubes (CNTs). The knowledge of dispersion properties of nu-
merous plasmonic modes is essential for determining the parameters that control
electronic structures of CNTs.
The CNTs can be metallic or semiconducting depending on their radius and the

geometric angles. When CNTs are held in plasmas, one encounters charging of CNTs
due to the electric field emission [11, 12]. Henceforth, CNTs in a dense metallic
plasma can be regarded as an ensemble of charged nanoparticles surrounded by
degenerate electrons and holes, as well as non-degenerate ions. Collective inter-
actions between the plasma and charged nanoparticles can give rise to new wave
modes in a multi-species dense metallic plasma.
In this letter, we report on the existence of a low-frequency electrostatic wave and

its instability in a metallic plasma. The latter is composed of degenerate electrons
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and holes, as well as ions, charged nanoparticles, and immobile neutral atoms. At
equilibrium, the quasi-neutrality condition is [13–16] qini0 + enh0 = ene0 + qdnd0 ,
where qi is the ion charge, nj0 is the unperturbed number density of the particle
species j (j equals i for ions, e for electrons, h for holes, and d for charged dust
CNTs), qd = Zde (−Zde) for negative (positive) nanoparticles, Zd is the number
of charges on nanoparticles, and e is the magnitude of the electron charge. In
the presence of the low-frequency space charge electric field −∇φ, where φ is the
self-consistent electrostatic potential, the electron and hole density perturbations,
ne1(� ne0) and nh1(� nh0), are obtained from the inertialess electron and hole
momentum equations, respectively,

0 = ene0∇φ − ∇pe1 +
�

2

4me
∇∇2ne1 , (1)

and

0 = −qinh0∇φ − ∇ph1 +
�

2

4mh
∇∇2nh1 , (2)

where me(mh) is the electron (hole) mass, and � is the Planck constant divided by
2π. The second and third terms on the right-hand side of (1) and (2) are associated
with the quantum statistical pressure laws [17–19] (e.g. pe1,h1 = (3ne0,h0/8π)2/3

(4π2
�

2/3me,h)ne1,h1 for non-relativistic degenerate electrons and holes) and the
quantum Bohm force [17–26] associated with quantum electron/hole tunneling
effects due to the finite width of the electron and hole wave functions, respectively.
The electrons and holes are coupled with the ions and charged nanoparticles via

the space charge electric field. The ion number density perturbation ni1(� ni0) is
obtained from the ion continuity and ion momentum equations

∂ni1
∂t

+ ni0∇ · ui = 0, (3)

and

∂ui
∂t

− qi
mi

∇φ = 0, (4)

where ui and mi are the ion velocity and the ion mass, respectively.
The nanoparticle number density perturbation nd1(� nd0) is determined from

the continuity and momentum equations [27]

∂nd1
∂t

+ nd0∇ · ud = 0, (5)

and

∂ud
∂t

+
qd
md

∇φ = 0, (6)

where ud and md are the nanoparticle velocity and the nanoparticle mass, respect-
ively.
The self-consistent potential is given by

φ(rs , t) =
∫

ds′ [qini1(r
′
s , t) + enh1(r′s , t) − ene1(r′s , t) + qdnd1(r′s , t)]

|rs − r′s | , (7)
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where ds′ R dϕdz′ and R is the radius. By using the expansion of the Coulomb
potential, 1/|rs − r′s |, in cylindrical coordinates, one can write [10,28]

φ(rs , t) =
∞∑

m=−∞

∫ ∞

∞

dk
(2π)2 G(R, k,m)

∫
ds′ρ exp[ik(z − z′) + im(ϕ − ϕ′)], (8)

where k is the longitudinal (axial) wave number and m is the discrete azimuthal
quantum number. We have denoted ρ = qini1(r′s , t) + enh1(r′s , t) − ene1(r′s , t) +
qdnd1(r′s , t) andG = 4πIm (kR)Km (kR), where Im andKm are the cylindrical Bessel
functions of order m.
We shall apply the Fourier transformation [10]

F (rs , t) =
∞∑

m=−∞

∫ ∞

∞

dk
(2π)2 F (R, k,m, ω)

∫
ds′ exp[−iωt + ik(z − z′) + im(ϕ − ϕ′)],

(9)

where F is any physical quantity and ω is the frequency, on the governing (1)–(6).
From (1) and (2), we then have

ne1 =
4πne0emeφ

�2(k2
m + k2

F e)
, (10)

nh1 = − 4πni0emhφ
�2(k2

m + k2
F h)

, (11)

where k2
F e,F h = 16π2(3/8π)2/3n

2/3
e0,h0, k

2
m = k2 + m2/R2 .

The ion and nanoparticle number density perturbations, deduced from (4)–(6)
by using (9), are, respectively,

ni1 =
qini0k

2
m φ

mdω2 , (12)

nd1 =
nd0qdk

2
m φ

mdω2 . (13)

The Fourier transformed potential reads [10]

φ = GR2(qini1 + enh1 − ene1 + qdnd1). (14)

Eliminating nj1 from (14) by using (10)–(13), we obtain the dispersion relation

1 +
GR2

�2

∑
σ=e,h

m2
σω2

pσ

(k2
m + k2

F σ )
−
Gk2

m R2(ω2
pi + ω2

pd)
4πω2 = 0, (15)

where ωpe,ph = (4πne0,h0e
2/me,h)1/2 is the electron and hole plasma frequencies,

ωpi = (4πni0Z
2
i e

2/mi)1/2 is the ion plasma frequency, Zi is the ion charge state,
and ωpd = (4πnd0Z

2
de

2/md)1/2 is the nanoparticle plasma frequency. The wave
frequency, deduced from (15), is

ω =

√
Gkm Rωpi(1 + Z2

dmind0/Z
2
i mdni0)1/2

2
√

π(1 + H)1/2 , (16)

where H = (GR2/�
2)

∑
σ=e,h m2

σω2
pσ /(k2

m + k2
F σ ).
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The electrostatic wave discussed above can be driven at non-thermal level if the
ions have an equilibrium axial drift u0 against nanoparticles. Here, one should
replace ω by ω − ku0 in (12). The resulting dispersion relation is

1 −
Gk2

m R2ω2
pi

4π(1 + H)(ω − ku0)2 −
Gk2

m R2ω2
pd

4π(1 + H)ω2 = 0. (17)

Letting ω = ku0 + δ in (17), where δ � ku0 , we obtain the threshold

ku0 =

√
G

π

km Rωpd

2(1 + H)1/2 , (18)

and

δ3 =
ω2
pi

2ω2
pd

k3u3
0 . (19)

Equation (19) admits an unstable solution

δ =
(1 + i

√
3)

24/3

(
ωpi
ωpd

)2/3

ku0 . (20)

The growth rate is

γ =
√

3Gkm R

27/3
√

π(1 + H)1/2

(
Z2
i ni0md

Z2
dnd0mi

)1/3

ωpd. (21)

To summarize, we have investigated the dispersion property of a low-frequency
electrostatic wave in a metallic dense plasma composed of degenerate electrons
and holes, as well as non-degenerate ions and charged nanoparticles. Physically,
the present electrostatic wave is supported by the restoring forces arising from
the quantum statistical electron and hole pressures and quantum Bohm forces
acting on the electrons and holes, while the inertia comes from the mass of the
ions and nanoparticles. Furthermore, we have shown that the presence of an axial
equilibrium ion drift (caused, say, by a dc electric field in our dense metallic plasma)
against charged nanoparticles can produce a non-thermal electrostatic wave due
to a two-stream instability [27, 29, 30]. From the frequency spectrum of the non-
thermal electrostatic wave, one can deduce charges on nanoparticles in dense plas-
mas, such as those in semiconductors [31] and in thin metal films [32] with charged
nanoparticles.
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