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Abstract

We construct compact quantum metric spaces starting from a C*-algebra extension with a positive
splitting. As special cases, we discuss Toeplitz algebras, quantum SU(2) and Podle$ spheres.
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1. Introduction

In noncommutative geometry, the natural way to specify a metric is by a ‘Lipschitz
seminorm’. Connes suggested this idea in [2], and developed it further in [3]. He
pointed out that one may obtain an ordinary metric on the state space of a C*-algebra
in a simple way from a Lipschitz seminorm. A natural question in this context is
whether this metric topology coincides with the weak™* topology. Rieffel [7, 8, 10]
identified a larger class of spaces, namely order unit spaces, in his search for an answer
to this question. He introduced the concept of compact quantum metric spaces as
a generalization of compact metric spaces, and in [10] used this new concept for the
rigorous study of convergence questions of algebras in the spirit of Gromov—Hausdorff
convergence. A natural question in this regard is whether there are many such spaces.
Rieffel [7, 8] gave some general principles for constructing compact quantum metric
spaces. In [1], we used one of his principles to construct examples thereof. In
fact, Rieffel [9] has shown that there are indeed many examples. But in concrete
C*-algebras one would like to have a more explicit description of these structures.
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Our objective here is to construct compact quantum metric spaces out of quantum
SU(2) and Podles spheres. To do this, we develop a more general construction and
produce compact quantum metric spaces starting from C*-algebra extensions.

This paper is organized as follows. In the next section we recall the basics of these
spaces. In Section 3 the basic construction is described. In the final section we employ
the principle developed in Section 3 to special cases.

2. Compact quantum metric spaces: preliminaries
We recall some of the definitions from [10].
DermiTion 2.1. An order unit space is a real partially ordered vector space A with a
distinguished element e, the order unit, with the following properties.

(i) Foreach a € A, there is r € R such that a < re (order unit property).
(i) IfaeAandifa<reforall r e R with r >0, then a < 0 (Archimedean property).

RemMark 2.2. We may define a norm on an order unit space as follows:
lla|| = inf{r e R: —re < a < re}.

DeriniTion 2.3. By a state of an order unit space (A, e¢) we mean an element y € A’, the
dual of (A, || - ||), such that u(e) = 1 = ||u||’. Here || - ||" stands for the dual norm on A’.
The collection of states on (A, e) is denoted by S (A).

REmARK 2.4. States are automatically positive.

ExampLE 2.5. The motivating example for this concept is the real subspace of self-
adjoint elements in a C*-algebra with the order structure inherited from the algebra.

DeriniTioN 2.6. Let (A, e) be an order unit space. By a Lip-norm on A we mean a
seminorm L on A with the following properties.
(i) IfaeA,then L(a) =0 if and only if a € Re.
(i) The topology on S (A) coming from the metric
pL(p, v) = sup{lu(a) — v(a)l : L(a) < 1}

is the weak™ topology.
DeriniTION 2.7. A compact quantum metric space is a pair (A, L) consisting of an order
unit space A and a Lip-norm L defined on it.

The following theorem of Rieffel will be of crucial importance.

TueorEM 2.8 [10, Theorem 4.5]. Let L be a seminorm on the order unit space A such
that L(a) =0 if and only if a € Re. Then py gives S(A) the weak* topology exactly
when both the following conditions hold.

(i) (A, L) has finite radius, that is, pr.(u, v) < C for all u, v € S (A) for some constant
C.
(i1) The set By ={a: L(a) < 1, ||al| < 1} is totally bounded in A for || - ||.
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3. Extensions to compact quantum metric spaces

In this section we describe the general principle of construction of compact quantum
metric spaces from certain C*-algebra extensions. Let A be a unital C*-algebra. Fix
a faithful representation A C B(H). Suppose that we have a dense order unit space
Lip(A) C A;.,, containing the unit 14 of A, where A, denotes the real partially
ordered subset of self-adjoint elements in A. Let L be a Lip-norm on Lip(A) such
that ((Lip(A), I), L) is a compact quantum metric space. Let v be a state on A,
and define ﬁy to be the collection of all ((a;;)) € K(L*(N)) ® A with the following
properties:

(i) ajj € Lip(A);

(ii) aij = daji,

(iii) sup oy (0 + ) (L(ai)) + V(aij)]) < oo for all k.

Clearly A, := ﬁy @ RI, where I is the identity on B(L*(N) ® ), is an order unit space.
Define Ly : A, - R, by Ly(1) =0,

Li((aip) = sup (i + j)'(L(aij) + (@)

i~1,j=1

Lemwma 3.1. Let d be the diameter of (Lip(A), 1), L), given by
d = sup{u(a) — (' (a) : a € Lip(A), L(a) < 1, u, p" € S (Lip(A))}.
Then, for all ‘Lipschitz functions’ a € Lip(A),
llall < (L(a) + M(@)(1 + d).
Proor. Let u be an arbitrary state on A. Since sup{|u(a) — v(a)| : L(a) < 1} <d,

lu(a)l < lu(a) —v(a)| + |v(a)l
< L(a)d + |v(a)|
< (@) + M@ + d),

as required. O
Lemma 3.2. There exists a constant C > 0 such that for all ((a;;)) € ﬁv,
I((@i)Il < CLy((aij)).

Proor. Let {e;};»; be the canonical orthonormal basis for L>(N). Let Y; A;¢; ® u; and
> tiei ® v; be generic elements in L>(N) ® H. Here u;, v; € H are unit vectors. Then

clearly
2 2 2 2
HZ Aie;@uj|| = Z |4;] and HZ Hiei®u|| = Z 175
i ; ; ;
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Now observe that

<Z Adie; ® u;, ((a;})) Z pHje; ® Vj>
i,j i,J

< > Wllslius, @iy )
]

< Z il jI(Leaij) + (aipD( + d)
ij

2((“:/))
+ j)°
LZ((alj))

<(1+d>ZM” i

<(1+d) Z il

<L2<(a,,>><1+d>z (Z )’ (Z k)

This proves the lemma with C = (1 +d) X, n=2. |

LevmMa 3.3. The set By ={ae€ A, : Li(a) < 1, |lal|l £ 1} is totally bounded in norm if
k> 2.

Proor. Let € >0, and choose N such that N>* < €. For G = ((g; 1) € A,, define the
element Py(G) € K(L*(N)) ® A by

gy ifi,j<N,

0  otherwise.

Pn(G);; ={

Now observe that
Li(G - Py(G)) = sup{(i + j)k(L(gij) + v(gi)):i> N or j> N}
> N2 sup{(i + j)*(L(gi)) + (gip)l) : i > N or j > N}
= N*2L,(G - Py(G)).
Note that L;(G — Py(G)) < 1 for all G € B, and therefore
IG — Py(G)|| < CLy(G — Pyn(G))
< CN"*2L(G - Py(G)) < Ce.

Here the constant C is that obtained in the previous lemma. Note that C does not
depend on N. By Theorem 2.8, there exist N X N matrices ((agf))) € My(A), where

r=1,...,1, such that for any N X N matrix ((a;;)) € 81, there exists r such that
||((a,,)) - ((a“)))n <e. Now for G € By, take ((a})) such that |Py(G) — (@)l < .
Then '

IG = (@M <1IG = Py(G)ll + €< (1 + O)e.
This completes the proof. O
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Tueorem 3.4. ((A,, I), Ly) is a compact quantum metric space when k > 2.

Proor. Note thatif ((a;;)) € .?[i,, then Li((a;;)) = 0 implies that L(a;;) = 0 and v(a;;) = 0
for all i, j. As L is a Lip-norm, this implies that a;; is a scalar. Since v(g;;) = 0, this
scalar must be zero. Hence ((a;;)) is the zero matrix. Therefore L;(a) is zero if and only
if a is a scalar multiple of the identity. Now, in view of Theorem 2.8 and the previous
lemma, we only have to show that (A,, L) has finite radius. Take u, pp € S (A,) and
ae€ A, such that Li(a) <1. By Lemma 3.2, ||a|]| < C, because L,(a) < Li(a). Hence
|1 (a) — uz(a)| < 2C, that is, diam(A,, L) < 2C. O

ProrposiTioN 3.5. Let _
O—)AO ;Al L>A2—>0
be a short exact sequence of C*-algebras, with A| and A, unital, andlet o : Ay — A| be
a positive linear splitting. Let ¢ : A] — Ay ® A} and  : A\ ® A, — A be the bounded
linear maps given by
O(p) = (1, ) where iy = piliag), 2 =L © 0,
Y, 2) = where p(a) = px(n(a)) + pi(a — o o (a)).
Then ¢ and  are inverse to each other.
Proor. Suppose that ¢(u) = (i1, u2) and ¥(uy, pz) = ¢’ Then
K (@) = po(m(a)) + pi(a — o o m(a))
= p(o o n(a)) + pu(a — o o n(a))
= p(a).

Therefore y o ¢ = I4,. Similarly, one can show that the other composition is also the
identity. O

Let A, Lip(A), L be as above. Suppose that we have a short exact sequence of
C*-algebras

0— KA Al - Ay — 0
with ﬁ1 , .?(3 unital, and a positive unital linear splitting o : ?(72 A 1. Let (Ay, L) be
a compact quantum metric space containing the unit of A, as its order unit, with A a
dense subspace of self-adjoint elements of A,. Define A; = i(A,) ® o (Ay).

THEOREM 3.6. In the setting above, Ly : A; — R, given by
Li(a) = Ly (n(a)) + Li(a — 0 o n(a))

is a Lip-norm for all k > 2.

Proor. We break the proof down into several steps.

Step (i): Li(a) =0 if and only if a € R14,. The ‘if* part is obvious, and for the ‘only
if” part note that if L(a) = 0 then n(a) = A1 4, for some A € R and Li(a — A1 #,) =0.
Hence a = A1 4,.
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Step (ii): (Ay, Ly) has finite radius. Suppose that (uy, tp) = ¢(u) and (4;, 42) = ¢(A),
where p, A € S(A;) and ¢ is as in Proposition 3.5. Then we have the norm estimates
[lt:]l, 14;]] < 1 for all i =1,2. This is because ||| < ||ul| and w; is a positive unital
linear functional and hence a state. Similar arguments hold for ||4;|| and ||4,]|. Let
x € Ay with L(x) < 1; then

|u(x) = AX)| = |ua((x)) + p1(x — 0 0 w(x)) — A2(m(x)) — A1(x — 0 o w(x))|
< ua(m(x)) — Ao (@())| + | (x — 0 0 (%)) — A1 (x — 0 o m(x))]
< diam(Ay, L) + 2C,

where C is the constant found in Lemma 3.2. This proves that (A, L;) has finite
radius.

Step (iii). It suffices to show that the set 81 ={ae€ A, : |la|]| < 1, Li(a) < 1} is totally
bounded, in view of Theorem 2.8. Since (A,, L) and (A,, L,) are compact quantum
metric spaces, it follows that if we have a sequence a, € B, then there exists a
subsequence a,, such that both n(ay,,) and a,, — o o 7(a,,) converge in norm. Hence
ay, is Cauchy in norm, implying the required total boundedness. O

4. Examples

ExawmpLE 4.1. This example is not an illustration of this construction but rather the
motivating example of compact quantum metric spaces. In some of the following
examples this is utilized implicitly. Let X be a compact metric space. Let A be the
space of Lipschitz continuous functions with the associated Lipschitz seminorm L.
Then (A, L) is a compact quantum metric space [8].

ExampLE 4.2. Let Q be a strongly pseudoconvex domain in C" with smooth boundary
0Q endowed with normalized surface measure. Let H2(0Q) be the closure in L>(9Q)
of the space of boundary values of holomorphic functions that can be continuously
extended to Q. For f € C(0Q), let Ty be the associated Toeplitz operator, that is, the
compression of the multiplication operator My on L*(0Q) on H*(0Q). Let T(0Q) be
the associated Toeplitz extension, that is, the C*-algebra generated by the operators
Ty along with the compact operators. Then [4, Definition 2.8.4] there is a short exact
sequence of C*-algebras

0 — K(HAOQ)) - T(Q) 2> C(HQ) —> 0.

Since this sequence admits the positive unital splitting f+ Tf, we get a compact
quantum metric space structure on T(J€2) by Theorem 3.6.

ExampLE 4.3. The C*-algebra of continuous functions on the quantum version of
SU(2), which we denote by C(SU,(2)), is the universal C*-algebra generated by two
elements @ and S satisfying the following relations:

da+pB=1, ad+q¢BB =1,
af —gBa=0, af —gBa=0,
BB=pB"

https://doi.org/10.1017/51446788711001273 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788711001273

[7] Compact quantum metric spaces 7

The C*-algebra C(SU,(2)) introduced in [12] can be described more concretely as
follows. Let {e;};>0 and {e;};cz be the canonical orthonormal bases for L,(Ny) and L,(Z)
respectively. We denote by the same symbol N the operator ¢; — ke (where k > 0) on
Lry(Ny) and ey — ke (where k € Z) on Ly(Z). Similarly, denote by the same symbol
¢ the operator e; — ey (where k > 1), eg = 0 on L(Np), and the operator e; — ey
(where k € Z) on L,(Z). Now take H to be the Hilbert space L,(Ny) ® L(Z), and
define the representation  of C(SU4(2)) on H by

@) =tI-gNoI, n(f)=q" .

Then r is a faithful representation of C(SU,(2)), so that one can identify C(SU,(2))
with the C*-subalgebra of B(H) generated by (@) and n( 8). The image of 7 contains
K ® C(T) as an ideal with C(T) as the quotient algebra, that is, we have a useful short
exact sequence:

0 — K & C(T) — A — C(T) —> 0. (4.1)
The homomorphism o is explicitly given by o(a) =¢ and o(B) =0. It is easy to
see that the above short exact sequence admits a positive splitting taking 7" € C(T)

to {"®1 for all n>0. Hence we get a compact quantum metric space structure
on C(SU4(2)).

ExawmpLE 4.4. Podle$ [6] introduced the quantum sphere. This is the universal C*-
algebra, denoted by C(S 56), generated by two elements A and B subject to the
following relations:
A*=A, B'B=A-A’+cl,
BA=q¢’AB, BB =¢*A-q*+cl.

Here the deformation parameters g and c satisfy |g| < 1 and ¢ > 0. We can write down
two irreducible representations whose direct sum is faithful. Let H, = L?>(N,) and
7‘{_ = 7_(+. Deﬁne ﬂ'i(A), ﬂ'i(B) . 7‘{1 i 7-{1 by

To(A)en) = Aeq™e, where 1o =1 x(c+ D)7,

7e(B)(en) = co(m) e,y where c.(n) = 1.¢*" — (1.g*") +cand e_; = 0.
Now 7 =, @ _ is a faithful representation, so from [11],
C(S;)=C* (D) @ C(V) :={(x,y) : x,y € C* (D), 0(x) = o ()},
where C*(T) is the Toeplitz algebra and o : C*(T) — C(T) is the symbol homo-

morphism. Further, we have a short exact sequence

0— K 5 C(52) -5 CH(T) — 0. 4.2)

As in the earlier case, this short exact sequence is also split exact. Here a positive
splitting is given by £ € C*(T) — (£, £). To apply the basic theorem, note that, by
the earlier example on Toeplitz extensions, we already have a Lip-norm on a dense
subspace of C*(T).
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Remark 4.5. These two examples were treated by Li in [5]. He produces compact
quantum metric spaces using ergodic actions of compact quantum groups.
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