
chapter 1

Separability

Efficiency simplifies an option’s evaluation by trimming considerations that
affect all options equally. A preliminary step separates considerations into
those to be processed and those to be put aside. An accurate evaluation
processes considerations that are separable or independent from those
dropped.
Imagine composites divided into parts of specific types, for example,

baskets of groceries divided into cereal, dairy, meat, and produce parts.
Given a part’s separability from other parts, a ranking of composites
according to the part’s contents agrees with a ranking of composites in
which the other parts have constant contents. For example, if the cereal part
is separable from the other parts, then ranking baskets according to contents
of the cereal part agrees with ranking baskets that have constant contents in
the other parts. Focusing on the cereal part is a shortcut to ranking baskets.
This chapter treats separability of considerations generally, exploring its

philosophical foundations rather than its technical applications. It treats
separability generally so that its applications to probability and various types
of utility have behind them the explanatory power of general principles.
Separability belongs to a cluster of similar phenomena, and exploring its
relation to the cluster’s other elements clarifies it. After defining a type of
separability, the chapter treats separability’s relation to complementarity
and compositionality. It presents the conceptual geography of separability
to create a context for arguments supporting separability and to identify
promising argumentative strategies. The chapter finishes with a review of
methods of establishing separability. It shows how to establish separability
as a norm for ideal agents. Later chapters construct arguments for speci-
alized norms of separability, grounding, for example, expected-utility anal-
yses of comprehensive utilities. They introduce various types of utility and
argue for the principles of separability that apply to them.
In deliberations, separating considerations is the first step toward effi-

ciency; thus, this chapter introduces the technical concept of separability at
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length. Later chapters use principles of separability to support proposals
about efficient evaluation of the options in a decision problem.

1.1 Separability’s definition

Assuming complete information, an option’s comprehensive utility evalu-
ates the option’s world. A narrower evaluation targets the option’s future
instead of the option’s world. It guides decisions well if the order of options
according to futures is the same as the order of options according to worlds.
In general, simplified deliberations may evaluate an option using part of the
option’s world instead of the option’s entire world if evaluations using the
part replicate comprehensive utility’s order of options using worlds.

This method of simplifying choices assumes that a part’s evaluation
affects the world’s utility independently of the other parts. The type of
independence that justifies putting aside considerations is called separability.
Works in economics on separability and in measurement theory on decom-
posability, another name for separability, generally define utility using
preferences. As Chapter 2 explains, a realist interpretation of utility that
defines utility using degrees of desire rather than preferences strengthens
norms of utility. This section modifies the literature’s definition of separa-
bility to suit a definition of utility using degrees of desire. Also, the literature
adjusts separability’s definition according to separability’s role in a theory.
This section’s definition tailors separability for its role in simplifying
deliberations.1

The chapter’s main target is separability of utility. The definition of
separability, being general, applies to all types of utility, including utility
attaching to goods as well as utility attaching to propositions, although later
chapters use exclusively utility attaching to propositions, taking proposi-
tions to represent worlds, outcomes, and possession of goods.

The definition of utility’s separability derives from the separability of
parts of composites in a preference ranking. For uniformity among the
objects of preference and utility, preferences hold between realizations of
propositions when utility attaches to a proposition’s realization. A prefer-
ence for the truth of one proposition rather than another shows in decisions
to realize the first proposition rather than the second and typically arises
from beliefs about the consequences of each proposition’s truth. A norm
requires preferring one proposition’s realization to another’s realization if

1 Topology uses another kind of separability, namely, a property of metric spaces limiting their size, to
define separable spaces.
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the desire for the first’s realization is stronger than the desire for the second’s
realization. Chapter 2 elaborates these points.
Although this section’s objective is to provide an account of utility’s

separability, it starts with an account of separable preferences among
composites. To obtain this account, it formulates a general definition of
separability for an order of composites.

1.1.1 Separable orders

Reviewing cases of separability and the general features of separability reveals
two candidates for separability’s definition. One defines separability as an
order’s independence from conditions. The other defines separability as a
relation between an order and a suborder.
Suppose that wholes and their parts have various instantiations, as a two-

part commodity bundle of apples and bananas has various instantiations
depending on its number of apples and number of bananas. Also suppose
that the instantiations of wholes have an order, that for each part its
instantiations have an order, and that for each subset of parts its instantia-
tions have an order. Preferences may supply the order. Separability of parts
and subsets of parts holds with respect to an order of instantiations of the
wholes, their parts, and subsets of their parts. For example, it may apply to
parts of commodity bundles as preferences order their instantiations.
Agreement of the order of a part’s instantiations with the order of compat-
ible instantiations of wholes, for all instantiations of the other parts, signals
the separability of the part from the other parts. In two-part commodity
bundles of apples and bananas, apples are separable from bananas if the
order of the bundles goes by the number of apples, for any constant number
of bananas. A set of parts, not just a single part, is separable from a whole’s
other parts just in case the order of instantiations of the set’s parts agrees
with the order of compatible instantiations of wholes, for any fixed instan-
tiation of the other parts.2

A set of n-tuples of values of variables, or n-placed vectors with occur-
rences at locations in the vector, may represent a set of composites. The

2 McClennen (1990) defines separability for preferences at different moments of time. His page 12 says
that given separability, preferences at a future time depend only on consequences realizable at the
future time and so are independent of earlier preferences. His pages 120–21 say that separability holds if
and only if choice does not depend on earlier choices. His page 122 characterizes separability using
decision trees: past choices reduce a tree without changing the tree’s remainder. Hammond (1988) and
Seidenfeld (1988) define similar types of temporal separability for preferences. Hammond calls his type
of temporal separability dynamic consistency, and Seidenfeld calls his type of temporal separability
dynamic feasibility.
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sequence of variables may represent the sequence of a composite’s parts, if
they come in a sequence. For example, a vector giving the amount of each
good in a set of n goods represents a shopping basket of the goods. A variable
represents each good, and a value of the variable stands for the amount of
the good in the basket. The vector’s sequence of goods represents their
sequence, if any, in the basket. A consumer’s preferences order possible
shopping baskets and so order vectors that represent the baskets.

Table 1.1 illustrates this terminology. The variables x, y, and z have as
values, respectively, x1, y1, and z1. A composite’s structure has parts with
variable values. Variables represent the parts, and vectors of variables
represent the structure of composites. Assigning values to the variables
produces a vector of values that represents a composite. A subvector of
variables represents a subset of parts’ structure, and a subset of values of
variables represents an instantiation of the parts.

Given an order of vectors of values of variables and an order of subvectors
of values of subsets of the variables, a subset of variables is separable from the
other variables if and only if, for all values of the other variables, the order of
subvectors of values of the subset of variables agrees with the order of vectors
of values of all variables. Hence, for a vector of locations, a subvector of the
locations, and corresponding vectors and subvectors of occupants of the
locations, the subvector of locations is separable from its complement if and
only if the order of subvectors of occupants agrees with the order of vectors
of occupants. For example, suppose that the variables x and y represent two
goods. The constants x1 and x2 represent values of x, and the constants y1 and
y2 represent values of y. The vectors of values of the variables are (x1, y1), (x2,
y1), (x1, y2), (x2, y2). Suppose that the list gives their order from lowest to
highest so that by using the symbol “<” to represent their order, it would be
(x1, y1) < (x2, y1) < (x1, y2) < (x2, y2). For any value of y, the order of x’s values
given by their subscripts agrees with the order of vectors. Hence, x is
separable from y. Taking the subscripts of y’s values to show their order, y
is also separable from x because given each value of x, the ranking of y’s
values agrees with the ranking of pairs. Separability exists within a set of

Table 1.1 Illustration of terminology

(x, y, z) vector of variables, a composite’s structure
(x1, y1, z1) vector of variables’ values, a composite
(x, y) subvector of variables, a subset of parts’ structure
(x1, y1) subvector of variables’ values, a subset of parts’ instantiation
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variables generating the components of composites, given a way of ordering
the composites and subsets of their components.3

The agreement of orders that separability entails may hold by definition
or as a consequence of separability’s definition and features of the orders.
Rather than define separability as an agreement of orders, some theorists
define it as an independence of conditional orders that they define using a
nonconditional order.
The order of vectors of values of all variables defines an order of sub-

vectors of values of a subset of variables given a way of fixing the subvectors’
complement. That is, it defines a conditional order of the subvectors. In the
example, {x} is a subset of variables, and (x1) and (x2) are subvectors of its
values. The definition declares that (x2) ranks above (x1) when y’s value is y1
because vectors of values of x and y containing x2 rank above vectors of
values of x and y containing x1 when y’s value is y1. In the example, for all
ways of fixing the value of y, the vectors of values of x and y containing x1
have the same rank with respect to vectors of values of x and y containing x2.
If the conditional order of subvectors defined using the order of vectors is
the same for all values of y, then the common conditional order of sub-
vectors may define the subvectors’ nonconditional order.4 The subvectors’
order so defined agrees with the order of vectors; the variable x is separable
from the variable y. The variable x’s separability from the variable y amounts
to the vectors’ order generating the same order of subvectors of x’s values
given any value of y. Starting with the order (x1, y1) < (x2, y1) < (x1, y2) < (x2,
y2), the conditional order (x1) < (x2) given y1 derives from the order of pairs.
Also, the conditional order (x1) < (x2) given y2 derives from the order of pairs.
The variable x is separable from the variable y because these conditional
orders of (x1) and (x2) agree. The variable y is similarly separable from the
variable x. In general, the order of subvectors of values of a subset of
variables is the same given all ways of fixing the values of the other variables –
that is, the conditional orders of the subvectors are the same given all ways of
fixing the values of the other variables – just in case the variables generating
the subvectors are separable from the other variables.
To illustrate, imagine a diner who prefers a ham sandwich to a beef

sandwich, whether or not the sandwiches have cheese, but prefers each type

3 Broome (1991: 22–25, 65–80) states that in a set of n-placed vectors, a set of subvectors is separable if
and only if comparison of the subvectors, conditional on a constant complement of the subvectors, is
the same as comparison of the whole vectors. Imagine an order of a set of vectors. A subset of locations
in these vectors is separable if and only if the order of subvectors of occurrences at these locations, given
all ways of fixing occurrences at other locations, agrees with the order of vectors.

4 Broome (1991: 67) defines the order of subvectors using the order of vectors.
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of sandwich with cheese. This order of vectors represents the diner’s prefer-
ences: (no cheese, beef) < (cheese, beef) < (no cheese, ham) < (cheese, ham).
Applying the definition of conditional preference, using these nonconditional
preferences, the diner prefers cheese to no cheese given beef and prefers cheese
to no cheese given ham. Because the conditional preference for cheese holds
regardless of the meat, the variable indicating whether the sandwich includes
cheese is separable from the variable indicating the type of meat.

The order of vectors need not define the order of subvectors, however.
For example, the diner may prefer cheese to no cheese even if the cheese is
not in a sandwich. The preference for cheese need not derive from the
preference ranking of sandwiches.5

If the order of vectors does not define the order of subvectors, then
conditional independence of the order of subvectors does not entail its
agreement with the order of vectors. Conditional independence is not
sufficient for agreement. The order of subvectors may be constant for any
way of fixing the subvectors’ complement but contrary to the order of vectors.
In the example, the conditional independence of the order of x1 and x2 with
respect to the value of y authorizes using the order of pairs to define the order
x1 < x2. However, the order derived from the order of pairs may disagree with
the actual order x1 > x2. For example, taken alone, less pepper may taste better
than more pepper, although taken with either a carrot salad or a preferred
beet salad, two dashes of pepper may taste better than one dash of pepper. A
set of vectors creates a context for their elements’ realizations, and the context
may influence preferences among their elements’ realizations.6

A definition of separability that takes it as conditional independence of an
order of subvectors does not require agreement of orders of subvectors and
vectors unless the order of vectors defines the order of subvectors. Because
agreement of orders, rather than conditional independence, is crucial for
simplifying deliberations, to obtain it from separability without using the
order of vectors to define the order of subvectors, this section defines

5 Preference may also order subvectors that a subset of variables generates given a set of values for the
other variables. Preference’s order may differ from the order of subvectors that the order of vectors
imposes given the values of the other variables, although for a rational ideal agent the two orders of
subvectors agree.

6 Binmore (2009: 47–49) takes separability for an order of pairs to obtain if preferences concerning one
factor are independent of the value of the other factor. The pairs may involve goods or gambles
concerning goods. For a set of pairs, let the relation < represent preference for the pair on the right, and
the relation ≤ represent preference for the pair on the right or indifference between the pair on the left
and the pair on the right. If two variables with L and L0 and M and M 0 as values, respectively, are
separable from each other, then (L, M) < (L, M 0) implies (L0, M) ≤ (L0, M 0), and (L, M) < (L0, M)
implies (L, M 0) ≤ (L0, M 0).
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separability as agreement of orders and not conditional independence. It is
then a relation between an order of subvectors and the order of vectors,
rather than a feature of the order of vectors. Accordingly, separability has
this definition:

In a set of variables, a subset is separable from the others if and only if for all
ways of fixing the values of the other variables, the order of subvectors of
values of variables in the subset agrees with the order of vectors of values of all
variables.

In the example about the variables x and y, the order of vectors of their
values is (x1, y1) < (x2, y1) < (x1, y2) < (x2, y2). Suppose that each variable’s
values are amounts of an economic good and that preferences order its
amounts taking the good in isolation. A consumer prefers more to less of
good x and also of good y, and the subscripts of a variable’s values indicate
amounts of the good the variable represents, so that the values of the
variables have the order of their subscripts. Then, x is separable from y
because the order of subvectors of x’s values agrees with the order of vectors
of values of all variables for any fixed value of y.7

Separability taken as a relation between an order of vectors and an order of
subvectors is equivalent to separability taken as a property of the order of
vectors, if the order of vectors defines a conditional order of subvectors that in
turn defines the nonconditional order of subvectors. According to separa-
bility taken as a property, in a list of variables a subset of variables is separable
from the others if and only if no matter how the others are fixed, the
subvectors of values of the variables in the subset have the same order. The
subvectors’ constant conditional order defines their nonconditional order.
Their nonconditional order agrees with the order of the vectors because the
order of vectors defines the order of the subvectors of values of variables in
the subset conditional on fixed values of the other variables. Hence, given the
definitions, the subvectors of values of the variables in the subset have the
same order nomatter how the other variables are fixed if and only if they have
a nonconditional order that agrees with the order of the vectors.

7 For a statement of the definition in technical notation, consider a vector X of variables X1, X2, . . . Xn, a
subvector Xi of these variables, and the subvector’s complement Xj with respect to X. xi and xi 0 are
values of a variable Xi belonging to Xi, and xj is a value of a variable Xj belonging to Xj. xi and xi 0 are
respectively vectors of values xi and xi 0 of variables in Xi according to the variables’ order in Xi. xj is a
vector of values of variables in Xj according to the variables’ order in Xj. xij is the vector of values of the
variables in X according to the variables’ order in X formed from the subvectors xi and xj, and xi 0 j is a
similar vector formed from the subvectors xi 0 and xj. Let ≥ represent the order of vectors and subvectors
of values. The subvector of variables Xi is separable from its complement Xj if and only if for any
subvector xj, for all subvectors xi and xi 0, xi ≥ xi 0 if and only if xij ≥ xi0 j.
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To illustrate the equivalence, consider preferences among worlds taken as
conjunctions of a past and a future (that includes the present). Values of a
pair of variables – p for the past and f for the future – form a vector that
represents a world. Suppose, using < between two propositions to represent
preference for the second’s truth to the first’s truth, that the conditional
preference f1 < f2 given p1 by definition derives from the preference between
conjunctions (p1 & f1) < (p1 & f2), and similarly for other conditional
preferences. By definition, the order of worlds settles the order of futures
given the past. Also, suppose that the future is separable from the past in the
property sense. Given this separability, f1 < f2 given p1 if and only if f1 < f2 given
p2 or, equivalently, (p1& f1) < (p1& f2) if and only if (p2& f1) < (p2& f2). The
order of futures conditional on the past, as derived from the order of worlds,
is the same for all ways of fixing the past. Take the nonconditional order of
futures as that constant conditional order. Then, the nonconditional ranking
of futures agrees with the ranking of worlds whatever the past. So, the future
is separable from the past in the relational sense. Similar inferences move
from separability in the relational sense to separability in the property sense.

In a decision problem, when using evaluation of options’ futures to
simplify evaluation of options, it is best not to use the order of options’
worlds to define the order of options’ futures. Applying the definition to
obtain the order of futures requires obtaining the order of worlds, and so it
does not simplify evaluations. To simplify evaluations, it is best to infer the
order of worlds from a definitionally independent order of futures, using the
future’s separability from the past in a relational sense. In general, a world
part’s separability from its complement in the relational sense justifies
evaluations that attend only to the part.

Separability is a type of independence for components of composites.
Elegance suggests using the order of composites to define conditional orders
of composites, independence of these conditional orders, and then separa-
bility of components. However, the project of simplifying choices needs a
nonderivative type of independence of components. Because simplification
derives the order of composites from the order of components, it requires
that the order of components be definitionally independent of the order of
composites. Hence, it requires the relational definition of separability.

1.1.2 Utility

An order is separable just in case it orders composites that have parts that are
separable with respect to the composites’ order and the parts’ order.
Separability of a part entails independence of the order of its instantiations
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from other parts’ instantiations. This independence entails an analogous
independence of a function representing the order of the part’s instantia-
tions, in particular, a utility function representing preferences among the
part’s instantiations. Separability of a set of parts also entails an analogous
independence of functional representations of the order of the set’s
instantiations.
Suppose that a commodity bundle’s utility is a sum of its parts’ utilities.

Then, each set of parts is separable from its complement, using the prefer-
ences that a utility function represents to order instantiations of wholes and
sets of parts. Ordering a part’s instantiations according to preferences agrees
with ordering particular bundles containing its instantiations according to
preferences, given that the other parts have a constant instantiation. For
example, if x2 has greater utility than x1, then, no matter what the utility of
the variable y’s value, the pair (x2, y) has greater utility than the pair (x1, y)
because by supposition the utility of a pair equals the sum of its constitu-
ents’ utilities.
Given separability of a world’s part from the world’s other parts, the order

of the part’s instantiations agrees with the order of worlds for all instantia-
tions of the other parts. Given the future’s separability from the past, the
order of futures agrees with the order of worlds for every account of the past.
A world’s parts are separable if evaluations of a world’s parts sum to the
world’s utility. The world’s utility increases as a part’s evaluation increases,
given any way of fixing other parts. So, the order of the part’s instantiations,
holding other parts fixed, agrees with the order of worlds containing the
part’s instantiations.
Separability of an order of vectors constrains utility functions represent-

ing the order of vectors. So, separability may extend from orders of vectors
to utility functions representing the orders. This section introduces separa-
bility of an ordered subset of the argument variables of a utility function
representing an order of vectors. It assumes that a utility function exists over
subvectors of values of the subset of argument variables that represents the
order of the subvectors, but it does not assume that the order of the vectors
and their utilities defines the order and the utilities of the subvectors. A
proposition may express the state any vector or subvector represents, so
utility defined using strength of desire applies to the vectors and subvectors
through the propositions that represent them.
Separability of variables giving the arguments of a utility function follows

from separability of variables generating the vectors to which the utility
function attaches and whose order the utility function represents. Take the
functionU(x, y). The variable x is separable from the variable y just in case x
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is separable from y with respect to the vectors (x, y) whose order U
represents. For a utility function, separability of a subset of argument
variables from its complement holds if and only if the order of subvectors
the variables generate agrees with the order of vectors no matter how the
other variables are fixed. Given separability, moving up the order of sub-
vectors, holding their complements constant, entails moving up the order of
vectors, so an equivalent characterization of the subset’s separability uses
strictly increasing monotonicity: increasing the utility of the subset of argu-
ment variables, holding fixed argument variables in its complement,
increases the function’s value. If the function is strictly monotonically
increasing at an argument place, increasing the argument’s value increases
the function’s value, holding fixed the values of arguments at other places.
The monotonicity condition entails the separability of the argument place,
and because its separability entails the monotonicity condition, the mono-
tonicity condition is equivalent to the argument place’s separability. A
similar equivalence holds for a set of argument places.

Suppose that the utility of composites is a separable function of the
utilities of components. Then, the function is strictly monotonically
increasing at each argument place. This holds if the function is addition.
Utility’s additivity, if it obtains, implies the utility function’s separability.

When a subset of variables giving arguments of a utility function is
separable from the other variables, some function of the utilities of the
subvectors and of their complements yields the utilities of the vectors. For
example,U(x, y) = F(U(x), y) for some F given x’s separability from y. Given
that separability, a utility subfunction U(x) represents the order of x’s
values, that is, the subvectors (x), given any value for y. The utility sub-
function replaces the variable x in the move from U(x, y) to F(U(x), y).
The function F(U(x), y) represents the order of vectors, and, with respect to
that function, U(x) is separable from y. Given a fixed value of y, if U(x)
increases, then so do F(U(x), y) and U(x, y). A subset of a utility function’s
argument variables is separable from the others if and only if the corres-
ponding function of the utilities of the subsets’ values and of their comple-
ments is strictly monotonically increasing in the utilities of the subsets’
values given any way of fixing its complement’s values. Separability of utility
functions of variables and of utility functions in which a subutility function
replaces a set of variables arises from the separability of the variables.8

8 Varian (1984: sec. 3.14) defines utility’s functional separability as the utility of a composite’s being
increasing given increases in a component’s utility. The utilities of components are functionally
separable if and only if holding constant all components but one, while increasing the utility of that
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Given that utility settles order, in the order of vectors (x, y) the variables
x and y are mutually separable if and only if in the utility function U(x, y)
the variables are also mutually separable. Also, the arguments of the utility
function U(x, y) are mutually separable if and only if the arguments of the
function F(U(x), U(y)) are mutually separable. Hence, U(x) and U(y) are
mutually separable in F(U(x), U(y)) if and only if x and y are mutually
separable in (x, y). This equivalence holds for n-tuples as well as pairs.
For a preference order of vectors of two variables, this section distin-

guishes one variable’s effect on preferences concerning the other variable
from its effect on utilities concerning the other variable because it takes
utilities to represent not just preferences but also strengths of desire.
According to this section’s accounts of separability and utility, for mutually
separable variables x and y the equation U(x, y) = F(U(x), U(y)) does not
state a feature of the order of vectors of values of x and y, but instead it states
a relation of three utility functions not defined by the order of vectors. An
argument for the equation appeals not just to features of the order of vectors
but also to relations between utility functions that represent the order of
vectors and the orders of subvectors.
The literature on separability often treats utility attaching to combina-

tions of goods, but points about separability carry over to utility attaching
to conjunctions of propositions. Many structural points about utility apply
whether utility attaches to goods and combinations of goods or to pro-
positions and conjunctions of propositions. Consider instead of U(x, y),
with utility applying to pairs of goods, U(x & y), with utility applying to
conjunctions of propositions.
If a type of utility U applies to binary conjunctions, the value of the

variable x yields the first conjunct, the value of the variable y yields the
second conjunct, and the variables are mutually separable, thenU(x1& y1) =
F(U(x1),U(y1)) andU(x1& y2) = F(U(x1),U(y2)) for some strictly monotoni-
cally increasing function F. To compareU(x1& y1) withU(x1& y2), letting F
be the reduction of F to a one-place function given U(x1) as fixed first
argument of F, one may compare F *(U(y1)) with F *(U(y2)) or equivalently
U(y1) with U(y2) because F is strictly monotonically increasing. By separa-
bility, the order of conjunctions according to F agrees with the order of
second conjuncts according to U(y) after fixing the value of x.
A simplified evaluation of composites using separability excises the

common element from the composites and compares them using the

component, a composite’s utility increases. According to utilitarianism, individuals’ utilities are
functionally separable. The utility function for one individual settles the ranking of worlds given
fixed utilities for other individuals.
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remainders’ utilities, according to an appropriate type of utility. Chapter 4
compares worlds by excising the past from the worlds and evaluating their
futures. Suppose that p stands for the past and f stands for the future. Given
the mutual separability of f and p, because U(p, f ) = F(U(p), U( f )), the
order of (p1, f1) and (p1, f2) follows from the order of f1 and f2. Moreover,
because of separability, if F(U(p1), U( f1)) ≤ F(U(p1), U( f2)), then F(U(p2),
U( f1)) ≤ F(U(p2),U( f2)). The utilities of futures settles the utilities of worlds
no matter what the past is like. Hence, in a decision problem, deliberators
may ignore the past given the utilities of futures.

Separability in this chapter’s sense imposes constraints on utility func-
tions for vectors and subvectors; however, it does not entail that the utility
curve for a subvector has the same shape for all ways of fixing its comple-
ment. For vectors (x, y), the shape of U(x) may depend on the value of y.
Then, the utility of a value of x depends on the context, even though the
values of x have a constant order. Consider baskets of apples and bananas. A
basket’s utility depends on the basket’s number of apples and number of
bananas. Fix the number of bananas and so the utility of bananas. Then, a
basket’s utility increases as the number of apples increases, but the increase
in its utility depends on the number of bananas in the basket. The greater
the number of bananas in the basket, the less utility more apples add to the
basket. The number of bananas affects the utility of apples. So, the shape of
the utility curve for apples changes as the number of bananas in the basket
changes. An apple’s marginal utility is not independent of the number of
bananas. It declines as the number of bananas increases. The utility curve
for apples flattens as the number of bananas increases. However, for each
quantity of bananas, the order of baskets agrees with the order of quantities
of apples. Increasing the quantity of bananas, the utility of apples goes
down, but the preference order is the same – the more apples the better.

The effect carries over to cases in which probabilities govern possible
outcomes. In such cases, a gamble in the economic sense represents a
prospect of gaining apples by specifying the probability of each number of
apples that may issue from the prospect. The quantity of bananas may affect
preferences among gambles concerning apples, even though the agent still
prefers more apples to fewer so that the type of separability this chapter
introduces obtains.9

9 Some definitions of separability attend to marginal utility. Black (2002) states that if x and y are
variables having as values amounts of a commodity, a utility function for a pair (x, y) is separable if and
only if the marginal utility of x is independent of y, and the marginal utility of y is independent of x.
Gollier (2001: 202) states that apples and bananas are not separable if the marginal utility of apples
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Let us call the type of separability that preserves order ordinal separability
and a more demanding type that preserves the shape of the utility function
metric separability. Metric separability assumes that a utility function rep-
resents more than order. It may represent intensities of preference as well as
preferences. Ordinal, but not metric, separability holds for the baskets of
apples and bananas. Because ordinal separability suffices for simplification
of choices, I treat only it.

1.1.3 Complementarity

Some types of complementarity oppose separability. Suppose that a first
variable has either a left glove or a right glove as value, and similarly a second
variable has either a left glove or a right glove as value. The order of pairs
formed using a value of each variable does not generate a single order of the
first variable’s values for all ways of fixing the second variable’s value. The first
glove is not separable from the second glove because the order of values for the
first glove, right and left, depends on whether the value of the second glove is
right or left. Suppose that the order of pairs is (l, l ), (r, r), (l, r), (r, l ) from
lowest to highest, except with indifference between the last two pairs. With a
left second glove, the order puts a right first glove higher than a left first glove.
In contrast, with a right second glove, it puts a left first glove higher than a
right first glove. No way of defining the order of first elements and the order
of second elements makes the order of either set of elements agree with the
order of pairs given each element of the other set. Neither variable is separable
from the other because the values of the two variables are complementary; the
good pairs have one right glove and one left glove.10

Not all types of complementarity oppose separability. Habit creates
complementarity between past and future events. Because of habit, past

varies with the number of bananas already in a consumption bundle so that the value of an extra apple
depends on how many bananas are in the bundle. Blackorby, Primont, and Russell (2008) define
separability in terms of marginal rates of substitution of commodities. Two variables are separable
from a third if and only if the marginal rate of substitution between the two variables is independent
of the third. This type of separability implies an aggregation function (a subutility function) over the
two variables that is independent of the third. For a single variable, its separability from the others is
its having the same marginal utility given fixed values of the other variables. The definition assumes
that the values of variables are continuous so that marginal rates of substitution are defined.
Separability defined in terms of marginal utilities puts subutility functions for subvectors on the
same scale and grounds a representation of an order of vectors that adds the subutilities of subvectors
partitioning a vector to obtain the vector’s utility.

10 The order of pairs of gloves need not define the order of gloves in isolation. Preferences may order
gloves taken in isolation and not just pairs of gloves. In a rational ideal agent, the order of single gloves
may derive from each glove’s evaluation according to a probability-weighted average of evaluations of
pairs it may form.
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activities affect the value of future activities. A typical person enjoys exercis-
ing an acquired skill. For example, a tennis pro enjoys playing tennis. Past
training affects the value of future tennis. Despite this complementarity
between past and future events, the order of worlds agrees with the order of
futures. When future tennis increases the value of a future, it also increases
the value of a world with the future given any compatible settling of the
past. This correlation of values makes the future separable from the past.
Chapter 4 elaborates the point.11

1.1.4 Compositionality

The utility of a composite often depends on the utilities of its components.
For example, the utility of a basket of goods may depend on the utilities of
the goods. This section introduces the compositionality of a property’s
application to composites and explains its relation to the separability of
the property’s application to the composites. It treats utility as a quantitative
property that a proposition’s realization may have to various degrees.

A property’s application to a composite is compositional; that is, it
decomposes into its applications to the composite’s parts if and only if the
property’s application to the composite is a function of the property’s
application to its parts, taken in their order if the composite orders them.
Because compositionality may hold for one division but not for another
division of a whole into parts, a complete claim of compositionality specifies
not only a property but also a division of a whole into parts. A complete
claim explicitly states the division into parts that a property’s composition-
ality assumes if context does not settle the division. Compositionality for a
property and a division of composites, for some range of composites and a
context, asserts the existence of a function that obtains the property’s
application to a composite from the property’s application to the compo-
site’s parts. For utility’s application to a proposition, a principle of compo-
sitionality may specify a method of dividing the proposition into parts. One
principle of compositionality, for a type of utility, may divide a conjunction
into its conjuncts.

11 The mutual separability of two variables does not entail that the utility of the first’s value and the
utility of the second’s value contribute independently to their combination’s utility. Mutual separa-
bility holds trivially for a single vector (x1, y1). It fails only for an order of multiple vectors and
subvectors. So the argument variables of U(x, y) are mutually separable given the unique vector of
variable values (x1, y1). However, independent contribution may fail for a single vector. The utilities of
the values of two variables may not contribute independently to the vector’s utility. The values of the
variables may be complementary, as in the case of a right glove and a left glove, despite the variables’
mutual separability given their unique vector of values.
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For a kind of utility U applied to an ordered composite (x1, x2, . . ., xn),
compositionality claims that U(x1, x2, . . ., xn) = F(U(x1), U(x2), . . ., U(xn)).
This equation does not assert that the utilities of a whole’s parts settle the
whole’s utility. It recognizes that the order of the parts may contribute to the
whole’s utility. The composite may present events in their temporal order.
The events’ temporal order may affect the composite’s utility. Taking an
introductory logic course before an advanced logic course is better than
taking the courses in the reverse order. The order of courses in a sequence
settles the order of arguments in the function that obtains the sequence’s
utility from the courses’ utilities. If composites order parts, compositionality
uses a function that incorporates their order. Utility’s compositionality for
pairs (x, y) entails that U(x) and U(y) in this order settle U(x, y) so that no
variation in conditions that does not affect U(x) and U(y) affects U(x, y).
According to the principle of interchange of equivalents, for a property

applying to objects and the composites they form, replacing a composite’s
part with an object of the same value yields a new composite with the
same value as the original, provided that the new part does not interact
with remaining parts to generate an additional part. Take a composite with
several parts, and assume that a utility function applies to each part as well as
to the whole composite. What happens to the composite’s utility after
replacing some part with an object of the same utility? If the principle of
interchange of equivalents holds, then the composite’s utility stays the same,
assuming that the exchange is not productive. For example, suppose that a
shopper’s basket of goods includes yogurt, and the shopper exchanges the
yogurt for another brand of the same utility. If the principle applies, the
shopping basket’s utility before the exchange is the same as after the exchange.
Compositionality and interchangeability both treat relations between a

property’s application to wholes and its application to parts. In fact,
interchangeability is equivalent to compositionality; that is, it is necessary
and sufficient for compositionality, given a common range of composites.12

Compositionality and separability live in the same neighborhood.
Compositionality governs a property’s application to composites and their
components. Separability governs orders of composites and their compo-
nents, and a property such as utility may generate the orders. Both compo-
sitionality and separability apply to variables, for their ranges of values. Both
are trivial if each variable has just one value. Types of complementarity
oppose both compositionality and separability.

12 Westerståhl and Pagin (2011) define compositionality and note its equivalence with interchange of
equivalents, given observance of domain restrictions.
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A difference in quantification distinguishes compositionality and separa-
bility. A utility function U(x, y)’s compositionality and its mutual separa-
bility for x and y entail, respectively, generalizations with quantifiers of
different scope. According to compositionality, for all x, y,U(x, y) = F(U(x),
U(y)) for some F. According to mutual separability, for all y, for all x and x 0,
U(x) ≥ U(x 0) if and only if U(x, y) ≥ U(x 0, y), and similarly for all x, for all y
and y 0. Compositionality and separability differ over arrangements of factors
to fix and to let vary.

In the utility function U(x, y), the first variable’s separability from the
second does not suffice for compositionality. If x is separable from y, then
U(x, y) = F 0 (U(x), y) for some function F 0. If two values of y have the same
utility, the utility of a value of x and a value of y may depend on y’s value
and not on the utility of y’s value despite the separability of x from y. Then,
it is not the case that U(x, y) = F(U(x), U(y)) for some function F.
Compositionality follows from the variables’ separability from each other,
however. If x and y are separable from each other, then U(x, y) = F(U(x),
U(y)) for some function F. More generally, in a utility function for vectors,
separability of each argument variable from the others implies composition-
ality. If the order of each argument’s values, holding the other arguments
fixed, agrees with the vectors’ order, then the utility of a vector is a function
of the utilities of the arguments’ values.13

In the example, the implication is trivial if no values of x have equal utility,
and no values of y have equal utility. To make the implication nontrivial,
suppose that y1 and y2 have the same rank and so the same utility, let (x1, y1)
and (x1, y2) have the same rank, and let (x2, y1) and (x2, y2) have the same rank.
Furthermore, let x1 come below x2, and let (x1, y2) come below (x2, y1). Then, x
and y are mutually separable. Substituting equivalents, y2 for y1, to move from
(x1, y1) to (x1, y2) does not change the composite’s utility. The principle of
interchange, which is equivalent to compositionality, holds.

Although each variable’s separability from the others implies composi-
tionality, compositionality does not imply each variable’s separability from
the others (even if the order of vectors defines the order of subvectors). A

13 Suppose that inU(x, y), the variable x is separable from y, and the variable y is separable from x. That is,
the order of (x, y)’s values agrees with the order of x’s values however y’s value is fixed, and the order of
(x, y)’s values agrees with the order of y’s values however x’s value is fixed. Then,U(x, y) = F 0(U(x), y)
for some function F 0 given x’s separability from y, and U(x, y) = F(U(x), U(y)) for some function F
given y’s separability from x. The function F increases with increases either in U(x) or in U(y). In a
utility function with more than two argument variables, despite separability of one argument variable
from the others, aggregation of the other argument variables, and so the whole set of argument
variables, may not be compositional. Separability of each argument variable from the others ensures
compositionality, however. Broome (1991: 69) states this point.
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property’s compositionality does not entail the separability of components
of composites with the property because separability concerns orders. The
property may not impose an order on the composites and their compo-
nents. Meaning is compositional, supposing that Frege is right about mean-
ing; the meaning of a sentence is a function of the meaning of its parts.
However, sentence meanings do not order sentences, and word meanings
do not order words. No agreement between the order of subjects and the
order of sentences obtains when a sentence’s predicate is held constant but
its subject is allowed to vary. The words of a sentence are not separable with
respect to any function representing order.
Even if a compositional property imposes an order, compositionality

does not entail separability. Consider an order of pairs (x1, y1), (x2, y2),
(x1, y2), (x2, y1) from lowest to highest. The variable x is not separable from y
(given any order of elements). With y1 fixed, the agreeing order for the first
element is x1 < x2, but with y2 fixed, the agreeing order for the first element is
x2 < x1. No single order of x1 and x2 holds however y’s value is fixed.
Although in U(x, y) the variable x is not separable from the variable y
because it is not separable from y in the order of vectors (x, y) that the
function represents, U(x, y) may be a function of U(x) and U(y), and so
compositional. In the example, let the order of pairs give the pairs their
utilities, let the order of elements by subscript give the elements their
utilities, and replace the elements with their utilities to obtain a function
from their utilities to the pairs’ utilities. Imagine that U(x1) = 1, U(x2) = 2,
U(y1) = 1,U(y2) = 2,U(x1, y1) = 1,U(x2, y2) = 2,U(x1, y2) = 3, andU(x2, y1) = 4.
Then, construct F so that F(1, 1) = 1, F(2, 2) = 2, F(1, 2) = 3, and F(2, 1) = 4.
As a result, U(x, y) = F(U(x), U(y)), which establishes compositionality.
Other cases in which compositionality and separability come apart begin

with compositionality and show how separability fails. If a pair’s utility
equals a ratio of its elements’ utilities, then the pair’s utility is composi-
tional, but the order of pairs inverts the order of the denominator’s values
given a fixed numerator, and so the denominator is not separable from the
numerator. Next, suppose that x and y are variables with varying possible
values. U(x, y) = F(U(x), U(y)), so compositionality holds. Suppose that
U(x1, y1) = F(U(x1), U(y1)) = 1, U(x1, y2) = F(U(x1), U(y2)) = 2, U(x2, y1) =
F(U(x2), U(y1)) = 2, and U(x2, y2) = F(U(x2), U(y2)) = 1. The order of y1 and
y2 agreeing with the order of pairs changes as U’s first argument shifts from
x1 to x2. So, the second argument place is not separable from the first.
To illustrate concretely compositionality without separability, imagine

that the utility of wealth and security together is a function of the utility of
wealth and the utility of security. That is, no utility-divergent pairs of a level
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of wealth and a level of security have levels of wealth with the same utility
and levels of security with the same utility. Suppose that if security is set
low, then increasing the utility of wealth from a high level to a slightly
higher level in a way that triggers publicity decreases overall utility by
increasing the probability of kidnapping. In contrast, if security is set
high, then increasing the utility of wealth increases overall utility. The
utility of a composite may be a function of its components’ utilities without
being a separable function of their utilities, that is, a function in which each
argument is separable from the others.

Separability entails a type of independence. Does a weaker type of
independence combine with compositionality to yield separability?
Independence may hold between variables, variables’ values, or their util-
ities besides holding between orders of variables’ values, as with separability.
Some types of independence involve constancy as conditions change, and
some involve the absence of interaction. Consider a set of variables, a subset
of them, and vectors and subvectors that list values of the variables in the set
and in the subset, respectively. Suppose that preferences order the vectors
and subvectors and that for a single subvector, its utility is the same given
any values of its complement. This is a type of independence involving
constancy for utilities of variables’ values. Suppose that it holds for all
subvectors of values of variables in the subset. Then, the order of subvectors
of the subset’s values is the same for all values of the subset’s complement.
This is conditional independence of the order. Does compositionality and
conditional independence imply separability? No, separability of the subset
of variables from its complement requires that the order of subvectors agree
with the order of vectors for all values of the subset’s complement. Even
though the order of subvectors is independent of its complement, it need
not agree with the order of vectors.

To illustrate, suppose that one variable is for a world’s past and another
is for a world’s future (including the present). Compositionality for utility
entails that when the past is fixed, a world’s utility is a function of its future’s
utility. It prohibits assigning different utilities to two composites whose
elements have the same utility profiles. With the past fixed, futures of
the same utility yield worlds of the same utility. A future’s utility settles a
world’s utility. Nonetheless, the direction of a future’s influence on a
world’s utility may vary from future to future. For one future, its utility
may increase the world’s utility, whereas for another future, its utility may
decrease the world’s utility. This happens if the utility of the past is two, the
utility of the first future is one, the utility of the second future is two, and
the future’s utility adds to the utility of the past if the total of past and future
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utilities is three or less and subtracts from the utility of the past if the total of
past and future utilities is more than three because of penalties for exceeding
a limit on their sum. Conditional independence makes the direction of
influence uniform for all ways of fixing the past. However, separability
requires more. It requires that with the past fixed, no matter how, the order
of futures agrees with the order of worlds. That a world’s utility is a function
of its parts’ utilities follows from the separability of each part from the others
but does not entail that in a utility function for the world, each argument is
separable from the others.
Compositionality simplifies evaluation of options, as does separability. It

makes a composite’s utility calculable from the utilities of its parts.
However, compositionality is not enough to simplify deliberations given
incomplete information. Suppose that utility attaches to worlds, their pasts,
and their futures, and the utility of a world is a function of the utility of
its past and its future, so that holding the past fixed, the utility of a world’s
future settles the world’s utility. That is, U(p, f ) = F(U(p), U( f )) = F 0(p,
U( f )) for some F and F 0. Letting p have the actual past as its value, the
utilities of futures settle the utilities of worlds. Given conditional inde-
pendence, a future’s utility influences a world’s utility in a uniform direc-
tion. However, the direction of influence may depend on the past.
Separability rules out that dependence and so allows for ignorance of the
past. Given that the future is separable from the past, F(U(p), U( f )) is
strictly monotonically increasing with respect toU( f ). Strict monotonicity
puts the order of futures in step with the order of worlds for any value of p.
Given separability, an evaluator need not know the past to know that the
order of futures agrees with the order of worlds. This simplifies options’
evaluations.

1.2 Establishing separability

Various principles of separability govern the various types of utility.
Chapter 3 argues for a fundamental form of separability, and Chapters 2
and 4–6 argue for derived forms of separability. This section assembles
general strategies for arguments supporting separability.

1.2.1 Norms

Separability is a relation among orders of composites or utility functions
representing the orders. Rationality requires some forms of separability,
as later chapters argue. The separation of the future from the past is a
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normative requirement. For a rational ideal agent and type of utility, a world’s
utility separates into the past’s utility and the future’s utility. The separation
encourages deliberations to be forward looking and to ignore sunk costs.

Utility is rational degree of desire in an ideal agent. For a type of desire
and utility, showing that rationality requires an ideal agent’s degrees of
desire to be separable also shows that utilities, a rational ideal agent’s degrees
of desire, are separable. Utilities obey all principles of rationality including
principles of separation. Utilities do not obey the principles by definition
alone but also because of rationality’s regulation of degrees of desire. A type
of utility’s separability is normative given that an ideal agent’s rationality is
responsible for it.

Methods of establishing a form of separability depend on whether the
separability is normative or empirical. If it is empirical, then gathering
evidence is a basic method of supporting it. For example, evidence supports
the combined gas law, according to which the pressure of a gas is a separable
function of the gas’s temperature and the reciprocal of its volume. The
scientific method directs justification of an empirical principle of separability.
If separability is normative, then its support comes from normative principles
and resolutions of cases. For example, the moral theory, utilitarianism,
advances a normative principle claiming that utility for a group of people is
a separable function of utilities for the group’s members.Moral principles and
resolutions of cases provide its support. This book treats normative separa-
bility, in particular, separability that rationality requires. Taking separability
as a norm demands philosophical rather than empirical justification.

Suppose that rationality requires a type of separability for a utility assign-
ment. Then, the norm is an a priori truth and every set of assumptions implies
it. Giving assumptions that imply it does not establish the norm. An effective
argument for it states assumptions that explain the norm, perhaps normative
assumptions that logically or mathematically imply the norm.

Do representation theorems offer a method of establishing separability? A
representation theorem for a preference order over composites demonstrates
the possibility of representing the order with a utility function that is unique
given a zero point and a unit. The appendix to this chapter reviews famous
representation theorems that Gérald Debreu and William Gorman prove,
stating that some types of ordinal separability of variables suffice for an
additive utility-representation of the order of the variables’ values. A suffi-
cient type is called additive separability and obtains if each set of variables is
separable from its complement.

Representation theorems use empirical and normative assumptions that
regiment the preferences that utilities represent. A unique representation of
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an order of composites, given a utility scale, exists only if the order has
suitable complexity and structure. An additive representation’s existence
and uniqueness require multiple composites and require putting on the
same scale utility functions that represent the order of the composites and
the order of the values of variables generating the composites. Some
structural assumptions are empirical rather than normative. For two varia-
bles x and y specifying amounts of commodities, commutativity, a necessary
condition of an additive representation, is a norm for utility: U(x, y) =
U(y, x). A rational ideal agent complies with the norm and so facilitates
construction of an additive utility function that represents her preferences.
However, the composites’ generation from variables with multiple values, a
requirement for the representation, is not a norm. Whether it holds is an
empirical matter. The representation theorems that the appendix reviews
take separability as an empirical fact about preferences that grounds a
utility-representation of preferences with certain structural properties such
as additivity. They do not offer a means of justifying separability as a norm.
Normative principles of separability typically use simplifying assump-

tions that create a normative model. Both philosophy and economics use
models. Typically, economic models of choice serve empirical goals,
whereas philosophical models of choice serve normative goals. Even when
models in economics and in philosophy treat the same normative topic,
they differ because the disciplines have different objectives. Philosophy does
not exclude a factor from a model because it makes the model difficult to
apply to practical problems, whereas economics does. Because the two
disciplines’ models serve different purposes, they are subject to different
standards. This book justifies norms of separability within a philosophical
model that includes the idealization that agents are rational and cognitively
unlimited, and also the restrictive assumption that agents have basic intrin-
sic attitudes attaching to proper parts of worlds. The idealizations and
restrictions limit the book’s normative principles of separation.14

Utilitarianism creates a philosophical normative model. The model
assumes interpersonal comparisons of utility for alternative courses of action
affecting the people in a population. Being philosophical, the model accepts
interpersonal comparisons of utility despite the practical difficulty of mak-
ing such comparisons. In light of judgments about right acts, it advances the

14 It is convenient to take a model as a possible world or set of possible worlds meeting a group of
assumptions. Investigations of the model reveal the assumptions’ implications. A typical normative
model for decision theory is a possible world that meets a group of assumptions about agents, their
decision problems, and their circumstances. Applications of principles of rationality within the model
reveal the assumptions’ normative implications.
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principle that an act is right if and only if it maximizes collective utility. The
normative principle assumes the additive separability of an act’s collective
utility; it is the sum of the act’s utilities for the population’s members. This
separability is also normative unless part of collective utility’s definition.

Norms of separability for personal preferences, desires, and utilities come
in varying strengths. A normative principle for preferences requires the
possibility of a representation that obtains the utility of a world from a
separable function of the utility of the world’s past and the utility of the
world’s future. A stronger normative principle requires, for a type of desire
and utility taken as rational degree of desire, separation of a world’s utility
into its past’s utility and its future’s utility. Chapter 4 argues for the stronger
normative principle. In general, the chapters presenting norms of separa-
bility target utilities taken as rational degrees of desire and not utilities
defined using preferences.

What type of separability does simplification of choices require? At a
minimum, it demands, for options’worlds and their preference ranking, the
separability of a world part evaluated from a world part put aside, for
example, assuming evaluation of options by their futures, the separability
of the future from the past. However, the additivity of a world’s utility, for a
type of utility and division of the world, and the more demanding type of
separability such additivity entails, is not superfluous.

Consider an analogy. Although utilitarianism’s goal is a collective ranking
of collective options, the introduction of collective utilities in addition to the
collective ranking is not superfluous. The collective utilities generate the
collective ranking. The options’ rankings by individuals do not suffice for
the collective ranking. The rankings by individuals yield, following the Pareto
principle, according to which unanimous preference settles collective prefer-
ence, only an incomplete collective ranking. Interpersonal utilities for indi-
viduals, by generating collective utilities, complete the collective ranking.

Similarly, although deliberations rank options, introducing utilities of
option’s worlds is not superfluous. The worlds’ utilities generate a ranking
of the worlds that in turn generates a ranking of the options. Ranking
worlds’ futures and ranking their pasts, the analog of two individuals
ranking collective acts, is not enough to generate the ranking of worlds.
The rankings of pasts and futures yield, following an analog of the Pareto
principle, only an incomplete ranking of worlds. Utilities of pasts and
futures, by generating utilities of worlds, complete the ranking of worlds.
For example, take two worlds. In the first, the past is better than in the
second, and in the second, the future is better than in the first. Neither
world is Pareto superior to the other. However, given utilities for each past
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and for each future, and the additivity of worlds’ utilities, a ranking of the
worlds emerges. Utility’s additivity makes a contribution beyond prefer-
ence’s separability.
Various types of separability apply to a set of parts. Additive separability

of a world’s components, with respect to preference, grounds addition
of components’ evaluations to obtain a world’s utility. If a world’s utility
is additive (for a type of utility), then subtracting a part’s evaluation is
equivalent to a scale change for the world’s utility. Taking world parts as
variables, the order of a variable’s values agrees with the order of their
utilities’ sum after fixing the values of the other variables. Although separa-
tion of a world’s part from its complement is sufficient for separable
evaluations that simplify choices, utility’s additivity for some world parts
is not superfluous. Its additivity for realizations of basic intrinsic attitudes
grounds the definitions of temporal, spatiotemporal, and causal utility, and
those types of utility yield an evaluation of a world’s part that is separable
from an evaluation of its complement. Utility’s additivity for world parts
grounds the separability of preferences that simplifies choices.

1.2.2 Fundamental separability

Some quantities are additive because of conventions of measurement.
Weight, operationally defined, adopts as a concatenation operation, to rep-
resent with addition, combining two objects to obtain another object.
Adopting a concatenation operation for a quantity’s measurement estab-
lishes the additivity of the quantity measured with that operation. Weight is
additive because the quantity’s measure adopts combination as a concate-
nation operation. The weight of a combination of objects, according to the
measure, is the sum of the weights of the objects it combines. The measure,
the weight function, makes weight additive.
An alternative view of weight takes it as a theoretical quantity manifest in

various phenomena such as pull on springs and tipping of balances.
Assuming additivity in one manifestation may count against additivity in
another manifestation. Weight according to balances, assumed to be addi-
tive, may not be additive according to springs. Failures of additivity in some
manifestation may suggest that weight changes in combinations or that
combinations produce new objects with weight. Representation theorems
show how to use additivity to measure a quantity in some manifestation
under assumptions, such as constancy in combinations, but do not define
the theoretical quantity. Operationally defined using balances, an object’s
weight given a unit is relative to comparisons of a set of objects, including
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combinations, on a balance. However, taken as a theoretical quantity, its
weight given a unit is not relative this way.15

Two conceptions of utility differ as the two conceptions of weight differ.
According to one, utility’s additivity (for a type of utility, range of compo-
sites, and their division) is a consequence of a conventional concatenation
operation for composite objects. According to the other, utility is a theo-
retical quantity measurable in various ways. A concatenation operation,
assuming its accuracy, offers a method of measuring but not defining the
theoretical quantity. The first conception defines utility as a construct from
preferences meeting certain constraints and makes a composite’s utility
given a unit relative to preferences over a set of composites. The second
conception, taking utilities to be strengths of desire, makes utility given a
unit conceptually independent of preferences and constraints on them, and
nonrelative to preferences over a set of composites.

Howmay an argument establish additivity for a theoretical quantity such
as degree of desire without establishing it as a convention of measurement,
as does a typical operational definition of the quantity? A strategy uses
representation theorems the appendix describes to show that if an order of
composites meets certain conditions, including some separability condi-
tions, then the order has an additive representation. However, this strategy,
which is not general because of the conditions it imposes, uses the separa-
bility of an order of composites to establish the possibility of an additive
representation of the order and does not establish the additivity of the
theoretical quantity that generates the order.

Probability theory illustrates another method of deriving one type of
separability from another. Support for additivity of probability, taken as
rational degree of belief in ideal agents, may equate probabilities with additive
quantities, such as ideal betting quotients. Degrees of belief yield betting
quotients, and some groups of bets made with nonadditive betting quotients
are vulnerable to sure losses. Ideal betting quotients are additive; the quotients
for bets on disjunctions of exclusive propositions decompose into the quo-
tients for bets on the disjuncts. Also, degrees of belief should match strengths
of evidence, and the strength of evidence for a disjunction of exclusive
propositions is a sum of the strengths of evidence for the disjuncts. So in an
ideal agent, degrees of belief, if rational, inherit their additivity from strengths
of evidence. Such arguments for probability’s additivity take some type of

15 Representation theorems explain measurement of probability and utility in ideal cases even if, for
reasons that Meacham and Weisberg (2011) review, they do not offer good definitions of probability
and utility.
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additivity as given and derive probability’s additivity from it. They show that
probabilities are additive by showing that probabilities match other additive
quantities, such as ideal betting quotients or strengths of evidence.
These arguments do not take probability’s additivity as fundamental, so

they push back the problem of establishing additivity. Suppose that prob-
abilities are fundamentally additive. For a rational ideal agent, the degree of
belief that a disjunction of incompatible propositions holds equals the sum
of the degrees of belief that the propositions hold. Then, additivity receives
support as an intuitive generalization of intuitions about examples. Support
may also show that probability meets necessary conditions of additivity,
such as separability. Given that the probability of a disjunction of exclusive
propositions equals the sum of the probabilities of the disjuncts, the
probability of the first disjunct is separable from the probability of the
second disjunct. No matter how the probability of the second disjunct is
fixed, increasing the probability of the first disjunct increases the probability
of the disjunction. An order of disjunctions of mutually exclusive proposi-
tions is separable because the order of disjunctions with a common disjunct
agrees with the order of the other disjuncts. Showing this separability, a
necessary condition of probability’s additivity, involves examining cases and
generalizing from them. Showing that addition has no structural properties
that the relations among degrees of belief lack, if the agent is ideal and the
degrees of belief are rational, motivates measurement’s taking disjunction of
mutually exclusive propositions as a concatenation operation for probabil-
ity. Probabilities are additive given this justified, as opposed to conven-
tional, concatenation operation.
Arguments for a type of utility’s additivity depend on whether it, and the

separability it presumes, is fundamental or derived. An option’s utility
equals its expected utility, and an option’s expected utility is a sum of the
probability-utility products for the option’s possible outcomes. Therefore,
an option’s utility is a sum of the utilities of the chances for its possible
outcomes. The next chapter argues for this additivity of comprehensive
utilities. It derives from probability’s additivity.
Chapter 3 argues for intrinsic utility’s separability and additivity. Its

separability and additivity are fundamental, and so their support uses
the independence of intrinsic utility’s order of realizations of basic intrinsic
attitudes. As Chapter 3 shows, if an agent has basic intrinsic desires for
health and for wisdom, and realizing the first desire has greater weight, then
it has greater weight no matter which other basic intrinsic attitudes are
realized. This independence grounds intrinsic utility’s separability and
additivity. Independence of reasons for basic intrinsic attitudes supports
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the separability of the intrinsic utilities of combinations of their realizations.
The argument uses a type of independence to support a type of independ-
ence but is not question begging because of the difference between inde-
pendence of reasons and independence of utilities.

This chapter defined separability for a preference order and a utility
function in a way that makes separability apt for simplifying choices. It also
showed that complementarity opposes separability and that separability
implies compositionality. Because later chapters argue for the separability of
various types of utility, it identified suitable methods of arguing for
separability.

1.3 Appendix: Theorems

Famous theorems treat an order’s separability. They characterize relations
between types of separability and show that extensive separability of varia-
bles in a set supports an additive representation of an order of vectors of the
variables’ values.

Suppose that a set of variables generates a rich array of vectors with an
order (which may define orders of subvectors). In the set of variables, some
subsets may be separable from other sets. In the set, weak separability holds
if and only if each variable is separable from the others. As Section 1.1.4
notes, weak separability entails compositionality. Strong separability holds
if and only if every set of variables is separable from its complement. Strong
separability is necessary and sufficient for an additive representation (unique
up to positive affine transformations) of the order of the vectors that the
variables generate. When and only when an additive representation is
possible, the variables are additively separable: using utilities to represent
the order of occurrences at a location, for a vector the sum of occurrences’
utilities represents the vector’s place in the vectors’ order. Crosscutting or
overlapping separability (which has a complex definition) suffices for an
additive representation because it implies strong separability. Table 1.2
uses arrows to indicate entailments. Broome (1991: 70, 82–89) states the
theorems of separability and sketches proofs.16

As Chapter 2 introduces utility, a utility function indicates strength of
desire. The function represents preferences, but preferences do not define

16 Gorman ([1968] 1995: chap. 12) shows that the overlapping or crosscutting condition establishes
additive separability. Krantz et al. (1971: sec. 6.11) state Debreu’s theorem: strong separability implies
additive separability. Keeney and Raiffa ([1976] 1993: chap. 3) state Debreu’s and Gorman’s theorems
on additive separability.
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the function. Given utility’s definitional independence from preferences,
utility’s additivity means more than the possibility of an additive utility-
representation of preferences concerning values of a set of variables. The
utility function’s additivity means that the utility of a vector of values equals
the sum of the utilities of the values (given a common scale for their
utilities). The utilities of vectors and subvectors may generate preference
orders for the vectors and subvectors. A unique additive utility-
representation of a rational ideal agent’s preferences, given a choice of utility
scale, reveals utilities in the sense of strengths of desire (on the same scale) if
the utilities are additive.
A strategy for establishing an additive utility-representation of preferen-

ces over a set of composites uses, first, the theorem of overlapping sets to
extend separation of some subsets of variables to separation of all subsets
from their complements and, second, the theorem of strong separability to
transform separability of all subsets from their complements into additive
separability. However, the strategy yields only an additive utility-
representation and not the additivity of utility taken as strength of desire.
Utility’s additivity entails that for some wholes and divisions into parts,

the degree of desire for a whole equals the sum of the degrees of desire for
the whole’s parts. Utility’s additivity is not necessary for an additive utility-
representation of preferences. A preference order may be additively separa-
ble without utilities being additive, if the order has just one vector, because
in this case separability holds trivially whereas additivity is substantive.
Also, if the order of vectors defines the order of subvectors, the order of a
variable’s values according to utility may run counter to the order of vectors
so that in a utility function for the vectors, the variable is not separable from
its complement, and utility is not additive. Establishing additivity for
utilities taken as quantitative representations of desires differs from using
the additive separability of a preference order to ground an additive utility-
representation of preferences. In rational ideal agents, additive separability
is easier to establish for a preference order than is additivity for a utility
function because utility’s additivity entails an additively separable

Table 1.2 Properties of an order of composites

Additive
Separability ↔ Strong Separability →

Weak
Separability → Compositionality

↑

Overlapping Separability
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preference order, whereas an additively separable preference order does not
entail utility’s additivity. An additively separable preference order of com-
posites has an additive utility-representation. However, the representation
may not accurately represent utility taken as strength of desire and so may
not establish utility’s additivity.

In some quantitative functions, arguments are additively separable
although not additively aggregated. According to probability theory, the
probability of a pair of independent events equals the product of the events’
probabilities: P(A& B) = P(A)P(B) if A and B are independent events. Take
this equality as a principle of probability governing informationally in-
dependent events rather than as a definition of independent events. Then,
for independent event-variables A and B, composites formed with binary
conjunction, and a probability function P that represents comparative
probability, the multiplication principle makes P(A & B) an additively
separable function, but not an additive function, of P(A) and P(B).17

Using the theorems of separability to argue for utility’s additivity faces
two shortcomings. First, although utility’s additivity holds generally, the
assumptions under which the theorems show that a preference order has a
unique additive utility-representation do not hold generally. Second, dem-
onstrating that given the assumptions, a preference order has a unique
additive utility-representation does not establish utility’s additivity for the
composites in the order. Therefore, Chapters 2–6 do not use the theorems
of separability to argue for utility’s additivity.

17 A common return-risk method of evaluating an investment uses the investment type’s coefficient of
variation s/m, where s is the standard deviation for returns from the investment type, and m is the
mean of returns from the investment type, or the investment’s expected return. The smaller the
coefficient of variation, the better the investment. Hence, the greater m/s, the better the investment.
The reciprocal of the coefficient of variation yields a measure of an investment’s value that uses
assessments of an investment with respect to return and with respect to risk (taken in a technical
sense). An investment’s value, according to the evaluation, is proportional to return given a fixed risk.
Also, an investment’s value is inversely proportional to risk given a fixed return. Multiplying return
and the reciprocal of risk yields a quantity proportional to an investment’s value. The reciprocal of risk
is separable from return, and return from the reciprocal of risk. Multiplication is a function besides
addition with separable factors (although it may be transformed into addition using logarithms).
Gorman ([1968] 1995: chap. 14) notes that addition and its transformations are pretty much the only
associative functions that make factors separable. Addition is the most common way of representing
factors’ separability.
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