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The natural frequencies for sloshing without coupling with lateral tank motions differ
from the natural sloshing frequencies with coupling. A consequence is that the nonlinear
multimodal sloshing theory for prescribed tank motion should be revised when studying
the liquid sloshing dynamics in connection with marine structures in ocean waves. The
needed revisions are done for a rectangular rigid tank with finite liquid depth. Steady-state
resonant solutions of the constructed nonlinear modal equations are derived to analytically
describe the coupled resonant sloshing and sway of a floating rigid body in regular
incident deep water waves with two-dimensional flow conditions at the lowest coupled
sloshing–sway natural frequency. The steady-state theoretical results are validated by
comparing them with the model tests by Rognebakke & Faltinsen (J. Ship Res., vol.
47, issue 3, 2003, pp. 208–221). The occurrence of an instability frequency range is
theoretically justified.

Key words: waves/free-surface flows

1. Introduction

Sretenski (1936) and Moiseev (1953) were probably the first to show that sloshing
coupled with the lateral and/or angular oscillatory tank motions is characterised by
the natural sloshing frequencies σs,i, which, generally, differ from those frequencies σi
without that coupling. By following the Sretenski linear unforced analysis, Herczyński
& Weidman (2012) confirmed this fact for the simplest possible case without restoring
(spring-related) forces applied to the rigid tank. Practically, this happens for sway
motions of a floating tank. Rognebakke & Faltinsen (2003) studied these motions in an
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Figure 1. Two resonant sloshing problems in sloshing-affected rectangular containers, which are considered
in the present paper: panel (a) depicts a resonantly forced sloshing in a rigid sloshing-affected vehicle and
panel (b) sketches the swaying floating tank in incident two-dimensional waves. In these two cases, the
time-dependent liquid domain Q(t), the free surface Σ(t) and the wetted tank surface S(t) are observed in
the tank-fixed coordinate system Oyz. There is no stiffness or dashpot in the case in panel (a) as normally
assumed in the Sretenski-type problem. The mechanical system is fully undamped. The damping in the case in
panel (b) is not zero. In our theoretical studies, it is associated with external wave radiation and viscosity.

incident two-dimensional wave whose frequency is close to the lowest coupled resonant
frequency. Figure 1(a,b) exemplify the Sretenski–Moiseev-type coupled mechanical
systems, which were considered by Herczyński & Weidman (2012) and Rognebakke &
Faltinsen (2003), respectively. Specifically, there are no structural eigenfrequencies in
these cases (considering a ‘pseudo-frozen’ contained liquid). If the forcing frequency is
close to a coupled natural frequency, e.g. the lowest one σs,1, the severe resonant sloshing
in these rectangular containers should be analysed within the framework of a nonlinear
theory.

Nonlinear analytical sloshing theories for prescribed periodic tank motions were
originated by Moiseev (1958) and further developed by Faltinsen (1974) and Ockendon &
Ockendon (1973). They mainly centre around steady-state resonant waves when the forcing
frequency σ is close to the lowest natural sloshing frequency σ1. The theories construct
asymptotic solutions of the original free-surface problem and investigate their stability.
Faltinsen et al. (2000) developed the so-called nonlinear multimodal method to extend the
asymptotic theories on the resonant transient waves. The multimodal method establishes
a link between the asymptotic steady-state wave approximation by Faltinsen (1974) and
periodic solutions of the Narimanov–Moiseev-type (modal) system of nonlinear ordinary
differential equations, which couple the hydrodynamic generalised coordinates (see,
Ibrahim, Pilipchuk & Ikeda (2001), Ikeda (2003), Ikeda (2007), Hermann & Timokha
(2005), Love & Tait (2013) and references therein). These generalised coordinates are the
time-dependent coefficients in a functional representation of the free surface by the natural
sloshing modes, which are the same as the Stokes standing-wave profiles for a rectangular
tank shape (Faltinsen & Timokha 2009, chapter 4). Because the coupled natural sloshing
frequencies differ from the natural sloshing (Stokes waves) frequencies without coupling,
including for the lowest σs,1 and σ1, a non-resonant sloshing can be expected when
the forcing frequency σ is close to σ1 for the benchmark problems figure 1(a,b). As a
consequence, the aforementioned analytical nonlinear theories including the multimodal
Narimanov–Moiseev theory by Faltinsen et al. (2000) may fail to adequately predict
resonant sloshing and its coupling with lateral motions of the two-dimensional rigid tanks.

Thus, resonant sloshing for prescribed tank motions differs from resonant sloshing
coupled with lateral tank motions when the tank (rigid body) dynamics is affected by the
hydrodynamic sloshing force. Resonant sloshing in the coupled systems is characterised
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Coupling between sloshing and motions of a rectangular tank

by other linear resonance frequencies and wave profiles, which differ from the Stokes-type
standing-wave solution, well known as the natural sloshing frequencies and modes in a
static two-dimensional rectangular basin. A particular conclusion is that the multimodal
analysis by Faltinsen et al. (2000), as well as asymptotic steady-state sloshing theories by
Faltinsen (1974) and Ockendon & Ockendon (1973), should then be revised by suggesting
a non-Stokes modal representation of the free surface. The present paper makes the
required revisions for the coupled mechanical system in figure 1(a) by deriving a novel
Narimanov–Moiseev-type nonlinear modal system, constructing its steady-state (periodic)
solutions, and investigating their stability. These steady-state wave results are used to
analytically quantify the resonant coupling in figure 1(b) and compare the theoretical sway
amplitudes with the measurements in incident regular waves by Rognebakke & Faltinsen
(2003).

The coupled sloshing-vehicle dynamics in figure 1(a) is studied in § 2 by neglecting
the frictional forces in connection with the wheel–rail system, assuming an inviscid
incompressible liquid with two-dimensional irrotational flows, and using Lukovsky’s
formula for the horizontal hydrodynamic sloshing force (see, Lukovsky (2015), Faltinsen
& Timokha (2009), chapters 7, 8 and (2.5)). There is a given periodic lateral excitation
force, which causes a resonant non-prescribed response of both the swaying tank and
sloshing. Keeping the fully nonlinear statement, the Lukovsky formula makes it possible to
decouple the free-surface sloshing problem from the Newton law governing the horizontal
vehicle motions. The decoupled sloshing problem is formulated with respect to the
free-surface elevations by z = ζ( y, t) and the relative velocity potential φ( y, z, t) defined
in the body-fixed coordinate system Oyz. It does not have any vehicle-related components
but contains an extra integral term and external (periodic) force (applied to the body)
in the dynamic boundary condition on the free surface. When the external periodic
force is zero, solutions of the derived (and linearised) free-surface problem consists of a
superposition of non-Stokes standing waves whose frequencies coincide with the coupled
eigenfrequencies. The waves (hereafter, the non-Stokes natural sloshing modes and
frequencies) are analytically derived from the corresponding spectral boundary problem.
The non-Stokes natural sloshing frequencies coincide with those by Herczyński &
Weidman (2012) who obtained the frequencies from the fully coupled linear tank-sloshing
statement and analytical results by Faltinsen & Timokha (2009, chapter 5) who derived the
sloshing-related frequency-dependent added-mass coefficient. The non-Stokes frequencies
and modes are functions of the non-dimensional liquid depth h and the ratio Mt/Ml
between the tank Mt and liquid Ml masses.

The next subsections in § 2 construct linear and nonlinear modal theories, which
are based on the non-Stokes natural sloshing modes. In the linear case, the
infinite-dimensional modal equations adopting either Stokes or non-Stokes modal
representation are equivalent, mathematically and from an applied point of view. The
situation changes for the resonant coupled motions, which need an adequate nonlinear
theory. The main goal is the Narimanov–Moiseev-type (single dominant) nonlinear modal
system, which is a generalisation of the modal system by Faltinsen et al. (2000) to the case
when vehicle motions are not prescribed. The derived modal system (of nonlinear ordinary
differential equations) couples not two (as in Faltinsen et al. (2000)) but an infinite number
of the second- and third-order hydrodynamic generalised coordinates in terms of the
dominant (lowest-order) primarily excited non-Stokes mode. When the forcing frequency
σ is close to the lowest coupled eigenfrequency σs,1 (equals the lowest non-Stokes
natural sloshing frequency), the second- and third-order generalised coordinates can be
amplified due to the secondary resonance phenomenon, whose appearance is extensively
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discussed by Faltinsen & Timokha (2009, chapter 8) including in the shallow water limit.
Even though the adaptive and Narimanov–Moiseev modal theories accurately quantify
the steady-state sloshing for finite liquid depths (0.3 � h), they correctly predict the
secondary resonances in the hydrodynamic system for any values of h. Because the derived
Narimanov–Moiseev modal system couples an infinite set of the second- and third-order
hydrodynamic generalised coordinates, whereas Faltinsen & Timokha (2001) predicts
secondary resonances only in the shallow liquid limit (h → 0), coupling with the vehicle
motions causes the secondary resonances along several curves in the (h, Mt/Ml)-plane
with h = O(1).

To describe the steady-state resonant sloshing in figure 1(a), which occurs due
to harmonic excitations of the lowest non-Stokes natural sloshing frequency σs,1, an
asymptotic periodic solution of the Narimanov–Moiseev-type modal system is derived.
Its stability is investigated by implementing the linear Lyapunov method (Faltinsen &
Timokha 2009, chapter 8). The corresponding amplitude response curves demonstrate
either soft-spring or hard-spring type behaviour. The behaviour switches along a curve
in the (h, Mt/Ml)-plane instead of at the well known critical liquid depth h = 0.3368 . . .,
which determines the switch for prescribed tank motions and/or is the limiting case for
Mt/Ml → ∞. Typical linear and nonlinear (undamped) steady-state response curves are
shown for both the sloshing and vehicle amplitudes. Whereas the sloshing-amplitude
response curves seem qualitatively similar to those by Faltinsen et al. (2000), the tank
amplitude has the minimum (zero in the linear case) in a neighbourhood (exactly at) of the
lowest natural Stokes frequency σ1.

Nonlinearity and damping play an important role for experimental and numerical results
by Rognebakke & Faltinsen (2003) who considered a two-dimensional flow problem with a
rigid floating rectangular tank that is free to sway in incident regular waves with frequency
σ in a wide range covering both the Stokes σ1 and non-Stokes σs,1 lowest natural sloshing
frequencies. This coupled mechanical system is schematically depicted in figure 1(b). Even
though damping is neglected in the steady-state analysis of § 2, the constructed undamped
periodic solutions can be employed to derive analytical expressions, which describe the
coupled dynamics in the (quasi)-linear (linear sloshing + linear and nonlinear damping)
and/or Narimanov–Moiseev-type (nonlinear sloshing + linear and nonlinear damping)
approximations.

Analytical studies and numerical examples in § 3 centre around the experimental set-up
and measured data by Rognebakke & Faltinsen (2003) when the external liquid flow can
be modelled within the framework of the linear free- and body-boundary conditions of
the surface wave theory. A focus is on the frequency-domain problem. Various numerical
solvers exist to effectively compute the corresponding frequency-dependent sway added
mass A22(σ ), wave-radiation damping B22(σ ) and the horizontal wave-excitation force
F0(σ ) associated with the external flows. We adopt the numerical coefficients from
computations by Rognebakke & Faltinsen (2003).

Along with the wave-radiation damping coefficient B22, one should account for the
nonlinear viscous damping caused by external drag forces mainly due to the flow
separation (increases with increasing tank amplitude) and, specifically, the nonlinear
(increases with decreasing tank amplitude) frictional force caused by the bearings in the
experimental equipment. The equivalent linearisation technique is used to incorporate
these two damping sources into our analytical model. Another viscous damping is
associated with the laminar viscous boundary layer along the inner wetted tank surface.
The latter damping can be accounted for by the Narimanov–Moiseev steady-state theory,
which assumes that the lowest non-Stokes natural sloshing mode dominates and, therefore,
the viscous sloshing damping could be related to the damping ratio ξ1 for this dominant
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Coupling between sloshing and motions of a rectangular tank

sloshing mode. Theoretical and experimental results by Keulegan (1959) are useful
to roughly estimate ξ1. Damping caused by possible internal breaking waves is not
considered.

Adopting the constructed asymptotic solutions for the damped steady-state sloshing
in a floating body with rectangular tanks, the theoretical amplitude response curves
are drawn and compared with the measured data by Rognebakke & Faltinsen (2003).
The comparison outlines conclusions regarding the resonant behaviour of the floating
tanks. First, the tank-related linear resonance frequency is consistent with the undamped
sloshing analysis, it coincides with the lowest non-Stokes natural sloshing frequency.
Second, the sloshing-related nonlinearity matters. The derived Narimanov–Moiseev-type
modal system and its steady-state solutions provide a rather accurate quantification of
the measured tank sway amplitudes. Third, the Narimanov–Moiseev steady-state theory
detects a narrow frequency range in the experimental cases by Rognebakke & Faltinsen
(2003) where all steady-state solutions are not stable. Appearance of this range is a
consequence of the external frequency-dependent damping and hydrodynamic force.
According to § 2, the range is absent for the undamped case. Experimental runs in this
range were discussed by Rognebakke & Faltinsen (2003) as an ‘unstable situation’ by
commenting that ‘the sway amplitude shifts and thus two steady-state responses take
place during one run’. Alternative numerical simulations in this frequency range by Shen
et al. (2020), who used a fully nonlinear potential flow solver, also reported difficulties to
achieve a clearly steady-state wave regime.

2. Resonant sloshing and its coupling with the lateral tank motions

2.1. The coupled sloshing-vehicle dynamics: two equivalent formulations
Figure 1(a) illustrates the coupled mechanical system consisting of a rigid vehicle with
mass Mt containing a rectangular container with internal breadth b, which is partly
filled by an ideal incompressible liquid (irrotational flows) with a finite liquid depth (h
is the depth-to-breadth ratio). The vehicle performs horizontal oscillations affected by
the sloshing-induced Fslosh(t) and external Fext(t) forces. No restoring and frictional
forces are assumed and, therefore, no stiffness and dashpot are drawn in figure 1(a).
The external force Fext(t) is prescribed and periodic with the circular frequency σ ,
which belongs to a relatively wide range covering the lowest natural (Stokes) sloshing
frequency σ1 = √

(gπ/b) tanh(πh) (g is the gravity acceleration). The hydrodynamic
force Fslosh(t) is associated with the classical sloshing (free-surface) problem ((2.2) by
Faltinsen et al. (2000)), which couples the absolute velocity potential Φ, the free surface
elevations and the translatorial rigid tank velocity vO(t) (the instant angular velocity
ω(t) is zero). The latter implies that the viscous damping is neglected and, because we
neglect frictional structural forces, this section considers undamped motions of the coupled
mechanical system in figure 1(a). Applicability of the hydrodynamic model of ideal liquid
with irrotational flows and no surface tension accounted for is extensively discussed by
Faltinsen & Timokha (2009, chapters 2 and 4).

2.1.1. Coupling between the free-surface sloshing problem and the lateral vehicle
motions

The free-surface sloshing problem by Faltinsen et al. (2000, (2.2)) is normally formulated
in the tank-fixed coordinate system Oyz. When the translational velocity

vO(t) = b (η̇2(t), 0) , η2b(t) = bη2(t) (2.1a,b)
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is determined by the non-dimensional generalised coordinate (sway) η2(t), adopting the
spatial normalisation by b and introducing the b-scaled relative velocity potential,

φ( y, z, t) = Φ( y, z, t)/b2 − yη̇2(t), (2.2)

where y and z are the non-dimensional body-fixed coordinates, transform the
two-dimensional free-surface sloshing problem to the form

∇2φ = 0 in Q(t); ∂φ

∂n
= 0 on S(t),

∂φ

∂n
= ∂ζ

∂t
/

√
1 + (∂ζ/∂y)2 on Σ(t);

∫ l/2

−l/2
ζ dy = 0,

∂φ

∂t
+ 1

2
(∇φ)2 + ḡ︸︷︷︸

g/b

ζ = −yη̈2(t) on Σ(t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.3)

where g is the gravity acceleration, z = ζ( y, t) defines the free surface Σ(t), Q(t) is the
time-dependent liquid domain, S(t) is the wetted tank surface, which are normalised by b,
and n is the outer normal.

Because η̈2(t) in the dynamic boundary condition of (2.3) is unknown, one should, in
addition, introduce the Newton law with respect to η2(t),

b(Mt + Ml) η̈2 = Fext(t) + Fslosh(t), (2.4)

where Mt is the rigid tank mass and Ml = ρlVl is the liquid mass (ρl and Vl are the liquid
density and volume, respectively). The present section excludes from consideration both
the frictional (structural damping) and restoring forces. As for the restoring force, it is
negligibly small for sway motions of a floating tank, whose studies are the primary goal of
the present paper. No damping in the original formulation is a mathematical requirement
of the multimodal and almost all analytical methods in sloshing problems. The methods
need the linear eigensolution (natural sloshing modes and frequencies) of the (here,
coupled tank-slosh) problem, which becomes mathematically impossible with non-zero
damping in the mechanical system. However, the damping terms can be incorporated into
the modal equations after these are derived from the undamped formulation. How to do
that is demonstrated in § 3.

The sloshing-related horizontal hydrodynamic force Fslosh(t) should be derived from a
pressure integral over the wetted vertical tank walls, where the pressure is computed by
using the Bernoulli equation in the body-fixed coordinate system (Faltinsen & Timokha
2009, (2.60)). Alternatively, Fslosh(t) can be found by using the Lukovsky formula (see
details in Faltinsen & Timokha (2009), chapter 7),

Fslosh(t) = −MlÿC(t) = −Ml
d2

dt2

∫
Q(t)

y dQ/Vl = − Ml

b2h

∫ 1/2

−1/2
y

∂2

∂t2
ζ( y, t) dy, (2.5)

which analytically expresses the horizontal hydrodynamic force in terms of the horizontal
coordinate yC(t) of the liquid mass centre.

Equations (2.3)–(2.5) govern the coupled sloshing-tank dynamics, where the three
b-normalised unknowns ζ( y, t), φ( y, z, t) and η2(t) are defined in the body-fixed
coordinate system Oyz. The unknowns are fully coupled, i.e. η2 is present in the
free-surface problem (2.3) and ζ appears in the Newton law (2.4).
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2.1.2. Decoupling the free-surface sloshing problem from η2(t)
Substituting the Lukovsky formula, (2.5), into (2.4) gives

η̈2(t) = Fext(t)
b(Mt + Ml)︸ ︷︷ ︸

=F̄ext(t)

− Ml

(Ml + Mt)h︸ ︷︷ ︸
=K>0

∫ 1/2

−1/2
y

∂2

∂t2
ζ( y, t) dy = F̄ext(t) − KÿC(t). (2.6)

Furthermore, using this formula in (2.3) partly decouples (2.3)–(2.5) so that (2.3) takes
the form

∇2φ = 0 in Q(t); ∂φ

∂n
= 0 on S(t),

∂φ

∂n
= ∂ζ

∂t

/√
1 +

(
∂ζ

∂y

)2

on Σ(t);
∫ 1/2

−1/2
ζ dy = 0,

∂φ

∂t
+ 1

2
(∇φ)2 − Ky

∫ 1/2

−1/2
y
∂2ζ

∂t2
dy + ḡζ = −y F̄ext(t) on Σ(t),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.7)

where K and F̄ext(t) are defined in (2.6). The free-surface (sloshing) problem (2.7) does
not contain the tank-related generalised coordinate η2(t); it exclusively links ζ( y, t) and
φ( y, z, t). The problem describes sloshing visible through a camera installed on the rigid
body .

The two mathematical formulations (2.3)–(2.5) and (2.6)–(2.7) are equivalent.
They describe the coupled slosh-vehicle dynamics, forced (Fext �= 0) and/or unforced
(Fext = 0). The coupled (linear) eigenfrequencies following from these mathematical
formulations were, for instance, computed by Herczyński & Weidman (2012). The
linear frequency-domain problem can also be solved by employing the sloshing-related
frequency-dependent sway added-mass coefficient Aslosh

22 (σ ) from Faltinsen & Timokha
(2009, (5.134)) that deduces the governing equation(

Mt + Ml + Aslosh
22 (σ )

)
η̈2b(t) = Fext(t) (2.8)

from the Newton law (2.4) so that the dispersion equation for computing the coupled
eigenfrequencies implies the zero coefficient at η̈2(t), i.e. Mt + Ml + Aslosh

22 (σ ) = 0. Here,
because Aslosh

22 (σ ) → ±∞ as σ → σ1±, the solution σs,1 > σ1.
The nonlinearity of the coupled sloshing-tank dynamics is exclusively associated with

the free-surface problems (2.3) and (2.7). When considering the prescribed tank motions
(η2(t) is known in (2.3)), one can construct analytical approximations of the nonlinear
resonant sloshing problem (2.3) in terms of the Stokes standing-wave (natural sloshing)
modes in the stationary two-dimensional rectangular tank (Faltinsen & Timokha (2009),
chapter 4). An example is the Narimanov–Moiseev multimodal theory by Faltinsen et al.
(2000). This and other asymptotic analytical theories require that the forcing frequency σ

is close to the first natural sloshing frequency σ1. The closeness is the necessary condition.
However, the resonance coupled eigenfrequency σs,1 �= σ1 and, therefore, applying the
theories to (2.3) does not guarantee they provide an accurate prediction of the resonant
coupled motions.

Because the free-surface problem (2.7) is self-contained and determines the main
resonant properties of the coupled tank-sloshing mechanical system ((2.6) simply returns
η2(t) for the given wave elevations by ζ( y, t)), the coupled eigenfrequencies should be
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a subset of the natural sloshing frequencies following from the linearised and unforced
(2.7). Moreover, the boundary value problems (2.3) and (2.7) are mathematically similar
and differ only by the underlined integral term in (2.7) (in the dynamic boundary condition
on Σ(t)), which is absent in (2.3). Hence, as long as we know an analytical approach to
the free-surface problem (2.3) with the prescribed acceleration η̈2(t), where σ is close to
the lowest natural sloshing frequency σ1, mathematically, the approach could be extended
to the free-surface problem (2.7) with the prescribed force F̄ext(t), where σ is close to
σs,1. How to do this extension for the nonlinear multimodal approach by Faltinsen et al.
(2000) will be described in the next subsections. The procedure suggests constructing
the corresponding non-Stokes natural sloshing modes and frequencies, derivation of
the Narimanov–Moiseev-type (single-dominant) modal system, and studying its periodic
solutions, which describe the steady-state resonant sloshing coupled with lateral tank
motions.

2.2. The non-Stokes natural sloshing modes and frequencies
Because the underlined integral term in (2.7) is linearly dependent on the free-surface
elevation ζ , it should affect the linear sloshing including the corresponding natural
frequencies and modes. To get them, one should exclude the external forcing, F̄ext = 0,
linearise (2.7), and pose its solution as φ = ϕs( y, z) exp(iσst), i2 = −1. This leads to the
following spectral boundary problem:

∇2ϕs = 0 in Q0; ∂ϕs

∂n
= 0 on S0;

∫
Σ0

∂ϕs

∂z
dy = 0,

−σ 2
s

(
ϕs − Ky

∫ 1/2

−1/2
y
∂ϕs

∂z
dy

)
+ ḡ

∂ϕs

∂z
= 0 on Σ0,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.9)

where Q0 is the hydrostatic (non-dimensional) liquid domain, Σ0 is the unperturbed free
surface (z = 0), S0 is the mean wetted tank surface and σs is the corresponding natural
sloshing frequency.

When the coefficient K = 0 (sloshing does not couple the vehicle dynamics), the
spectral boundary problem (2.9) transforms to the classical spectral boundary problem
in a stationary tank (Faltinsen & Timokha (2009), chapter 4). This determines the natural
Stokes sloshing modes ϕm( y, z) and frequencies σm,

ϕm( y, z) = cos
(
πm( y + 1

2)
)

︸ ︷︷ ︸
fm( y)

cosh(πm(z + h))

κm cosh(πmh)︸ ︷︷ ︸
Zm(z)

; σ 2
m = ḡ πm tanh(πmh)︸ ︷︷ ︸

κm

, m ≥ 1,

(2.10)

which are documented, e.g. in Faltinsen & Timokha (2009, § 4.3.1.1).
When K �= 0, the natural sloshing modes ϕs,m( y, z) and frequencies σs,m by (2.9)

coincide with (2.10) for even (symmetric) wave profiles, i.e. ϕs,2i( y, z) = ϕ2i( y, z) and
σ 2

s,2i = σ 2
2i but the antisymmetric sloshing modes ϕs,2i−1( y, z) and frequencies σs,2i−1

modify and become functions of K. The modified ϕs,2i−1( y, z) and σs,2i−1 can be derived
by using the harmonic functional basis (2.10) and the Treftz method, which employs the
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Coupling between sloshing and motions of a rectangular tank

‘antisymmetric ansatz’,

ϕs,2k−1( y, z) =
N∑

i=1

aiϕ2i−1( y, z) =
N∑

i=1

aif2i−1( y)Z2i−1(z), N → ∞. (2.11)

The ansatz automatically satisfies the Laplace equation and the zero-Neumann condition
on S0. Substituting (2.11) into the spectral boundary condition on Σ0 in (2.9), multiplying
it by f2k−1( y), k = 1, . . . , N and integrating over the mean free surface leads to the spectral
matrix problem ⎡

⎣ḡI − σ 2
s (D − K M)︸ ︷︷ ︸

M

⎤
⎦ a = 0, (2.12)

where a = (a1, . . . , aN) is the eigenvector, I is the unit (identity) matrix, D =
diag{κ−1

2m−1}, and

M =
{

2
∫ 1/2

−1/2
y f2m−1( y) dy

∫ 1/2

−1/2
y f2i−1( y) dy

}
=

{
8
π4

1
(2m − 1)2(2i − 1)2

}
. (2.13)

Because the mass-matrix M is symmetric, the spectral matrix problem (2.12) has the real
eigenspectrum {σ 2

s,2k−1, k = 1, . . . , N}.
Let σ 2

s be a fixed eigenvalue corresponding to the eigenvector a = (a1, . . . , aN). By
introducing the auxiliary real parameter μ = ∑N

i=1 ai/(2i − 1)2 and, using the N rows in
the matrix problem (2.12), derives the non-zero eigenvector as follows:

a =
(

am = −Kμ
8
π4

κ2m−1σ
2
s

(2m − 1)2(σ 2
2m−1 − σ 2

s )
, m = 1, . . . , N

)
⇒ μ �= 0. (2.14)

Inserting {am} into the ansatz (2.11) gives the desired non-Stokes natural sloshing mode ,
which corresponds to the frequency σs.

To find the corresponding non-Stokes sloshing frequency σs, one should substitute (2.14)
into the expression for μ. This derives the dispersion equation

S(σ 2
s ) = 1 + K

8
π3

N∑
i=1

σ 2
s tanh(π(2i − 1)h)

(2i − 1)3(σ 2
2i−1 − σ 2

s )
= 0, N → ∞, (2.15)

which is mathematically equivalent to the zero-determinant condition (2.12).
The non-Stokes natural sloshing frequencies by (2.15) are the eigenfrequencies of the

original coupled tank-sloshing system. As a consequence, the dispersion equation (2.15) is,
to within the introduced notations, identical to Herczyński & Weidman (2012, (3.8)) who
analysed these coupled eigenfrequencies by using a direct integration of the pressure over
the tank wall and have validated the dispersion relation by experiments. The dispersion
relation looks a rather obvious consequence from expression on the sloshing-related sway
added-mass coefficient Aslosh

22 (σ ) by Faltinsen & Timokha (2009, (5.134)). The coupled
eigenfrequencies correspond to zeros of the summarised mass Mt + Ml + Aslosh

22 (σ ) = 0,
which is the same as (Mt + Ml)S(σ 2) = 0.

Our derivations of (2.15) are based on the spectral boundary problem (2.9), which
deals exclusively with sloshing and has no tank-related degree of freedom. That is why
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O.M. Faltinsen and A.N. Timokha

they may look a little bit unusual and even complicated. Most studies are based on the
fully coupled linearised problem (2.3)–(2.5). However, our goal is the non-Stokes natural
sloshing modes and matrices D and M, which will further be extensively employed in
nonlinear sloshing theories. These theories are not derivable from (2.3)–(2.5), they need
the partial decoupling, i.e. eliminating η2(t) from the free-surface sloshing problem.

2.2.1. Frequencies σs,m
The dispersion equation (2.15) expresses balance between inertial forces of the rigid tank
+ frozen liquid mechanical system and the hydrodynamic sloshing forces. In the limit
N → ∞, it has an infinite set of positive real roots {σ 2

s,2k−1, k ≥ 1}, which satisfy

σ 2
2i−1 < σ 2

s,2i−1 < σ 2
2i+1, i = 1, 2, . . . and σ 2

s,2i−1/σ
2
2i−1 → 1 + as i → ∞.

(2.16)

Because the even (symmetric) sloshing modes are not coupled with lateral tank motions
in the linear approximation,

σ 2
2i = σ 2

s,2i, i = 1, 2, . . . . (2.17)

However, the symmetric sloshing modes play an important role in the nonlinear resonant
sloshing theories.

The theoretical ratios σs,1/σ1 and σs,3/σ3 between the non-Stokes and Stokes natural
sloshing frequencies are shown in figure 2(a) versus Mt/Ml for three finite liquid depths
h. The figure illustrates that the ratios tend to one with increasing Mt/Ml (heavyweight
tank) and h (deep water). Herczyński & Weidman (2012) have experimentally investigated
σs,1 and σs,3 versus Ml/Mt by varying the tank filling and compared them with the
theoretical values by (2.15). Because h and Ml/Mt = [Ml/Mt](h) changes in a complex
way in these experiments, we were not able, technically, to incorporate the measured values
in figure 2(a). On the other hand, comparison by Herczyński & Weidman (2012) confirms
a good agreement between the theoretical formula (2.15) and the experimental data.

2.2.2. Modes ϕs,m
Because of (2.14), each natural sloshing frequency σs,2m−1, m = 1, . . . , N determines the
corresponding eigenvector a(2m−1) whose scalar elements can be written down as

a(2m−1)
i = tanh(π(2i − 1)h)

(2i − 1)(σ 2
2i−1/σ

2
s,2m−1 − 1)

, i = 1, . . . , N. (2.18)

When normalising these eigenvectors by ‖a(2m−1)‖ =
√∑N

i=1(a
(2m−1)
i )2 (the sum

converges as N → ∞), one can introduce the orthonormal eigenbasis

q(m) = a(2m−1)

‖a(2m−1)‖ = (q(m)
1 , q(m)

2 , . . . , q(m)
N ) = (q1m, q2m, . . . , qNm), m = 1, . . . , N

(2.19)

so that the orthogonal matrices Q = {qim} and QT (QTQ = I) diagonalise the mass-matrix
M, i.e.

QTMQ = diag
(

1
κs,2k−1

)
, where κs,2k−1 = σ 2

s,2k−1

ḡ
. (2.20)
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Figure 2. Natural sloshing frequencies and modes for the two-dimensional coupled sloshing-rectangular
tank motion problem illustrated in figure 1(a). Panel (a) shows the two lowest antisymmetric non-Stokes
natural sloshing frequencies normalised by the corresponding Stokes natural sloshing frequencies, σs,1/σ1
(the solid lines) and σs,3/σ3 (the dashed deep-blue lines) versus the tank-liquid mass ratio Mt/Ml for three
non-dimensional liquid depths h = 0.3, 0.5 and 0.7 (the h-values are used as the curves labels). Panels (b,c)
compare the non-Stokes (z = fs,1( y) and = fs,3( y) by (2.22), the deep-blue dashed lines) and Stokes (z = f1( y)
and = f3( y), the bold black solid lines) standing wave profiles for different MtMl and h. Panel (b) focuses on
the weightless tank (Mt/Ml = 0); the curves are marked by the h values. The mean liquid depth h = 0.5 is
adopted in panel (c), the curves are tagged by the Mt/Ml values.

Employing the eigenvectors (2.19) in (2.11) introduces

ϕs,2m−1( y, z) =
N∑

i=1

qimf2i−1( y)Z2i−1(z), N → ∞, (2.21)

which defines the corresponding (orthogonal) antisymmetric non-Stokes standing wave
profiles

fs,2m−1( y) = ∂ϕs,2m−1

∂z

∣∣∣∣
z=0

=
N∑

i=1

qimf2i−1( y), N → ∞. (2.22)

Specifically, the mean square root integral over f2m−1( y) and fs,2m−1( y) are equal,
i.e. ‖ f2m−1‖ = ‖ fs,2m−1‖ = 1/

√
2. The standing antisymmetric Stokes wave profiles

f2m−1( y) can be restored from fs,2m−1( y) by using Q as follows:

f2i−1( y) =
N∑

m=1

qimfs,2m−1( y), N → ∞. (2.23)

The symmetric natural sloshing modes coincide with the Stokes modes, ϕs,2m = ϕ2m.
The black solid lines in figure 2(b,c) show the Stokes standing wave profiles z = f1( y)

and z = f3( y), which are defined by (2.10). These wave profiles do not depend on the
non-dimensional parameters h and Mt/Ml. The antisymmetric non-Stokes wave profiles
z = fs,1( y) and z = fs,3( y) by (2.22) are functions of h and Mt/Ml.

Figure 2(b) focuses on the weightless vehicle, Mt/Ml = 0. The dashed curves
z = fs,1( y) and z = fs,3( y) are labelled by the non-dimensional mean liquid depths
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h = 0.3, 0.4, 0.7 and 1.5. Figure 2(c) assumes that the mean liquid depth h is fixed
(h = 0.5 in these numerical examples) but the wave profiles z = fs,1( y) and z = fs,3( y)
are drawn for Mt/Ml = 0.0, 0.5, 1.0 and 3.0 (the values are used as the tags).

Comparisons in figure 2(b,c) demonstrate that the non-Stokes natural sloshing modes
are increasingly affected by the vehicle sway motions with decreasing h and Mt/Ml. It
is most clearly seen for the lowest sloshing mode z = fs,1( y). An interesting feature of
the non-Stokes standing wave profiles z = fs,1( y) and z = fs,3( y) is that, in contrast to
the Stokes wave modes, the high spot point is situated away from the wall. Similar linear
‘high-spot’ results for the Stokes natural sloshing modes are well known for the ice-fishing
problem and tanks with non-vertical walls (Kulczycki & Kuznetsov 2009, 2011). These are
not connected with the flip-through phenomenon, which is of strongly nonlinear nature. As
we can see, the coupling also causes the high spot point away from the wall for rectangular
tanks with upright walls.

2.3. Adaptive weakly nonlinear modal equations
Faltinsen & Timokha (2001, (3.1)) derived a series of adaptive nonlinear modal systems (of
ordinary differential equations), which couple the hydrodynamic generalised coordinates
βi(t) in the modal representation of the free surface by the Stokes modes,

ζ( y, t) =
2N∑
i=1

βi(t)fi( y), N → ∞. (2.24)

The derivations assumed prescribed tank motions (the generalised coordinate) η2(t) in the
variational statement of (2.3). When following these derivations for non-prescribed tank
motions, the underlined integral in the free-surface problem (2.7), with the given function
F̄ext(t) instead of η̈2(t) in (2.3), adds extra linear terms to the ‘odd’ modal equations
governing the antisymmetric natural sloshing modes so that the aforementioned adaptive
modal equations take the form

N∑
i=1

μmiβ̈2i−1 + ḡβ2m−1 + κ−1
2m−1N2m−1 = λmF̄ext(t), m = 1, . . . , N, (2.25a)

β̈2m + σ 2
2mβ2m + N2m = 0, m = 1, . . . , N, (2.25b)

where

Nk =
2N∑

a,b=1

d1,k
a,bβ̈aβb +

2N∑
a,b,c=1

d2,k
a,b,cβ̈aβbβc +

2N∑
a,b=1

t0,k
a,bβ̇aβ̇b +

2N∑
a,b,c=1

t1,k
a,b,cβ̇aβ̇bβc + . . .

(2.26)

are the nonlinear components (Faltinsen & Timokha (2001) give explicit formulae for
the h-dependent hydrodynamic coefficients d1,k

a,b, d2,k
a,b,c, t0,k

a,b, t1,k
a,b,c, etc. up to the fifth

polynomial terms by the generalised coordinates βi). Furthermore,

λm = −2
∫ 1/2

−1/2
yf2m−1( y) dy = 4

π2(2m − 1)2 (2.27)

and

μmi = δmi

κ2m−1
− K

8
π4

1
(2m − 1)2(2i − 1)2 (2.28)
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Coupling between sloshing and motions of a rectangular tank

(δmi is the Kronecker delta) are elements of the symmetric mass-matrix M = {μmi}, which
was introduced in (2.12).

When K = 0, the mass-matrix M becomes diagonal and, multiplying (2.25) by κ2m−1
leads to (3.1) by Faltinsen & Timokha (2001) in which linear components by the
hydrodynamic generalised coordinates are decoupled and η̈2(t) appears instead of Fext(t).
For the coupled motions, K = Ml/(h(Ml + Mt)) �= 0 and, therefore, the mass-matrix M
is not diagonal. As a consequence, the linear components in (2.25) remain coupled.

The decoupling with K = 0 played the fundamental role in all analytical nonlinear
resonant sloshing theories. It means, in particular, that, when the forcing frequency σ

is close to the lowest natural sloshing σ1, the only lowest natural Stokes mode has the
lowest-order (dominant) asymptotic order O(ε1/3). The lowest Fourier harmonic of the
lowest hydrodynamic generalised coordinate β1(t) can be chosen as the lowest-order
approximation of the steady-state sloshing. When σ → σs,1 and K �= 0 in (2.25) and
because of the linear coupling, an infinite set of the Stokes natural sloshing modes
(generalised coordinates β2m−1(t)) have the lowest Fourier harmonic of the order O(ε1/3).
There is not a clear single-dominant mode and the existing asymptotic schemes become
inapplicable.

Adopting the multimodal language, appropriate revisions of these theories for the
rectangular tank should be associated with replacement of (2.24) by

ζ( y, t) =
N∑

i=1

b2i(t)f2i( y) +
N∑

i=1

b2i−1(t)fs,2i−1( y), N → ∞, (2.29)

which employs the orthogonal functional set (2.22) by the non-Stokes natural sloshing
modes and the generalised coordinates bi(t), i = 1, . . . , 2N instead of βi(t), i =
1, . . . , 2N. Formulae (2.22) and (2.23) show that transition from (2.24) to (2.29) and
back is associated with algebraic operations involving the already introduced orthogonal
matrices Q and QT by (2.19). In terms of bi(t), i = 1, . . . , 2N and βi(t), i = 1, . . . , 2N,

β2k−1(t) =
N∑

i=1

qkib2i−1(t) ⇐⇒ b2k−1(t) =
N∑

i=1

qikβ2i−1(t);

b2k(i) = β2k(t), k = 1, . . . , N. (2.30)

This means that one can obtain the desired nonlinear modal system with bi(t), i =
1, . . . , 2N transforming (2.25) via algebraic operations with Q and QT . Indeed,
substituting βk(t) through bk(t) by (2.30) in all the modal equations of (2.25), (2.26) and,
furthermore, multiplying (2.25a) by QT from the left diagonalises the linear components
of the entire adaptive modal system, which takes the form

b̈2m−1 + σ 2
s,2m−1b2m−1

+
N∑

a,b=1

(
deo,2m−1

a,b b̈2ab2b−1 + doe,2m−1
a,b b̈2a−1b2b + teo,2m−1

a,b ḃ2aḃ2b−1

)

+
N∑

a,b,c=1

(
dooo,2m−1

a,b,c b̈2a−1b2b−1b2c−1 + tooo,2m−1
a,b,c ḃ2a−1ḃ2b−1b2c−1

+ doee,2m−1
a,b,c b̈2a−1b2bb2c + deoe,2m−1

a,b,c b̈2ab2b−1b2c
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+ teeo,2m−1
a,b,c ḃ2aḃ2bb2c−1 + toee,2m−1

a,b,c ḃ2a−1ḃ2bb2c

)
= P2m−1F̄ext(t), m = 1, . . . , N; (2.31a)

b̈2m + σ 2
s,2mb2m

+
N∑

a,b=1

(
d1,2m

2a,2bb̈2ab2b + d1q,2m
a,b b̈2a−1b2b−1 + t0,2m

2a,2bḃ2aḃ2b + t0q,2m
a,b ḃ2a−1ḃ2b−1

)

+
N∑

a,b,c=1

(
b̈2a

[
d2,2m

2a,2b.2cb2bb2c + d2q,2m
a,b,c b2b−1b2c−1

]

+ b2c

[
t1,2m
2a,2b,2cḃ2aḃ2b + t1q,2m

a,b,c ḃ2a−1ḃ2b−1

]
+ b2c−1

[
d̄2q,2m

a,b,c b̈2a−1b2b + t̄1q,2m
a,b,c ḃ2aḃ2b−1

])
= 0, m = 1, . . . , N, (2.31b)

where σs,i are the non-Stokes natural sloshing frequencies,

P2m−1 = κs,2m−1

N∑
j=1

qjmλj = κs,2m−1μm (2.32)

(κs,2m−1 are defined in (2.20) and λi come from (2.27)). The hydrodynamic coefficients at
the nonlinear terms are computed by the following formulae:

deo,2m−1
a,b = κs,2m−1

N∑
k,i=1

qkmqib
d1,2k−1

2a,2i−1

κ2k−1
; doe,2m−1

a,b = κs,2m−1

N∑
k,i=1

qkmqia
d1,2k−1

2i−1,2b

κ2k−1
;

(2.33a,b)

teo,2m−1
a,b = κs,2m−1

N∑
k,i=1

qkmqib
t0,2k−1
2a,2i−1 + t0,2k−1

2i−1,2a

κ2k−1
; (2.34)

dooo,2m−1
a,b,c = κs,2m−1

N∑
k,i,j,l=1

qkmqiaqjbqlc
d2,2k−1

2i−1,2j−1,2l−1

κ2k−1
; (2.35)

tooo,2m−1
a,b,c = κs,2m−1

N∑
k,i,j,l=1

qkmqiaqjbqlc
t1,2k−1
2i−1,2j−1,2l−1

κ2k−1
; (2.36)

doee,2m−1
a,b,c = κs,2m−1

N∑
k,i=1

qkmqia
d2,2k−1

2i−1,2b,2c

κ2k−1
; teeo,2m−1

a,b,c = κs,2m−1

N∑
k,i=1

qkmqic
t1,2k−1
2a,2b,2i−1

κ2k−1
;

(2.37a,b)

deoe,2m−1
a,b,c = κs,2m−1

N∑
i,k=1

qkmqib
d2,2k−1

2a,2i−1,2c + d2,2k−1
2a,2l,2i−1

κ2k−1
; (2.38)

toee,2m−1
a,b,c = κs,2m−1

N∑
k,i=1

qkmqia
t1,2k−1
2i−1,2b,2c + t1,2k−1

2b,2i−1,2c

κ2k−1
; (2.39)
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Coupling between sloshing and motions of a rectangular tank

d1q,2m
a,b =

N∑
i,j=1

qiaqjbd1,2m
2i−1,2j−1; t0q,2m

a,b =
N∑

i,j=1

qiaqjbt0,2m
2i−1,2j−1; (2.40a,b)

d2q,2m
a,b,c =

N∑
i,j=1

qibqjcd2,2m
2a,2i−1,2j−1; d̄2q,2m

a,b,c =
N∑

i,j=1

qiaqjc(d
2,2m
2i−1,2b,2j−1 + d2,2m

2i−1,2j−1,2b);

(2.41a,b)

t1q,2m
a,b,c =

N∑
i,j=1

qiaqjbt1,2m
2i−1,2j−1,2c; t̄1q,2m

a,b,c =
N∑

i,j=1

qibqjc(t
1,2m
2a,2i−1,2j−1 + t1,2m

2i−1,2a,2j−1).

(2.42a,b)

As long as we know a solution of the modal system (2.31), which describes an undamped
resonant sloshing coupled with the tank motions, using (2.6), (2.24), (2.27), (2.30) and
(2.32) derives the following linear expression for the vehicle sway acceleration

η̈2(t) = F̄ext(t) + 1
2 K

N∑
m=1

μmb̈2m−1(t), (2.43)

where μm are defined in (2.32).

2.4. The linear modal theories
The non-resonant sloshing may effectively be described by using both Stokes and
non-Stokes modal representations within the framework of the linear sloshing theory,
which assumes the asymptotically small external force,

F̄ext(t) = σ 2O(ε), ε � 1, (2.44)

so that the free-surface elevation and other hydrodynamic characteristics are of the same
order O(ε),

η2 ∼ βm ∼ bm = O(ε), m = 1, 2, . . . . (2.45)

Furthermore, the o(ε)-order components are neglected.

2.4.1. Two equivalent linear modal equations
Let us take the well known linear modal system from § 5.4.2 by Faltinsen & Timokha
(2009):

β̈2m−1 + σ 2
2m−1β2m−1 = κ2m−1λmη̈2; β̈2m + σ 2

2mb2m = 0, m = 1, . . . , N. (2.46a,b)

Because the sway motion η2(t) is unknown, using (2.46a,b) requires the Newton law (2.6),
which should be rewritten in the form

η̈2(t) = F̄ext(t) + 1
2

K
N∑

m=1

λmβ̈2m−1(t). (2.47)

The system of linear ordinary differential equations (2.46a,b), (2.47) describes the linear
coupled dynamics in terms of the generalised coordinates η2 and β2m−1. The even
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O.M. Faltinsen and A.N. Timokha

hydrodynamic coordinates β2m do not effect the coupling and, therefore, can be excluded
from the linear analysis.

Alternatively, one can focus on the linearised modal equations (2.31),

b̈2m−1 + σ 2
s,2m−1b2m−1 = P2m−1F̄ext; b̈2m + σ 2

s,2mb2m = 0, m = 1, . . . , N.

(2.48a,b)

These equations do not contain η2(t). They describe the internal wave motions, not the
tank motions. However, when solving (2.48a,b) and substituting b2m−1(t) into (2.43), we
get an explicit expression for η̈2(t).

The systems of ordinary differential equations (2.46a,b) + (2.47) and (2.48a,b) + (2.43)
imply two equivalent linear modal systems, which describe the coupled dynamics. An
advantage of (2.48a,b) + (2.43) is that it concentrates on sloshing but the associated tank
motions by η2(t) become automatically derivable (known) if we know the hydrodynamic
generalised coordinates b2i−1(t). On the other hand, derivations of the linear modal
equations (2.48a,b) require knowledge of the non-Stokes sloshing frequencies σs,2i−1 and
matrix Q while the hydrodynamic coefficients in (2.46a,b) + (2.47) can be computed by
using rather simple analytical formulae.

2.4.2. Steady-state wave motions
The steady-state linear analysis suggests the small-amplitude harmonic force

F̄ext(t) = σ 2f0 cos σ t, 0 �= f0 = O(ε) � 1. (2.49)

Substituting (2.49) into either (2.46a,b) + (2.47) or/and (2.48a,b) + (2.43) derives the two
equivalent periodic (steady-state) solutions in terms of β2m−1 or/and b2m−1,

β2m−1(t) = β0,2m−1 cos σ t; b2m−1(t) = b0,2m−1 cos σ t; η2(t) = at cos σ t,
(2.50a–c)

where

β0,2m−1 = − σ 2κ2m−1λm

σ 2
2m−1 − σ 2

at; b0,2m−1 = σ 2P2m−1

σ 2
s,2m−1 − σ 2

f0. (2.51a,b)

Furthermore, (2.46a,b) + (2.47) gives the transmission function for the sway amplitude at:

at

f0
= − 1

S(σ 2)
, (2.52)

where the function S(σ 2) was introduced when defining the dispersion equation (2.15). An
alternative expression of the dispersion function is also derivable when using the linear
modal equations (2.48a,b) + (2.43); the result is

− 1
S(σ 2)

= −1 + 1
2

K
N∑

m=1

μ2
mκs,2m−1

σ̄ 2
s,2m−1 − 1

, σ̄s,2m−1 = σs,2m−1

σ
. (2.53)

The key difference between (2.15) and (2.53) is that the first expression employs the Stokes
natural sloshing frequencies σ2m−1 but the second one is based on the non-Stokes natural
sloshing frequencies σs,2m−1.
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Coupling between sloshing and motions of a rectangular tank

When the forcing frequency σ tends to σs,2m−1, the second formula in (2.51a,b) and
(2.52) (S(σ 2) → 0 as σ 2 → σ 2

s,2m−1) show that both the amplitude b0,2m−1 (of the
hydrodynamic generalised coordinate b2m−1) and the tank amplitude at tend to infinity.
In other words, σs,2m−1 is the resonant frequency for both the liquid and vehicle motions.

When the forcing frequency σ tends to the Stokes natural sloshing frequency σ2m−1,
(S(σ 2) → ∞ according to (2.15)), and, therefore, the tank amplitude at tends to zero
according to (2.52). This limit explains why σ2m−1 are not the resonance sloshing
frequencies anymore, even though the first formula in (2.51a,b) has the denominator
σ 2

2m−1 − σ 2. Inserting at from (2.52) into the formula for β0,2m−1 in (2.51a,b) and using
L’Hôpital’s rule proves that β0,2m−1 → π2(2m − 1)2f0/(2K) as σ → σ2m−1, i.e. the
sloshing amplitude is finite at the Stokes resonance frequencies unless Mt/Ml → ∞.

Coupling between steady-state sloshing and tank motions introduces both the vehicle
and sloshing amplitudes. The vehicle amplitude is associated with max |η2(t)|, which is,
in the linear case, the same as |at| (the modulus of the first Fourier harmonic). Because
the Stokes natural sloshing modes reach the high spot on the wall, the sloshing amplitude
can be associated with max |∑βi(t)| in terms of the modal representation (2.24) (the
maximum wave elevation at the wall). Figure 2(b,c) demonstrates that the high-spot point
of z = fs,2m−1( y) is not on the wall and, therefore, analogous direct sum by bi(t) cannot be
used as definition of the sloshing amplitude when adopting (2.29). An alternative definition
of the sloshing amplitude could be associated with the b-normalised amplitude of the
liquid mass centre in the horizontal direction (relative to the Oyz frame)

max |yC(t)|, where yC(t) = 1
h

∫ 1/2

−1/2
yζ( y, t) dy = − 1

2h

N∑
m=1

μmb2m−1(t), (2.54)

which is independent of the high-spot position of z = fs,2m−1( y). Physically, ÿC(t) is by
the Lukovsky formula (2.5) related to the horizontal hydrodynamic sloshing force. The
position of yC(t) is utilised in phenomenological sloshing models such as the concentrated
mass model by Ishikawa et al. (2016).

Substituting b2m−1(t) by (2.51a,b) derives the linear steady-state liquid-mass motions in
the horizontal direction

yC(t) = as cos σ t, (2.55)

so that |as| is the sloshing amplitude in the linear case. The transmission function for as
takes the form

as

f0
= − 1

2h

N∑
m=1

μ2
mκs,2m−1

σ̄ 2
s,2m−1 − 1

= Mt + Ml

Ml

[
1

S(σ 2)
− 1

]
. (2.56)

Comparing (2.56) and (2.52) shows that amplitudes at and as become infinite and change
their sign at σ = σs,2m−1. As we discussed above, when σ → σ2m−1, the sway amplitude
of the vehicle tends to zero but as/f0 → −(1 + Mt/Ml). A particular consequence of the
latter limit is that, if Mt/Ml = O(1), as ∼ f0 at σ = σ2m−1, and, therefore, the resonant
steady-state sloshing in the small vicinity of σ1 should be rather accurately approximated
within the framework of the linear sloshing theory.

The transmission functions as/f0 and at/f0 by (2.56) and (2.52), respectively, are
drawn in figure 3 for h = 0.5 and Mt/Ml = 1. Positive values of at/f0 and as/f0 mean
that the liquid mass centre and/or vehicle oscillate in-phase with the external harmonic
forcing (2.49) but the negative values imply the out-of-phase oscillation. As usual for
the linear harmonically forced oscillator, as/f0 (the deep-blue dashed lines), the liquid
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Figure 3. Transmission functions at/f0 (the solid lines) for the tank sway amplitude and as/f0 (the deep-blue
dashed lines) for the liquid mass amplitude in the horizontal direction by (2.52) and (2.56), respectively. The
computations were done with h = 0.5 and Mt/Ml = 1. The graphic representation demonstrates that the tank
does not move but the liquid mass centre oscillates in the horizontal direction with the amplitude −1 − Mt/Ml
when σ = σ1. Positive vertical values of the transmission functions imply the in-phase oscillations with the
harmonic external force F̄ext(t) by (2.49).

mass oscillations change the phase when going through the resonance at σs,1. However,
at/f0 (the solid lines) shows that the vehicle oscillations change their phase twice, at the
resonance frequency σs,1 and at the first Stokes natural sloshing frequency (σ/σs,1 =
σ1/σs,1 = 0.874677 . . . for the chosen input data) so that the vehicle oscillates in-phase
only in the interval σ1 < σ < σs,1. Why at = 0 and as/f0 = −1 − Mt/Ml at σ = σ1 is
discussed above in the text.

2.5. The Narimanov–Moiseev nonlinear modal theory

2.5.1. The single-dominant modal system
Resonant sloshing with a finite liquid depth and σ approaching the lowest natural
sloshing frequency is normally well quantified within the framework of the so-called
Narimanov–Moiseev asymptotic theory (Narimanov 1957; Moiseev 1958; Ockendon &
Ockendon 1973; Faltinsen 1974). Faltinsen et al. (2000) and Faltinsen & Timokha (2001)
derived the corresponding modal system for the prescribed harmonic tank forcing.

The corresponding derivations for the modal system (2.31) start with the primarily
excited generalised coordinate b1(t), which should, according to the Narimanov–Moiseev
theory, possess the lowest asymptotic order O(ε1/3) equipped with the Moiseev-type
detuning

σ 2
s,1/σ

2 − 1 = O(ε2/3), (2.57)

that measures the ‘closeness’ between σ and σs,1 in terms of f0 = O(ε) � 1. Assuming
b1(t) = O(ε1/3) and utilising symmetry/antisymmetry of the non-Stokes natural sloshing
modes fs,m( y) leads to the following asymptotic relations:

b1(t) = O(ε1/3), b2m(t) = O(ε2/3), b2m+1(t) = O(ε), m = 1, . . . , N, N → ∞.

(2.58a–c)
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Coupling between sloshing and motions of a rectangular tank

Adopting (2.58a–c) and excluding the o(ε)-order terms yields the following system of
ordinary differential (Narimanov–Moiseev-type modal) equations:

b̈1 + σ 2
s,1b1 + d2(b̈1b2

1 + ḃ2
1b1) +

N∑
b=1

(
d1,b

[
b̈1b2b + ḃ1ḃ2b

] + d3,bb1b̈2b
)

= P2m−1F̄ext(t), (2.59a)

b̈2n + σ 2
s,2nb2n + d(n)

4 b̈1b1 + d(n)
5 ḃ1ḃ1 = 0, n = 1, . . . , N, (2.59b)

b̈2m−1 + σ 2
s,2m−1b2m−1 + d(m)

7 b̈1b2
1 + d(m)

10 ḃ2
1b1

+
N∑

b=1

(
d(m)

6,b b̈1b2b + d(m)
8,b b̈2bb1 + d(m)

9,b ḃ1ḃ2b

)
= P2m−1F̄ext(t), m = 2, . . . , N. (2.59c)

The hydrodynamic coefficients at the nonlinear terms are functions of the mean liquid
depth h and the mass ratio Mt/Ml. They are computed by the formulae

d1,b = d(1)
6,b = d(1)

9,b = doe,1
1,b = teo,1

b,1 = κs,1

N∑
k,i=1

qk1qi1
d1,2k−1

2i−1,2b

κ2k−1

= κs,1

N∑
k,i=1

qk1qi1
t0,2k−1
2b,2i−1 + t0,2k−1

2i−1,2b

κ2k−1
; d2 = d(1)

7 = d(1)
10 = dooo,1

1,1,1 = tooo,1
1,1,1

= κs,1

N∑
k,i,j,l=1

qk1qi1qj1ql1
d2,2k−1

2i−1,2j−1,2l−1

κ2k−1
= κs,1

N∑
k,i,j,l=1

qk1qi1qj1ql1
t1,2k−1
2i−1,2j−1,2l−1

κ2k−1
;

d3,b = d(1)
8,b = deo,1

b,1 = κs,1

N∑
k,i=1

qk1qi1
d1,2k−1

2b,2i−1

κ2k−1
; (2.60a)

d(n)
4 = d1q,2n

1,1 =
N∑

i,j=1

qi1qj1d1,2n
2i−1,2j−1, d(n)

5 = t0q,2n
1,1 =

N∑
i,j=1

qi1qj1t0,2n
2i−1,2j−1; (2.60b)

d(m)
6,b = doe,2m−1

1,b = κs,2m−1

N∑
k,i=1

qkmqi1
d1,2k−1

2i−1,2b

κ2k−1
,

d(m)
7 = dooo,2m−1

1,1,1 = κs,2m−1

N∑
k,i,j,l=1

qkmqi1qj1ql1
d2,2k−1

2i−1,2j−1,2l−1

κ2k−1
,

d(m)
8,b = deo,2m−1

b,1 = κs,2m−1

N∑
k,i=1

qkmqi1
d1,2k−1

2b,2i−1

κ2k−1
,

d(m)
9,b = teo,2m−1

b,1 = κs,2m−1

N∑
k,i=1

qkmqi1
t0,2k−1
2b,2i−1 + t0,2k−1

2i−1,2b

κ2k−1
,

d(m)
10 = tooo,2m−1

1,1,1 = κs,2m−1

N∑
k,i,j,l=1

qkmqi1qj1ql1
t1,2k−1
2i−1,2j−1,2l−1

κ2k−1
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.60c)
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In contrast to the prescribed tank motions when the Narimanov–Moiseev-type modal
system (Faltinsen et al. (2000), (5.24)) nonlinearly couples only three degrees of freedom,
β1(t), β2(t) and β3(t), the Narimanov–Moiseev-type modal system (2.59) couples an
infinite set of the second-order, b2m(t) = O(ε2/3), and third-order, b2m+1(t) = O(ε3/3),
hydrodynamic generalised coordinates.

2.5.2. Steady-state resonance sloshing and its stability
Let us assume (2.49) and σ belong to a neighbourhood of the lowest natural sloshing
frequency σs,1 so that (2.57) is satisfied. Our goal consists of constructing a steady-state
wave (periodic) solution of the Narimanov–Moiseev-type modal system (2.59), studying
its stability, and analysing the corresponding response curves, which are associated with
either the sloshing or tank amplitudes versus the forcing frequency σ .

The primarily excited generalised coordinate b1(t) has the lowest asymptotic order and
this dominant asymptotic contribution is associated with the first Fourier harmonic, i.e.

b1(t) = a cos σ t + o(ε1/3), a = O(ε1/3). (2.61)

Substituting (2.61) into modal equations (2.59b) derives

b2n(t) = a2(l0,n + h0,n cos 2σ t) + o(a3), (2.62)

where

l0,n = d(n)
4 − d(n)

5

2σ̄ 2
s,2n

, h0,n = d(n)
4 + d(n)

5

2(σ̄ 2
s,2n − 4)

, σ̄s,i = σs,i

σ
. (2.63)

Inserting (2.61) and (2.62) into (2.59a) and gathering all quantities at the first harmonic
yields the cubic secular (solvability) condition, which couples the forcing frequency σ , the
forcing amplitude f0 and the dominant sloshing amplitude a as follows:

a
(
Λ(σ 2) + m1a2

)
= P1f0 = ε = O(ε), Λ(σ 2) = σ̄ 2

s,1 − 1, (2.64)

where P1 is defined in (2.32) and

m1 = −1
2 d2 +

N∑
i=1

(
d1,i

[
−l0,i + 1

2 h0,i

]
− 2d3,ih0,i

)
. (2.65)

Furthermore, assuming a is found from the secular condition (2.64) and gathering the
corresponding asymptotic terms in (2.59a) up to the O(ε) order derives

b1(t) = a cos σ t + a3 N2,1

σ̄ 2
s,1 − 9

cos 3σ t + o(a3). (2.66)

Making the same operation with (2.59c) gives the third-order approximation

b2m−1(t) = P2m−1f0 − N1,ma3

σ̄ 2
s,2m−1 − 1

cos σ t + a3 N2,m

σ̄ 2
s,2m−1 − 9

cos 3σ t + o(a3), m ≥ 2,

(2.67)
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Coupling between sloshing and motions of a rectangular tank

where

N1,m = −3
4

d(m)
7 + 1

4
d(m)

10 +
N∑

i=1

[
h0,i

(
−1

2
d(m)

6,i − 2d(m)
8,i + d(m)

9,i

)
− l0,id

(m)
6,i

]
,

N2,m = 1
4

d(m)
7 + 1

4
d(m)

10 +
N∑

i=1

h0,i

(
1
2

d(m)
6,i + 2d(m)

8,i + d(m)
9,i

)
.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.68)

Specifically, according to the relations between the hydrodynamic coefficients (2.60),
m1 = N1,1 (m1 is defined in (2.65)) and the secular equation (2.64) implies a = (P1f0 −
N1,1a3)/(σ̄ 2

s,1 − 1). As a consequence, expression (2.67) can uniformly be used for all
m ≥ 1.

Because of the Moiseev detuning (2.57), Λ(σ 2) = O(ε2/3) and, therefore, the secular
equation (2.64) is asymptotically correct if and only if m1 = O(1). The coefficient m1 is
a function of the three non-dimensional parameters h, K and σ̄s,1 = 1 + Λ. As discussed
by Faltinsen, Rognebakke & Timokha (2003), taking σ̄s,1 = 1 in the analytical expression
for m1 keeps all the O(ε)-order components in the secular equation. The coefficient m1
becomes then only a function of h and Mt/Ml. The same logics is acceptable for N1,m and
N2,m at a3, which can be assumed independent of σ .

Stability of the asymptotic solution (2.62), (2.66), (2.67) can be studied by utilising
the fast- and slow-time separation and the linear Lyapunov method. The procedure
is well described by Faltinsen & Timokha (2009, § 9.2.3). Introducing the slow time
τ = (σε2/3t)/2 and infinitesimal perturbations α(τ) and α̃(τ ) in the lowest-order
approximation

b1 = (a + α(τ)) cos σ t + α̃(τ ) sin σ t, (2.69)

inserting (2.69) into the original modal system, gathering the lowest-order terms and the
corresponding lowest harmonics, and keeping the linear terms in α and α̃ leads to the
following system of linear differential equations:

d
dτ

(
α

α̃

)
=

[
0 −Λ − m1a3

Λ + 3m1a3 0

](
α

α̃

)
= C

(
α

α̃

)
. (2.70)

The fundamental solution of (2.70) is the exp(γ τ)-dependent function where γ is one
of two eigenvalues of the matrix C. These are solutions of the characteristic equation
γ 2 + (Λ + m1a2)(Λ + 3m1a2) = 0, which means that the steady-state solution is unstable
when

(Λ + m1a2)(Λ + 3m1a2) < 0. (2.71)

2.5.3. Dimension N in (2.59) and secondary resonances
In the limiting case Mt/Ml → ∞ (the vehicle is not affected by sloshing), the
infinite-dimensional Narimanov–Moiseev-type modal equations (2.59) couple only three
hydrodynamic generalised coordinates, or, in other words, N = 1, and, in particular,
d(m)

4 = d(m)
5 = 0, m ≥ 2 in (2.59b). When Mt/Ml = O(1), all the derived expressions

should formally be tested on convergence as N → ∞. However, the tests can be dropped
when remembering that we deal with asymptotic approximations within the framework
of the Narimanov–Moiseev theory. This means in particular that, if the hydrodynamic
coefficients d(n)

4 and d(n)
5 at nonlinear terms of (2.59b) are comparable or smaller than
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Figure 4. The relative values (ratios)
√

(d(n)
4 )2 + (d(n)

5 )2/

√
(d(1)

4 )2 + (d(1)
5 )2 for n = 1, . . . , 8, two different

mean liquid depths h and four ratios Mt/Ml. Panel (a) corresponds to h = 0.4 but panel (b) is drawn with
h = 0.8. The computed ratios are labelled by the Mt/Ml-values. These two panels show that asymptotic
approximation of the second-order wave component may be restricted to b2, b4, b6 and b8 unless the secondary
resonance by b2n, n ≥ 1 matters. Panel (c) draws curves in the (h, Mt/Ml) plane along which the secondary
resonance by b2n, n ≥ 1 may occur. It shows that the secondary resonance is only possible for b4 and b6 (the
curves are labelled by the indices). Panel (d) demonstrates the pairs (h, Mt/Ml) about which the secondary
resonances occur for the third-order hydrodynamic generalised coordinates b2m−1, m ≥ 2. For the studied h
and Mt/Ml, only b9(t), . . . , b15(t) can theoretically be amplified due to the secondary resonance phenomenon.

O(ε1/3), these equations and the corresponding second-order generalised coordinates
can be neglected. Specifically, d(1)

4 ∼ d(1)
5 = O(1) and, therefore, conclusions about the

asymptotic smallness should involve the ratio
√

(d(n)
4 )2 + (d(n)

5 )2/

√
(d(1)

4 )2 + (d(1)
5 )2 for

n ≥ 2.
Figure 4(a,b) demonstrates the ratio for n = 1, . . . , 8 and h = 0.4 (panel (a)) and 0.8

(panel b)) with the mass ratios Mt/Ml = 0, 1, 5, and 10 whose values are employed as
labels. Because the realistic forcing amplitudes ε ∼ ε ∼ 10−2 (ε is defined in (2.64)),
panels (a,b) show that taking N = 4 in (2.59b) should provide a satisfactory asymptotic
approximation of the second-order wave component. Moreover, when Mt/Ml ≥ 5, one can
restrict the asymptotic analysis to the single second-order hydrodynamic coordinate b2(t)
as it happens for the prescribed tank motion in Faltinsen et al. (2000).

916 A60-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

26
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.266


Coupling between sloshing and motions of a rectangular tank

The higher hydrodynamic generalised coordinates can be affected by the secondary
resonance phenomenon. The secondary resonance concept was extensively elaborated
and discussed by Faltinsen & Timokha (2009, chapter 8) for prescribed tank motions.
The secondary (internal) resonance is generated by the higher Fourier harmonics. For the
prescribed resonant tank motions, N = 1 in the corresponding Narimanov–Moiseev-type
modal equations and σ ≈ σ1, the secondary resonances are expected when nσ ≈ nσ1 ≈
σn, n ≥ 2. Because the latter secondary resonance condition is based on the natural
sloshing spectrum, which, in turn, is a function of h, one can theoretically estimate
the non-dimensional liquid depth when the secondary resonances occur. According to
Faltinsen & Timokha (2009, chapter 8), the resonances are expected only in the asymptotic
limit h → 0 (in the shallow-water approximation).

The derived Narimanov–Moiseev-type modal equations formally contain an infinite
number of b2n(t), n ≥ 2. This derives the secondary resonance condition σ 2

s,2n/σ
2
s,1 = 4

with respect to h and Mt/Ml yields two curves in the (h, Mt/Ml)-plane, which are
depicted in figure 4(c). The curve ‘4’ corresponds to b4(t) but ‘6’ is responsible for
b6(t). For the hydrodynamic generalised coordinates b2n, n ≥ 4, the secondary resonance
phenomenon is not possible, at least, in the interval 0.4 ≤ h ≤ 0.9. Specifically, the
curve ‘6’ in figure 4(c) suggests an unrealistically lightweight vehicle and, therefore, the
secondary resonance by the second-order generalised coordinates practically matters only
for b4(t) when (h, Mt/Ml) is close to the upper curve ‘4’. Based on the numerical data in
figure 4(a–c), one can restrict the second-order generalised coordinates in (2.59a), (2.59b)
to b2(t), b4(t), b6(t) and b8(t) (N = 3) for h and Mt/Ml away from the curves ‘4’ and ‘6’
in figure 4(c). Moreover, one can pose N = 1 when 10 � Mt/Ml.

The third-order sloshing approximation by the hydrodynamic generalised coordinates
b2m−1(t), m ≥ 2 are governed by (2.59c). These generalised coordinates are ‘driven’, they
do not affect the secularity condition (2.64). However, they can potentially be amplified
due to the secondary resonance phenomenon, which is associated with zeros of the
second denominator σ 2

s,2m−1/σ
2
s,1 − 9 = 0 (the first denominator is never equal to zero

as σ ≈ σs,1). Solving σ 2
s,2m−1/σ

2
s,1 = 9 with respect to h and Mt/Ml yields the curves in

figure 4(d). The curves are labelled by the mode numbers, 2m − 1. Panel (d) demonstrates
that only modes fs,2m−1, m = 5, . . . , 8 could be excited due to the secondary resonance.
Because these higher wave modes can be significantly affected by viscous damping, their
resonant amplification looks unrealistic from a practical point of view.

2.5.4. Soft- and hard-spring type behaviours
Within the framework of the Narimanov–Moiseev theory, the constructed steady-state
solution is valid for finite liquid depths, h = O(1), and no secondary resonances occur.
Another specific limitation is that the coefficient m1 = O(1) in the secular equation (2.64).
When O(1) = m1 < 0, the nonlinear sloshing response curves in the (σ/σs,1, |a|)-plane
should demonstrate the soft-spring type behaviour but O(1) = m1 > 0 causes the
hard-spring type behaviour. If m1 ≈ 0, the Narimanov–Moiseev theory fails. The limiting
case Mt/Ml → ∞ causes the critical depth h = 0.3368 . . ., for which m1 = 0. A detailed
analysis of sloshing with this critical depth is given by Faltinsen & Timokha (2009),
chapter 8.

For the sloshing-affected vehicle, m1 is a function of h and Mt/Ml. Figure 5
demonstrates the solid bold curve along which m1 = 0. The curve divides the (h, Mt/Ml)
plane into the two areas; it has a vertical asymptote at h = 0.3368 . . .. The left-hand area
implies the hard-spring type behaviour but the right-hand one means the soft-spring type.
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Figure 5. The solid bold curve consists of the pairs (h, Mt/Ml) along which m1 = 0 in the secular equation
(2.64). The curve separates the plane into two domains, where the (σ/σs,1, |a|) response curves (coming from
(2.64)) demonstrate the soft-spring (m1 < 0) and hard-spring (m1 > 0) type behaviours; when Mt/Ml → ∞,
the critical liquid depth tends to 0.3368 . . . (Faltinsen & Timokha (2009), chapter 8). The embedded pictures
schematically depict the soft- and hard-spring type branchings where the solid lines correspond to stable
solutions but the dashed lines mark the instability according to (2.71). The turning point T results from
intersection with γ3 : Λ + 3m1a2 = 0. The skeleton line γ0 : Λ + m1a2 = 0 divides the two branches of (2.64).
The Narimanov–Moiseev theory fails in a neighbourhood of the dashed red (secondary resonance for the
second-order generalised coordinates b4 and b6) and dotted blue (secondary resonance by the third-order
generalised coordinates b5, b7, . . . , b15 marked in the clockwise direction) lines. Three green squares specify
the experimental cases I, II, and III by Rognebakke & Faltinsen (2003), which are studied in § 3. The
experimental cases exhibit realistic values of the structural (+ added mass)/liquid mass ratios. Positions of
these ‘green’ experimental points also show that no secondary resonances occur for these experiments and the
corresponding amplitude response curves should be of the soft-spring type.

These are illustrated by the corresponding schematic response curves in the (σ/σs,1, |a|)
plane.

When drawing the solid bold curve in figure 5, we neglected the secondary resonance
phenomenon. However, the Narimanov–Moiseev theory fails when these resonances occur
and, therefore, one should exclude the pairs (h, Mt/Ml) along which the denominators
in (2.63) and (2.68) are zero. These pairs are indicated by the dashed (red) lines for
the secondary resonances of the second-order generalised coordinates b2n and the dotted
(blue) lines – for the secondary resonances by b2m−1, m ≥ 2. The figure also shows three
points (in green), which are associated with experimental cases I, II and III on a floating
rectangular tank by Rognebakke & Faltinsen (2003) – the cases will be considered in § 3.

2.5.5. Nonlinear resonance response curves
When working on the linear response curves in figure 3, we defined the vehicle and
sloshing amplitudes by selecting the first Fourier harmonics at and as in the generalised
coordinate η2(t) and the horizontal liquid-mass coordinate yC(t), respectively. In the linear
theory, the higher Fourier harmonics do not exist. The nonlinear sloshing theory invertible
yields the non-negligible higher harmonics and, therefore, we must return to the original
definition by choosing max |η2(t)| and max |yC(t)| as non-dimensional wave amplitudes of
vehicle and sloshing, respectively.
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Coupling between sloshing and motions of a rectangular tank

Substituting (2.66) and (2.67) into (2.54) gives the Narimanov–Moiseev approximation
of the horizontal liquid mass centre,

yC(t) = −(2h)−1
[
μ1a + A0(σ )f0 + A1a3

]
︸ ︷︷ ︸

as

cos σ t − (2h)−1A2a3 cos 3σ t + O(a5),

(2.72)

where

A0(σ
2) =

N∑
m=2

κs,2m−1μ
2
m

σ̄ 2
s,2m−1 − 1

, A1 = −
N∑

m=2

μmN1,m

σ̄ 2
s,2m−1 − 1

, A2 =
N∑

m=1

μmN2,m

σ̄ 2
s,2m−1 − 9

,

(2.73a–c)

where A1 and A2 can be computed, without loss of generality, at σ = σs,1 (see, arguments
regarding m1 in (2.64)) but A0 is an attribute of the linear theory and, therefore, if we
require that the nonlinear steady-state solution (2.72) transforms into the linear one away
from the resonance, A0 should be considered as a function of σ 2.

Inserting (2.72) into (2.6) gives

η2(t) =
[
−f0 + 1

2 K(μ1a + A0(σ
2)f0 + A1a3)

]
︸ ︷︷ ︸

at

cos σ t + 1
2 KA2a3 cos 3σ t + O(a5),

(2.74)

which presents the Narimanov–Moiseev approximation of the steady-state vehicle-sway
motion.

In contrast to the linear case, the lowest Fourier harmonics in expressions for yC(t) and
η2(t) are not unique; one should consider the non-zero Fourier component at cos 3σ t.
As a consequence, computing the response curves should be based on max |yC(t)| and
max |η2(t)| instead of as and at. These response curves are drawn and compared with
linear transmission functions in figure 6 for input parameters in figure 3. When h =
0.5 and Mt/Ml = 1, the nonlinear response curves in the (σ/σs,1, max |η2(t)|/f0) and
(σ/σs,1, max |yC(t)|/f0) planes demonstrate the soft-spring type behaviour. It is consistent
with expectations in figure 5. The bold solid lines in figure 6 specify the stable steady-state
nonlinear sloshing but the magenta solid lines indicate the unstable nonlinear forced
sloshing. Condition (2.71) is utilised to detect the stability/instability. As explained in the
schematic embedded response curves of figure 5, the instability zone is defined by the
skeleton line γ0 : Λ(σ 2) + m1a2 = 0 and the curve γ3 : Λ(σ 2) + 3m1a2 = 0. The latter
curve intersects the turning point T on the lower branch of figure 6(b).

The dashed deep-blue lines specify the linear transmission functions from figure 3. The
linear branching does not depend on the forcing amplitude, but the nonlinear responses
are functions of f0; the present computations are made with f0 = 0.01. The linear theory
implies that the tank amplitude is exactly equal to zero at σ = σ1. However, A2 �= 0 and,
therefore, the modulus of (2.74) is never equal to zero. The graphs in figure 6 demonstrate,
however, a minimum at the point M, which is located slightly to the left of σ1/σs,1.

To the authors’ best knowledge, the literature does not contain appropriate experimental
data to validate the undamped steady-state results in figure 3. However, the constructed
steady-state solution will be used in the next section to describe sway of a floating tank
in an incident regular wave when the damping due to external wave radiation and the
free-surface nonlinearity play an important role. A good agreement with experiments will
be shown.

916 A60-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

26
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.266


O.M. Faltinsen and A.N. Timokha

0
1.21.11.00.90.8

16

14

12

10

8

6

4

2

σ1/σs,1

M
T

σ/σs,1

1.21.11.00.90.8

σ/σs,1

0

16

14

12

10

8

6

4

2

σ1/σs,1

TM
ax

 (
|y

c|
/f 0

)

M
ax

 (
|η

2
|/f

0
)

(b)(a)

Figure 6. The steady-state amplitude response curves, which characterise vehicle-sway oscillations
(max |η2(t)| by (2.74)) and sloshing (the non-dimensional horizontal amplitude of the mass centre, max |yC(t)|
by (2.72)) within the framework of the Narimanov–Moiseev asymptotic theory. The soft-spring type behaviour
happens for the input date in figure 3, i.e. for h = 0.5 and Mt/Ml = 1. The computations are conducted with
the non-dimensional forcing amplitude f0 = 0.01. The nonlinear results depend on f0 but, to easily compare the
linear (the dotted blue lines) and nonlinear (the solid lines (stability) and dashed lines (instability)) branching,
the amplitudes are normalised by f0. In contrast to the linear case, the tank-sway amplitude is not equal to zero
at σ = σ1 within the framework of the nonlinear theory. However, it has a minimum at the point M, which is
located slightly to the left of σ1.

3. Incident wave-induced sway response of a floating body with rectangular tank(s) in
two-dimensional flow conditions

The present section compares the constructed theory with two-dimensional experiments
by Rognebakke & Faltinsen (2003) (see, figure 1b) as a step towards analysing ocean
wave-induced response of a floating marine structure with internal tanks in resonant
sloshing conditions. The primary focus is on the steady-state sway amplitude. The
measurements were earlier compared with numerical simulations by Lee, Choi & Faltinsen
(2010), Lee et al. (2011) and Shen et al. (2020).

Rognebakke & Faltinsen (2003) conducted model tests in a narrow wave flume, which
has an overall length of 13.5 m and is 0.603 m wide. It is equipped with an electronically
operated single-flap wave maker calibrated for a water depth of 1.03 m. A rigid hull with
a constant rectangular cross-section contains two identical rectangular tanks. The hull is
allowed to slide along rails on top of the wave flume so that the corresponding friction
force was negligibly small. The hull draft is d = 0.2 m. The hull/tanks dimensions as
well as other geometric parameters are demonstrated in figure 7(a). The hull length L =
0.599 m is only 4 mm shorter than the flume width so that there is 2 mm between the
flume and hull walls. The external hull breadth B = 0.4 m, which is close to the inner
tank breadth b = 0.376 m. The sum Mb = Mt + Ml was chosen to provide less than 1 %
of the buoyancy, which was estimated as Mb = 47.5 kg. A system of horizontal springs
with the total stiffness 30.9 N m−1 was installed to prevent a horizontal steady drift of
the hull, i.e. C22 = 30.9 N m−1 in (3.1). The bearing-induced constant horizontal force
was estimated to be 2 N. An objective has been to create two-dimensional flow conditions.
Local three-dimensional flows are only possible in a narrow gap between the body and the
wave flume walls.
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Figure 7. The graphic information on experimental set-up, measurements and computations by Rognebakke
& Faltinsen (2003) regarding a swaying rigid rectangular body in incident regular waves in figure 1(b). Panel
(a) shows side and top views on the experimental body, as well as the dimensional amplitudes of the incident
waves ζa (discontinuous at three values of σ ). The body contains two tanks and has the length L, which is
only 4 mm less than the experimental flume width; this allows for implementing the two-dimensional external
surface-wave theory. Using this linear theory, Rognebakke & Faltinsen (2003) computed the sway added-mass
A22(σ ) and wave radiation damping B22(σ ) coefficients, as well as the horizontal wave excitation force. The
computed values are illustrated in panels (b,c) in terms of A22(σ ), 2Ξ22(σ ), and F0(σ ) as introduced in (3.1).
The mass-measured coefficient C(0)

22 = C22/σ
2 is associated with a system of springs in the experimental

set-up, used to prevent a steady drift of the rigid hull. In all the panels, a focus is on the experimental resonance
zone, which was chosen by Rognebakke & Faltinsen (2003) to localise the lowest natural Stokes sloshing
frequency somewhere in its middle. Panel (d) compares the experimental sway amplitudes (scaled by ζa) and
their linear theoretical prediction āt for the empty floating rectangular section by formulae (3.3) and (3.4).
Accounting for the viscous damping and bearings-induced friction (the dotted blue line) significantly improves
the purely linear theoretical prediction by (3.3). Effect of the spring-type system in the experimental set-up can
be totally neglected in the resonance zone.

The model tests focused on the steady-state sway motions in incident regular waves
of amplitude ζa and frequency σ (see, the classical definition of the linear surface wave
theory in, e.g. Faltinsen & Timokha (2009), chapter 3) as demonstrated in figure 7(a).
There are jumps at 7.5, 7.0 and 5.5 rad s−1 (the correct positions of these jumps are
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published by Rognebakke & Faltinsen (2001)). The studied resonant phenomena are
mainly localised in the experimental resonant zone (range) 7.0 rad s−1 � σ � 11.0 rad s−1

(widely covers σ1), so that jumps 3 and 2 are not important but jump 1 may only matter
for experimental series with the intermediate depth h = 0.25, which is not considered in
the present paper. Interested readers are referred to the original paper by Rognebakke &
Faltinsen (2003) where they can find more details on the experimental set-up used and
the model tests conducted, including appropriate photographs and a description of the
measurement technique.

The main difference between the steady-state analysis of the case in panel (b) from the
steady-state results for the case in panel (a) in figure 1 consists of external flows caused by
incident deep water regular harmonic waves. Rognebakke & Faltinsen (2003) stated that
external sea loads and interaction with the swaying hull can be approximated within the
framework of the linear surface wave theory for the wave frequencies from the resonant
experimental zone in figure 7. Their arguments were that the measured wave steepness
2πζa/λ (λ = 2πg/σ 2 is the incident wavelength) and the horizontal non-dimensional
steady-state tank amplitude max |η2b(t)|/B, where η2b(t) is the dimensional body sway
by (2.1a,b), are small values of the same asymptotic order. Furthermore, because B ∼ b ∼
λ/2 for the forcing frequencies σ in the experimental resonance zone, these small values
can be related to the forcing amplitude O(ε) = F̄ext/σ

2 � 1 applied to the tank, where the
external horizontal dimensional (hydrodynamic) force is scaled by the summarised mass
Mt + Ml + A22(σ ) and A22(σ ) is the frequency-dependent sway added-mass coefficient,
i.e. F̄ext(t) = Fext(t)/(b(Mt + Ml + A22(σ )).

An appropriate mathematical model for the theoretical steady-state analysis of the
experimental data by Rognebakke & Faltinsen (2003) can adopt the free-surface sloshing
problem (2.3), but the dimensional Newton law (2.4) with respect to the dimensional
generalised coordinate η2b(t) should be revised to account for external liquid flows, as
well as some specific features of the experimental set-up. Strictly speaking, because the
inner (sloshing) nonlinearity causes higher Fourier harmonics, the external hydrodynamic
loads due to sway should be represented in terms of the convolution integrals. However,
Rognebakke & Faltinsen (2003) showed that a representation of external hydrodynamic
loads in terms of added-mass and damping coefficients was an appropriate approximation.
The Newton law takes then the form⎛

⎝ Mb︷ ︸︸ ︷
Mt + Ml +A22(σ )

⎞
⎠ η̈2b +

C(0)
22 (σ )σ 2︷︸︸︷
C22 η2b︸ ︷︷ ︸
H(η2b)

+
2σΞ22(σ )︷ ︸︸ ︷
B22(σ ) η̇2b +

1
2 ρe(Ld)CD︷︸︸︷

Bv
22 η̇2b|η̇2b| + Bb

22 sgn(η̇2b)︸ ︷︷ ︸
D(η̇2b)

= Fslosh + Fext(σ, t)︸ ︷︷ ︸
ζaσ 2F0(σ ) cos(σ t+α)

, (3.1)

where, according to the linear (external) surface wave theory, A22(σ ) is the
frequency-dependent sway added mass, B22(σ ) is the sway wave radiation damping, Fslosh
is the horizontal hydrodynamic sloshing force and Fext is the horizontal external wave
excitation force, in which we introduce the relative phase lag α between the first Fourier
harmonic in η2b(t) = η2a cos σ t and the wave-induced external force. Calculations of
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Coupling between sloshing and motions of a rectangular tank

A22(σ ), B22(σ ) and F0(σ ) are based on the strip theory; their numerical values are given
by Rognebakke & Faltinsen (2003).

The difference from the coupled undamped fluid–vehicle dynamics in § 2 with the
floating tank whose sway is described by the Newton law consists of the additional
horizontal restoring force H, the damping term D and the frequency-dependent
added-mass coefficient in the front of η̈2b. The added-mass coefficient A22(σ ), the external
wave radiation damping coefficient B22(σ ) as well as the horizontal force Fext(σ, t) are
frequency dependent within the framework of the linear external surface wave theory
and steady-state oscillatory conditions. These are a necessary attribute of the considered
problem. Another necessary damping component is caused by viscous flows around the
floating rigid body. It contains the viscous damping coefficient Bv

22 = (ρeCD(Ld))/2,
where ρe is the external liquid density, L is the hull length and CD is the drag coefficient,
which is mainly associated with the flow separation. Whereas B22(σ ) is only a function σ ,
the viscous damping is amplitude dependent; it increases with increasing tank amplitude
for the fixed CD.

Appearance of the restoring force H and the nonlinear damping quantity Bb
22sgn(η̇2b)

are caused by imperfections in the experimental set-up. Ideally, these should be zero or
negligible. The restoring force is a consequence of a soft spring system, which prevents a
slow horizontal tank drift. Rognebakke & Faltinsen (2003) discovered the set-up damping,
which is expressed by Bb

22 sgn(η̇2b) where ‘sgn’ is the signum function. It was associated
with frictions of the bearings. The bearings were slightly pretensioned which caused a
constant frictional force Bb

22 acting against the motion. The importance of this kind of
amplitude and frequency dependent structural damping increases with decreasing body
amplitude . To handle the nonlinear viscous damping, one can apply the equivalent
linearisation technique, which assumes that the first Fourier harmonic in η2b(t) dominates.
This yields a linear-type expression (in term of η2b(t)) for the second and third summands
of D as follows:

|η̇2| η̇2 ≈ 8
3π

|at|σ η̇2, sgn(η̇2b) = sgn (η̇2) ≈ 4
πσ |at| η̇2, η2 = η2b

b
, (3.2a–c)

where η2b is normalised by the tank breadth b ∼ B (as in (2.1a,b) for the vehicle problem),
at is the already-introduced (in § 2) non-dimensional (scaled by b) coefficient at the first
(dominating) Fourier harmonic of η2(t). The linear approximation (3.2a–c) implicitly
demonstrates that small and large amplitudes at can significantly increase the damping
in the mechanical system. It is applicable in the linear sloshing analysis and within the
framework of the Narimanov–Moiseev-type asymptotic approximation when the lowest
Fourier harmonic of η2(t) dominates. Approximation (3.2a–c) becomes invalid when
the higher Fourier harmonics give comparable contributions as may happen for transient
motions.

Figure 7(b,c) presents Mb, A22(σ ), 2Ξ22(σ ), C(0)
22 (σ ) and F0(σ ) (all in kilograms),

which are introduced in (3.1). Whereas the kilograms are the natural measure for Mb and
A22(σ ), the kilogram-measured coefficients 2Ξ22(σ ), C(0)

22 (σ ) and F0(σ ) are artificially
introduced to compare Mb and A22(σ ) with the external radiation damping, restoring
force in the set-up, and the external horizontal force, respectively. Comparing these
frequency dependent functions in the experimental resonance zone makes it possible to
estimate the effect of the corresponding physical factors as well as the experimental set-up
imperfections, which are associated with the restoring force H.
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O.M. Faltinsen and A.N. Timokha

Figure 7(b) demonstrates the leading effect of Mb, 2Ξ22(σ ) and the added mass A22(σ ).
The means that the structural mass and the external wave effect matter. The parameter C(0)

22
is small in the experimental resonance zone. Taking the mean value of C(0)

22 (σ ) in this zone
causes the structural frequency at 0.54 rad s−1, which is far from 7.0 rad s−1 (the lower
bound of the frequency zone). These facts and our computations confirm that the auxiliary
spring system can be neglected in the studied cases and, therefore, the set-up imperfection
quantity H can be excluded from the forthcoming analysis.

The external wave excitation force is proportional to ζa. The external wave excitation
force (scaled to be measured in kilograms) is shown in figure 7(c).

Rognebakke & Faltinsen (2003) report experimental measurements of the horizontal
tank amplitude max |η2b(t)| normalised by ζa for empty tanks. Within the framework
of the linear surface wave theory, the non-dimensional (b-scaled) tank oscillations can
be posed as η2(t) = η2b(t)/b = η2a/b cos σ t = at cos σ t. Excluding Fslosh, neglecting H
(computations showed that the restoring force gives less than 0.5 % of contribution) and
the nonlinear damping components in (3.1) derives the ζa scaled tank amplitude

āt = atb
ζa

= F0(σ )√
(Mb + A22(σ ))2 + 4Ξ2

22(σ )

. (3.3)

Furthermore, using the equivalent linearisation for the nonlinear damping components
derives the following equation with respect to āt:

ā2
t

(
[Mb + A22(σ )]2 + 4

[
Ξ22(σ ) + B̄b

22/|āt| + B̄v
22|āt|

]2
)

= F2
0(σ ), (3.4)

where

B̄b
22 = 2 Bb

22
πζaσ 2 and B̄v

22 = 2
3π

ρeLdζaCD. (3.5a,b)

The theoretical tank amplitude āt according to the two theoretical predictions (3.3) and
(3.4) is compared in figure 7(d) with measurements by Rognebakke & Faltinsen (2003).
The solid line is used to mark computations by (3.3) (without nonlinear damping sources)
but the dotted blue line implies (3.4), which accounts for the nonlinear damping. The first
line is continuous. The second line demonstrates two jumps due to the discontinuity of ζa
as is shown in figure 7(a). This is because B̄b

22 and B̄v
22 depend on ζa. Specifically, two

different measured values are located at ‘jump 2’, which make invisible the theoretical
jump at σ = 7.5 rad s−1. The theoretical jump 2 at σ = 7 rad s−1 is relatively small but
it clearly exists on the graph. Influence of the bearings-related friction is more important
and provides a sufficient effect on the tank amplitude. Our computations adopt CD = 3
(arguments for choosing this value are given by Rognebakke & Faltinsen (2003, 2001)
who showed that varying CD at this value weakly affects the steady-state wave result).

Because the constructed nonlinear sloshing theory assumes finite liquid depth, we
exclude experiments with the intermediate liquid depth (h = 0.25) but concentrate on
the cases I, II, and III in table 1. According to normalisation (2.6) and definition
(2.49), excluding the non-necessary terms and performing the equivalent linearisation,
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Coupling between sloshing and motions of a rectangular tank

Cases bh (m) h Mt (kg) Ml (kg) σ1 (rad s−1) σs,1 (rad s−1)
σ1

σs,1

Mt + A22(σs,1)

Ml

I (one tank) 0.186 0.495 37.01 10.49 8.65759 9.12322 0.94896 3.78376
II (one tank) 0.290 0.771 31.51 16.30 8.98260 9.49867 0.94567 2.10715
III (two tanks) 0.186 0.495 26.51 20.99 8.65759 9.66356 0.89590 1.40315

Table 1. Details on the experimental cases I, I, III by Rognebakke & Faltinsen (2003) conducted with a
finite sloshing liquid depth and the floating hull whose geometric details are presented in figure 7(a). The
Stokes natural sloshing frequency σ1 by (2.10) is only function of the non-dimensional sloshing-liquid depth
h. The non-Stokes natural sloshing frequencies in the sloshing-affected tank are computed from the dispersion
equation (2.15), in which the parameter K = K(σ ) is defined in (3.7a). These frequencies as well as linear
and nonlinear response curves are strongly affected by h and the mass ratio (Mt + A22(σs,1))/Ml, which is
an analogy of Mt/Ml in § 2. The experimental pairs (h, (Mt + A22(σs,1))/Ml) determine three green points in
figure 5.

the governing equation (3.1) will be adopted in the following non-dimensional form:

η̈2 + K(σ )

∫ 1/2

−1/2
y

∂2

∂t2
ζ( y, t) dy + 2σ

[
Ξ(σ) + Ξ+(σ )|at| + Ξ−(σ )

|at|
]

η̇2︸ ︷︷ ︸
D(η̇2)

= σ 2f0(σ ) cos(σ t + α), (3.6)

where the non-dimensional coefficients are

K(σ ) = Ml

(Mb + A22(σ ))h
, f0(σ ) = ζa

b
F0(σ )

Mb + A22(σ )
, (3.7a)

Ξ(σ) = Ξ22(σ )

Mb + A22(σ )
, Ξ+(σ ) = 2ρeLd bCD

3π(Mb + A22(σ ))
,

Ξ−(σ ) = 2B22

πσ 2b(Mb + A22(σ ))
(3.7b)

and at is the non-dimensional coefficient at the lowest Fourier harmonic of the
non-dimensional generalised coordinate η2(t).

3.1. Quasi-linear steady-state analysis

3.1.1. Resonant frequencies
Computations with empty tanks showed that the external flows caused damping of the
swaying body, which cannot generally be neglected. However, the undamped analysis
of the governing equation (3.6) would be useful for evaluating resonance frequencies,
which are associated with the corresponding non-Stokes natural sloshing frequencies
σs,2m−1 introduced in § 2.2. Indeed, taking D = f0 = 0 in (3.6) and following the analytics
in the aforementioned section, we arrive at the dispersion equation (2.15) with the
frequency-dependent coefficient K = K(σ ) from (3.7a). The lowest resonance frequencies
σs,1 for the experimental cases I, II, and III are documented in table 1 together with the
lowest Stokes natural sloshing frequency σ1 by (2.10) and their ratios.

The Stokes natural sloshing frequency σ1 is only function of the non-dimensional mean
tank liquid depth h and, therefore, it is the same in the cases I and III, where one/two tanks
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have the same fillings. The lowest resonant frequency σs,1 is a complicated function of h
and (Mt + A22(σs,1))/Ml, which plays the same role as Mt/Ml in § 2. The ratio is presented
in the last column of table 1 to show that it decreases with these experimental cases. As
a consequence, the frequency ratio σ1/σs,1 decreases according to the expectation of the
undamped sloshing theory in sloshing-affected vehicles.

3.1.2. Quasi-linear periodic solution
Using the corresponding linear modal steady-state solution from § 2.4.2, which is
represented by (2.50a–c), (2.51a,b), adopting the quasi-linear damping terms in (3.6) and
gathering all quantities at cos σ t and sin σ t, we arrive at the following system of equations:

−S(σ 2)at = f0(σ ) cos α; 2
[
Ξ(σ) + Ξ+(σ )|at| + Ξ−(σ )|at|−1

]
at = f0(σ ) sin α

(3.8)

with respect to the unknown non-dimensional tank amplitude at (the linear solution has
only the first Fourier harmonic) and the already-introduced phase lag α between the
first Fourier harmonic in η2(t) and the incident wave. Taking the sum of squares and
introducing the sloshing amplitude as as in § 2.4.2 leads to

a2
t

(
S2(σ 2) + 4

[
Ξ(σ) + Ξ+(σ )|at| + Ξ−(σ )

|at|
]2

)
= f 2

0 (σ ),

as = at

h K(σ )

[
S(σ 2) − 1

]
. (3.9)

Finding at from the first equation and substituting it into the second expression makes it
possible to describe the single-harmonic quasi-linear steady-state horizontal motions of
the tank and liquid mass centre.

Amplitudes at and as are finite at the resonance frequency σs,1, where S(σ 2
s,1) = 0. As

in the undamped theory from § 2.4.2, at → 0 and the sloshing amplitude is finite, as →
f0(σ1)/(h K(σ1)), as σ tends to the first Stokes natural sloshing frequency σ1.

3.2. The Narimanov–Moiseev steady-state asymptotic solution
The undamped steady-state solution from §§ 2.5.2 and 2.5.5 can be used to
construct the coupled slosh–body–sea–wave motions when sloshing is modelled by the
Narimanov–Moiseev-type equations (2.59). Because the phase lag α appears only in the
right-hand side of (3.6), one can take this steady-state solution, which contains only
cosine-type components, with replacing f0 by f0(σ ) cos α and K by K(σ ) introduced in
(3.7a). This means, in particular, that the secular equation (2.64) takes the form

f0(σ ) cos α = P−1
1 a

(
Λ(σ 2) + m1a2

)
(3.10)

but the first Fourier harmonic amplitude at in (2.74) is defined as

at = at(a, σ ) = a
(

B0(σ ) + B2(σ )a2
)

, (3.11)

where

B0(σ ) = −Λ(σ 2)

P1
+ 1

2
K(σ )

(
μ1 + Λ(σ 2)

P1
A0(σ

2)

)
,

B2(σ ) = −m1

P1
+ 1

2
K(σ )

(
A1 + m1

P1
A0(σ

2)

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.12)
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Coupling between sloshing and motions of a rectangular tank

Substituting the first Fourier harmonic approximation at cos σ t of η2(t) into the
governing equation and gathering the sinusoidal components caused by the damping yields

f0(σ ) sin α = 2a
[∣∣∣B0(σ ) + B2(σ )a2

∣∣∣ (Ξ(σ) + Ξ+(σ )|at(a, σ )| + Ξ−(σ )

|at(a, σ )|
)]

︸ ︷︷ ︸
Ξext(a,σ )

.

(3.13)

Equations (3.10) and (3.13) couple the lowest-order amplitude a in the Narimanov–
Moiseev asymptotic steady-state solution and the phase lag α. They are the mathematical
basis to take into account the sloshing-related damping and analyse stability of the
constructed steady-state solution as was done in § 2.5.2.

3.2.1. Sloshing-related viscous damping and stability
Equations (3.10) and (3.13) are derived assuming the damping is fully associated with
the external flow. However, Rognebakke & Faltinsen (2003) demonstrated that the
sloshing-related viscous damping and wave breaking may matter not only in the transient
wave phase. Using the Narimanov–Moiseev asymptotic theory with the single-dominant
generalised coordinate b1(t) in (2.60) makes it possible to link the mean damping with,
primarily, damping in the lowest (dominant) equation (2.59a) by incorporating the linear
damping term 2ξ1ḃ1(t), where ξ1 is the (mean) damping ratio.

Going this way and introducing the phase lag α into (2.49) as F̄ext(t) = σ 2f0 cos(σ t +
α) derives the secular equation (2.64) in the form f0 cos α = P−1

1 a(Λ(σ 2) + m1a2)

as well as the damping-related expression f0 cos α = 2a[P−1
1 ξ1]. Comparing (3.13)

with this expression shows that Ξext plays the same role as Ξslosh = P−1
1 ξ1 in the

Narimanov–Moiseev theory in which the sloshing-related damping is included in the
dominant modal equation. Summarising both damping sources means that (3.13) needs
to be taken in the form

f0(σ ) sin α = 2a (Ξslosh + Ξext(a, σ ))︸ ︷︷ ︸
Ξdamp(a,σ )

. (3.14)

For each forcing frequency σ , the system of (3.10), (3.14) governs the lowest-order
amplitude parameter in the Narimanov–Moiseev steady-state solution a and the phase lag
α. Taking the sum of squares gives the following equation:

f 2
0 (σ )

a2 =
(

Λ(σ 2) + m1a2

P1

)2

+ 4 Ξ2
damp(a, σ ) (3.15)

with respect to the lowest-order sloshing amplitude a.
Accounting for damping in the nonlinear modal equations corrects zones of stable and

unstable sloshing. Following Faltinsen & Timokha (2017) who show how to separate fast-
and slow-time scales in modal systems with linear damping terms derives the sloshing
instability condition

(Λ(σ 2) + m1a2)(Λ(σ 2) + 3m1a2) < −Ξ2
damp(a, σ ) < 0, (3.16)

which replaces (2.71) for the damped nonlinear sloshing in a rectangular floating tank.
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3.2.2. Nonlinear response curves
After solving the secularity (solvability) equation (3.15), the lowest-order amplitude a
should be substituted into (2.72), which describes lateral oscillations of the liquid mass
centre

yC(t) = a(B1 + B3a2)︸ ︷︷ ︸
as(a,σ )

cos σ t − A2

2h
a3 cos 3σ t + o(a3), (3.17)

where

B1(σ ) = − 1
2h

(
μ1 + A0(σ

2)

P1
Λ(σ 2)

)
, B3(σ ) = − 1

2h

(
A1 + A0(σ

2)m1

P1

)
.

(3.18a,b)

The non-dimensional amplitude at by (3.11) appears at the first Fourier harmonic of
η2(t). However, the generalised coordinate η2(t) also contains the third Fourier harmonic.
Formula (2.74) expresses it for the undamped oscillations with the constant multiplier K,
which should change to K(3σ) so that the corresponding formula now takes the form

η2(t) = at(a, σ ) cos σ t + 1
2 K(3σ)A2 a3 cos 3σ t + o(a3). (3.19)

Inserting the third Fourier harmonic component of (3.19) into the damping terms of the
linear governing equation (3.6) requires using Ξ(3σ) instead of Ξ(σ), which is rather
small according to figure 7(b) and, therefore, this quantity can be neglected. The quantity
Ξ+(3σ)at has order O(a4) for the experimental data by Rognebakke & Faltinsen (2003)
and can, therefore, be excluded within the framework of the Narimanov–Moiseev theory.
The third quantity is caused by sgn(η̇2b) when η̇2b is a single first-harmonic function. If
the first Fourier harmonic of η̇2b dominates (as in the present case), sgn(η̇2b) does not
depend on the third harmonic and the corresponding term in (3.6) only reflects the first
Fourier harmonic but the higher Fourier harmonics disappear. The damping of the 3σ

harmonic component can be neglected and (3.19) is the final asymptotic expression for the
tank oscillations.

3.3. Comparison with experiments
In order to validate the constructed analytical solutions, the theoretical sway amplitude will
be compared with measurements by Rognebakke & Faltinsen (2003) for the experimental
cases I, II, and III (figure 7 and table 1). As we have already said, the fourth experimental
case was done with intermediate liquid depth which is not accurately described by
the Narimanov–Moiseev theory. Both the quasi-linear (3.9) and nonlinear asymptotic
Narimanov–Moiseev (3.15) theories will be employed. Following the original figures by
Rognebakke & Faltinsen (2003), the comparison implies drawing the amplitude response
curves for steady-state sway and sloshing and posing the measured data in the plane
(σ, max |η2b(t)|/ζa). We will draw, in a parallel way, the theoretical amplitude response
curves in the plane (σ, max |yC(t)|b/ζa).

Because the quasi-linear steady-state solution contains only the first Fourier harmonic
with the non-dimensional multipliers at (the tank) and as (the liquid mass centre), the
ζa-scaled tank amplitude is defined by |bat/ζa|, where at comes from the first equation in
(3.9) but the ζa-scaled sloshing amplitude is defined by |bas/ζa|, where as is computed
from the second expression in (3.9). The quasi-linear solution does not account for
the free-surface nonlinearity and neglects viscous damping for the contained liquid.
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Coupling between sloshing and motions of a rectangular tank

Moreover, the quasi-linear analysis is not able to detect whether the steady-state wave
regimes are stable.

To get the nonlinear Narimanov–Moiseev steady-state wave solution, one should solve
(3.15) with respect to the dominant sloshing amplitude a, substitute the obtained root a
into (3.17) and (3.19), where the first Fourier harmonic coefficient at is computed by (3.11),
and evaluate max |η2(t)| b/ζa (sway amplitude) and max |yC(t)| b/ζa (sloshing amplitude).
The important advantage of the nonlinear theory is that using (3.16) makes it possible
to discriminate stable and unstable steady-state sloshing and, therefore, select stable and
unstable sway oscillations of the floating tank. The constructed Narimanov–Moiseev
solution also accounts for the sloshing-related viscous damping by adding Ξslosh = ξ1/P1
to Ξdamp(a, σ ) in (3.14)–(3.16), where ξ1 is the damping ratio of the lowest non-Stokes
natural sloshing mode.

Accounting for this kind of viscous damping is important for an accurate quantification
of experimental results by Rognebakke & Faltinsen (2003). This was extensively discussed
in both the original experimental paper (Rognebakke & Faltinsen 2003) and the
following-up publications by Lee et al. (2010), Lee et al. (2011) and Shen et al. (2020),
who discussed the measured data and compared them with direct simulations.

The lower bound of ξ1 is usually associated with the laminar viscous boundary layer on
the wetted tank surface and the bulk viscosity. For the Stokes natural sloshing modes,
this estimate can be computed by using (6.139) and (6.140) by Faltinsen & Timokha
(2009). In the experimental cases I, II, and III, the formulae deduce 0.00375 ≤ ξ1. Getting
similar estimates for the first non-Stokes natural sloshing mode deserves a dedicated
study. However, as we will discuss below, the formulae provide only a rough lower-bound
approximation even for the lowest Stokes wave mode, z = f1( y). That is why it can
be adopted as a lower bound for the damping ratio of the non-Stokes sloshing mode
z = fs,1( y).

Referring to Keulegan (1959), Faltinsen & Timokha (2009, § 6.3.1) discuss the
difference between the theoretical value of ξ1 for the Stokes sloshing mode z = f1( y),
which follows from the laminar boundary layer prediction, and its experimentally detected
values for containers whose length l is less than 20 cm. Owing to surface tension, ξ1 for
l = 15 cm (see, figure 7a) can be from 18 % (glass tank surface) to 75 % (Lucite) larger
than the adopted laminar boundary layer prediction. The model tank by Rognebakke &
Faltinsen (2003) is made of Plexiglas = Lucite and, therefore, we should account for the
conclusions of Keulegan (1959) regarding the surface tension effect. Equations (6.139) and
(6.140) by Faltinsen & Timokha (2009) compute the lower bound of ξ1/P1 from 0.0025 to
0.0033 in the experimental cases I, II, and III. It neglects surface tension. Remembering the
results of Keulegan (1959) on the experimental values of ξ1 in the Plexiglas tank with the
horizontal dimension ≤ 20 cm, one must increase the lower bound value, at least, by the
factor 1.75 so that ξ1/P1 = 0.0045 should uniformly be used in (3.14)–(3.16) to roughly
estimate the viscous damping.

Comparisons of the sway and sloshing amplitude curves with their measurements by
Rognebakke & Faltinsen (2003) (see details in figure 7 and table 1) are presented in
panels (a) of figures 8–10. The added panels (b) show theoretical values of the steady-state
sloshing amplitudes (centres of the liquid mass). All amplitudes are scaled by the incident
wave height ζa. The blue dashed lines are drawn by using the quasi-linear analytical
solution. The solid lines show results following from the Narimanov–Moiseev asymptotic
solution. The bold black lines imply stability of the constructed solution; the magenta thin
lines – instability. In the cases I and II (figures 8 and 9) the Narimanov–Moiseev theory
specifies the frequency range (marked as ‘instability’) where the theoretical steady-state
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Figure 8. Case I by Rognebakke & Faltinsen (2003) whose details are outlined in figure 7 and table 1. Panel (a)
shows the linear/nonlinear theoretical and experimental maximum tank amplitude scaled by the incident wave
amplitude ζa but panel (b) depicts the linear and nonlinear theoretical predictions of the liquid mass amplitude
scaled by ζa. Circles represent the measurements. The blue dashed lines result from the quasi-linear analytical
solution. The theoretical frequency σs,1 is the first non-Stokes natural sloshing frequency in sloshing-affected
containers. The frequency σ1 is the first natural Stokes frequency. The solid lines show the Narimanov–Moiseev
steady-state approximation, which, according to the steady-state analysis in § 3.2.1, accounts for the viscous
damping effect for sloshing. The solid bold black lines imply stable steady-state solutions but the magenta thin
lines – instability. The Narimanov–Moiseev theory detects a frequency range (marked as ‘instability’) where
theoretical steady-state solutions are unstable. Experimental values in this range are marked by the empty
circles. Two measurements at σ1 give contradictory results, which are mentioned as ‘unstable situation’ by
Rognebakke & Faltinsen (2003). The third measurement in this range may be a result of the instability or,
contrarily, caused by damping, which is not precisely predicted in the present simplified mathematical model.
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Figure 9. The same as in figure 8 but for the case II by Rognebakke & Faltinsen (2003) whose details are
documented in figure 7 and table 1.

solutions are unstable. The figures have two vertical lines at the theoretical resonance
frequency σs,1 (the first non-Stokes natural sloshing frequency) and σ1 (the first Stokes
natural frequency). The circles represent the measurement by Rognebakke & Faltinsen
(2003) so that the empty circles imply the instability.
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Figure 10. The same as in figure 8 but for case III by Rognebakke & Faltinsen (2003) whose details are
documented in figure 7 and table 1. This case demonstrates several measurements where the almost steady-state
motions are achieved with different amplitudes; it is typical for damping influenced by wave breaking (e.g. jets
at the walls), which was extensively discussed by Rognebakke & Faltinsen (2003).

First of all, we note that the resonant sloshing frequency for the resonant tank motions
is very well predicted by σs,1 coming from the constructed undamped theory in § 2.
Moreover, figures 8–10 have confirmed that the position of σs,1 strongly depends on h
and the mass ratio (Mt + A22(σs,1))/Ml so that the difference between σs,1 and σ1 grows
from I to III as predicted in table 1 and figure 5. A discrepancy between theoretical
and experimental resonance frequencies in panels (a) is due to the nonlinearity but the
response curves branching is, overall, consistent with the general predictions in figure 6.
The soft-spring type behaviour is consistent with expectations in figure 5. A shift of
the linear response peak for the sloshing amplitudes in panel (b) is caused by the
frequency-dependent damping. In the undamped case from figure 6, this shift is absent.

Generally, all three experimental cases confirm that the free-surface sloshing-related
nonlinearity matters, even in the case III from figure 10 where the damping was rather
high to prevent multiple solutions and the instability range as we see in figures 8
and 9. Because the constructed analytical quasi-linear and nonlinear solutions look
rather simple and based on significant simplifications, an emphasis should be placed
on discrepancies between, first of all, the Narimanov–Moiseev theoretical prediction
and measured values. In figure 8, the most interesting discrepancies appear in a zone
around σ1. Two measurements to the right of σ1 with the same σ exhibit different but
close amplitudes. This may indicate importance of transients or/and sloshing can be
affected by the wave breaking phenomenon, which yields a time-dependent damping in the
hydrodynamic system. Much more interesting points are located at σ1, where the theory
establishes instability of the constructed asymptotic steady-state solutions. Two runs
with σ = σ1 should theoretically be unstable. Rognebakke & Faltinsen (2003) conducted
the corresponding modal test and discussed the observations. They characterised it as
an ‘unstable situation’, which implies that ‘the sway amplitude shifts and thus two
steady-state responses take place during one run’. The empty circles at σ = σ1 in figure 8
show the two different measurements of the aforementioned steady-state responses, which
‘take place during one run’. Switching between two unstable solutions is the typical
sloshing behaviour when all steady-state wave regimes are unstable.
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A discrepancy between the measured and theoretical tank amplitudes in the resonant
zone between σ1 and σs,1 is especially clearly seen for the case III in figure 10. Specifically,
all measurements in this zone report two different measured amplitudes for each σ

and these two experimental values are relatively close to each other. This may indicate
that initial transients still matter on the long-time scale as typically happens when the
wave breaking effect is significant. The wave breaking phenomenon was discussed by
Rognebakke & Faltinsen (2003). It causes a time-dependent damping in the mechanical
system so that nearly steady-state waves may significantly differ from the run to the
run. One should also remember experimental uncertainties, which were discussed by
Rognebakke & Faltinsen (2003).

4. Conclusions

Tuned liquid dampers (Xue, Ko & Xu 2000; Frandsen 2005; Love & Tait 2014; Novo et al.
2014), storage containers (Shrimali & Jangid 2003; Lyu et al. 2020), elevated tower tanks
(Gavrilyuk et al. 2013), ship tanks (Chen & Chiang 2000; Turner, Bridges & Ardakani
2015; Huang et al. 2018) and the offshore Draugen monotower (Faltinsen & Timokha
2016) can be classified as the Sretenski–Moiseev-type coupled mechanical system whose
eigenfrequencies differ from the natural sloshing frequencies in its containers. Bearing
in mind the importance of the resonant sloshing response in closed fish tanks (Tan,
Shao & Read 2019) as well as remembering this difference, we consequently constructed
nonlinear analytical sloshing theories for a two-dimensional rectangular tank whose lateral
motions are affected by the sloshing-related hydrodynamic force. The theories are utilised
to quantify the resonant steady-state sway-sloshing response of a floating body with
rectangular tanks in incident regular waves and in two-dimensional flow conditions.
Comparisons are made with the experiments by Rognebakke & Faltinsen (2003).

The analysis starts with the undamped sloshing coupled with the lateral motion of a rigid
vehicle in figure 1(a). In order to construct the corresponding nonlinear sloshing theory, we
eliminate the tank sway motions from the free-surface boundary sloshing problem, which
now couples the surface wave elevations and relative velocity potential. The problem
contains a special (extra) integral term in the dynamic free-surface condition, which is
absent for prescribed tank motions, but the only inhomogeneous quantity is associated with
the non-dimensional horizontal periodic force applied to the tank. Because of the integral
term, natural sloshing modes and frequencies following from this novel free-surface
problem differ from the Stokes standing waves occurring in the static tank. The Stokes
modes and frequencies should, therefore, be replaced by others, of the non-Stokes type,
which are analytically derived in the present paper for the two-dimensional rectangular
tank.

Analytical sloshing theories are revised in § 2 by employing the non-Stokes sloshing
modes. The goal is the Narimanov–Moiseev-type (single-dominant) asymptotic modal
equations, which should effectively describe resonant sloshing due to harmonic excitations
of the lowest natural (here, non-Stokes) sloshing frequency = the lowest coupled
tank-sloshing eigenfrequency.

The Narimanov–Moiseev-type equations by Faltinsen et al. (2000) are based on
the Stokes-type modal representation. The equations nonlinearly couple three lowest
generalised coordinates so that the first Stokes sloshing mode asymptotically dominates
as σ → σ1. When it comes to the coupled motions, the lowest resonance is expected for
σ → σs,1 and the dominant asymptotic contribution is associated with the first non-Stokes
sloshing mode. This means that the Narimanov–Moiseev-type equations by Faltinsen
et al. (2000) become invalid and should be revised. The revised Narimanov–Moiseev-type
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modal system of equations is derived and examined in the present paper. This modal
system formally couples an infinite number of degrees of freedom. The asymptotic
periodic (steady-state) of the system is constructed. It describes what happens with
sloshing due to coupling with lateral vehicle motions when a small-amplitude horizontal
harmonic force acts on the rigid vehicle. The undamped nonlinear amplitude response
curves are drawn, discussed and compared with the linear predictions. For the linear-theory
branching, the phase changes at the non-Stokes natural sloshing frequency σs,1. At the
Stokes natural sloshing frequency σ1, the tank amplitude is zero but the sloshing amplitude
is finite except when Mt/Ml → ∞. The nonlinear resonance tank-amplitude branching has
also a minimum in a local neighbourhood of σ1.

The steady-state resonant dynamics of a swaying floating body containing rectangular
tanks in incident regular waves can, together with the two-dimensional flow assumptions,
be analytically described by utilising the constructed solutions from § 2. This is an
obvious fact if damping, which is caused by the external wave radiation and viscous
flow separation, can be neglected. The only difference is that the sway added mass
coefficient A22(σ ), which is associated with the external flows, should be added to Mt
and, therefore, the structural mass and the forcing amplitude become frequency-dependent.
However, experimental studies by Rognebakke & Faltinsen (2003) showed that the sway
damping, including its linear wave radiation component by B22(σ ) and external and inner
viscous components are important. Moreover, one should account for a specific frictional
force of the experimental set-up caused by the bearings. In § 3, we show how to include
these damping sources into the constructed linear solution. For the nonlinear resonant
Narimanov–Moiseev-type asymptotic approximation, we also accounted for the linear
viscous damping caused by the laminar boundary layer at the wetted tank surface. The
latter becomes possible because this sloshing damping can mainly be associated with the
single dominant non-Stokes (lowest) sloshing mode.

A special attention is paid to validation of the constructed analytical solutions by
experimental measurements by Rognebakke & Faltinsen (2003). Our analysis showed
that damping of different nature and sloshing-related nonlinearity play the key role to
get a good agreement with the measured tank amplitudes. The modified (according to § 2)
Narimanov–Moiseev-type steady-state solution of the resonant sloshing problem provides
a rather accurate approximation. An advantage of the Narimanov–Moiseev theory is
that it deduces an analytical criterion of stability of the steady-state sloshing regimes
including for the floating tank problem. Because the mass, damping and external wave
excitation force are frequency-dependent values for the latter problem, the stability results
slightly differ from expectations in § 2. As a consequence, we detected a narrow frequency
range in the two experimental cases by Rognebakke & Faltinsen (2003) where no stable
steady-state motions are possible. Based on their experimental observations, Rognebakke
& Faltinsen (2003) characterised the range as an ‘unstable situation’ and wrote that ‘the
sway amplitude shifts and thus two steady-state responses take place during one run’.
Recent direct numerical simulations by Shen et al. (2020) are not successful in this range,
too. It looks like that the instability zone is a fundamental theoretical fact.

What is important for future studies is to generalise the two-dimensional flow results
to coupled sway and roll. In contrast to sway, the roll yields a restoring force as in the
pendulum-tank-sloshing mechanical system. It is not evident that coupling with heave
matters except when the Faraday resonance occurs (Frandsen 2004). Furthermore, one
should in a longer perspective consider a stochastic sea. The derived single-dominant
modal system may effectively handle transient waves in tanks. Intermediate sloshing-liquid
depths should be investigated. Finally, the developed nonlinear analysis should be
generalised to more general body motions with three-dimensional flows. An example is
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closed fish cages in ocean waves. Different concepts have been proposed. One case is a
floating cage with a vertical circular cylindrical tank. A nonlinear multimodal method has
been developed for prescribed lateral motion with forcing frequency in the vicinity of the
lowest pair of natural sloshing frequencies of a vertical circular cylindrical tank (Faltinsen,
Lukovsky & Timokha 2016; Raynovskyy & Timokha 2020). The three-dimensional
steady-state sloshing in terms of swirling and chaos can in the latter case develop because
of nonlinear free-surface effects. Swirling wave motion is of concern for the structural
integrity. The fish cages are categorised as flexible membrane structures, semiflexible
structures and rigid structures. The non-rigid structures require a hydroelastic analysis.
The external flow can, as in the studied case, be approximated as a linear free-surface
problem within potential flow of incompressible water. However, the mooring analysis
requires that the second-order average and slowly varying lateral hydrodynamic loads are
considered. A complexity in solving the external flow is that hydrodynamic interaction
between several cages should be considered.
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