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FREDHOLM TOEPLITZ OPERATORS AND 
SLOW OSCILLATION 

S. C. POWER 

The purpose of this paper is to show how Fred hoi m criteria for Toeplitz 
operators, whose symbols lie in an algebra ,4, may often be generalized to 
cover a larger symbol algebra generated by A and SO, the slowly oscillating 
functions. Mere A and SO are algebras of continuous functions on the real 
line, so tha t we are concerned principally with the effect of a single 
discontinuity in the symbol function. 

We shall treat the cases when .4 is the almost periodic functions, the 
semi-almost periodic functions and the multiplicatively periodic func­
tions. Sufficient criteria for Fredholmness are obtained in Section ô. The 
more difficult task of establishing necessary and sufficient criteria is only 
achieved here for the slowly oscillating almost periodic functions and this 
is done in Section f>. 

Our results are obtained by localisation, and in part icular by making 
frequent use of Douglas's theorem [4, 7.47]. Its relevance here is due to a 
result of Sarason which ensures tha t a Toeplitz operator with slowly 
oscillating symbol commutes, modulo the compacts , with all other 
Toeplitz operators. As we shall see, the localisation method allows us to 
establish Fredholm criteria whilst knowing precious little about the 
underlying symbol algebras, in terms of distance est imates and s t ructure . 

Otir context is the line and so 77 denotes the Toeplitz operator defined 
on IP, the Hardy space corresponding to functions analyt ic in the tipper 
half plane, whose symbol i s / , a function on the real line R. Also H c refers 
to the Hardy space of functions on the real line which are boundary 
functions for functions analytic in the upper half plane. 

1. A s y m p t o t i c i n d é p e n d a n c e . We first define and discuss some of the 
algebras of functions tha t we shall be considering. All functions on the real 
line are assumed to be continuous unless otherwise indicated. For a func­
tion / defined on a set / we shall let osc(f, I) denote the oscillation of / 
over / , that is, the supremum of \f(s) — f(t)\ for .v and / in / . 

6-0 : Functions vanishing at +oo and — oo . 
(/ r : Funct ions possessing limits at + c o and — oo. 
SO : F u n c t i o n s / s u c h that g(x) = osc( / , [x, 2x] W [ - x , — 2x1) belongs 

to C,. 
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TOEPLIÏZ OPERATORS 1059 

AP : The uniformly almost periodic functions. 
MP : F u n c t i o n s / such t h a t / ( x ) = f(2x) for \x\ > 1. 

The letters MP stand for multiplicatively periodic and functions in MP 
are determined by their restrictions to [ — 2, 2]. If A is a function algebra 
on R then we shall let M (A) denote the maximal ideal space of A and, if 
A contains Co, let Mœ(A) denote these characters of M (A) which anni­
hilate C0. The set Mœ(A) is a compact subset of M (A) referred to as the 
fibre of M (A) a t (or over) infinity. We may define, without ambiguity, 
Mœ(A ) for function algebras A, on R, which do not necessarily contain C0 

by setting Mœ(A) = Mœ(A + Co). The fibre a t infinity is the interesting 
par t of the maximal ideal space for the function algebras listed above. 
The following facts are easily verified: The fibre Mœ(Cœ) is a two point 
space; the fibre Mm(SO) is a connected space; the fibre Mœ(AP) is 
homeomorphic to M(AP), the Bohr compactification of R; the fibre 
ÀIœ(MP) is natural ly homeomorphic to the disjoint union of two circles. 

Our intuition tells us tha t the last four function algebras listed above 
behave quite differently a t infinity. This belief is captured by the follow­
ing concept of asymptotic independence. If A and B are two function 
algebras then let [A, B] denote the function algebra tha t they generate. 

Definition. Two function algebras A and B on the real line are said to be 
asymptotically independent if Mœ([A, B]) is naturally homeomorphic to 
Mœ(A) X Mœ(B). 

The natural homeomorphism referred to is, of course, the restriction 
map x —» (x\A,x\B), and asymptotic independence requires tha t it be 
onto. It turns out tha t the function algebras COT, SO, AP and MP are 
(pairwise) asymptotically independent except for the pair \Cm, MP}. In 
fact we even have, using the obvious notation, 

M„([SO,AP, MP}) = MJSO) X M JAP) X Mm{MP). 

We shall content ourselves with the proof of the following lemma and 
some remarks which illustrate the general method. 

LEMMA 1. The fibre Moo(\S0, AP]) is naturally homeomorphic to 
Mm(SO) X M{AP). 

Proof. Let x belong to Mœ(SO), let y belong to M(AP) and let 
gi, g2, • • • , gm be almost periodic functions. We first show tha t there 
exists z in Mœ([SO, AP]) such tha t z\SO — x and gt{z) = gi{y) for 
i = 1, 2, . . . , m. 

For each positive integer n let Ln be an n~l-almost period for the almost 
periodic function hit) = X ^ 1 l£*'(0 ~~ giij)\- Since h(y) = 0 it follows 
tha t each interval of length Ln contains a point / such tha t h(t) ^ 2n~]. 
In fact if any interval of length Ln failed to have this property we would 
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deduce, by translating, tha t h(t) ^ n~l everywhere, which contradicts 
h(y) = 0. Now let ta be any net of points in R which converge to x in 
M (SO). Construct , for each n, a perturbed net ta,n where tajl is any point 
in an interval of length Ln, containing ta, such tha t h(ta,n) S 2n~\ It is 
routine to show tha t the per turbed net htn still converges to x for each n. 
Now, for each n, let zri be a limit point in M ([SO, AP]) for the net ta,n and 
let z be a limit point in M ([SO, AP]) for the sequence zn, n = 1, 2, . . . . It 
is readily checked tha t z\SO = x and h(z) = 0, t ha t is, gi(z) = gi(y) for 
i = 1, 2, . . . , m as desired. 

For each finite family, G say, of functions in AP let zG be the character 
of Mœ(\SO, AP]), as constructed above, whose restrictions to SO and G 
are x and y respectively. Then \zG\ is a net in Af^fSO, A P ] ) which con­
verges to a character co such tha t oo\SO — x and u\AP = ;y. T h u s the 
natural mapping provides the desired homeomorphism since it is onto. 

If / is a continuous function on R then its asymptot ic norm, denoted 
ll/IU is given by 

||/ | |„ = l i m s u p , , _ ! | / ( . ) | ; kl >x\-

It is straightforward to show tha t the asymptot ic norm of/ is the norm of 
the restriction of / to the fibre over infinity of any C*-algebra of con­
tinuous functions which contains it. A relatively straightforward con­
sequence of the Gelfand theory is t ha t if A and B are two commuta t ive 
C*-subalgebras of a commuta t ive C*-algebra then M ([A, B]) = M (A ) X 
M(B) if and only if \\ab\\ = \\a\\ \\b\\ for all a in A and b in B. Combining 
these facts, it follows tha t if C and D are C*-algebras of continuous func­
tions on the line then C and D are asymptotical ly independent if and only 
if II/&II" = Hj lUklk f ° r a U / m Cand g in D. This useful proper ty provides 
an al ternat ive proof of Lemma 1 and rapidly establishes the asymptot ic 
independence of the pairs (SO, C J , (SO, MP), (SO, [C^AP]), (AP, MP) 
and many more besides. 

The space [Cœ} AP] is referred to as the space of semi-almost periodic 
functions [13] and we shall denote it by SAP. 

2. S y m b o l d a t a . Let <p he a continuous function defined on the real 
line. A well known fact concerning the Toeplitz operators 7", is tha t its 
essential spectrum contains the range of ç. Consequently we may assume, 
without loss of generality, t ha t ç is invertible and t ha t arg <p is a con­
t inuous function, where, for the sake of definiteness, we take 
0 ^ a r g ^ ( 0 ) < 2TT. 

The following da t a ( l ) - ( 5 ) associated with the symbol function <p has 
proved to be impor tant in establishing Fredholm criteria. In the next 
section this information will be localized to points in Mœ(SO), in order to 
accommodate the introduction of slowly oscillating functions. Assertions 
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involving the symbol =L should be interpreted as making two s ta tements 
in the obvious fashion. 

J it 
cp(s)ds ( - c o < / < + 0 0 ) . 

(2) Means a t ± 0 0 . m±(<p) = l im^± 0 O m(<p, t). 

(3) Mean motion a t ± 0 0 . ^((p) = lim?_>±co^1(arg <p(2t) — arg<p(0)-

(4) Winding function w((p, t) = arg<£>(2/) — a.rg<p(t). 

CU ds 
(5) Weighted mean function w (<p, t) = | <p(s) TT~I—?: 

J t \s\ log 2 
For the sake of convenience of comparison, and also for later use, we 

collect together some of the known criteria for Fredholmness of Toeplitz 
operators in the following theorem. Let [X, v\ denote the line segment 
joining the complex numbers X, v, and let d(-,-) denote the usual distance 
function between points and sets in a metric space. 

T H E O R E M 2. Let <p be a bounded continuous function on the real line which 
is bounded away from zero. 

(a) If ip is in Cœ then I\ is Fredholm if and only if 

\imx^d(0J[<p(x),<p(~x)]) > 0. 

(b) If (f is in [SO, Cœ] then I\ is Fredholm if and only if 

lim inff_,œ d(0, [<p(x), <p(-x)]) > 0. 

(c) If (p is in AF then 7^ is Fredholm if and only if M + M = 0. 
(d) If <p is in SAP then Tv is Fredholm if and only if i±+(<p) = JJT(<P) = 0 

and d(0, [exp(ra+(log <p)), exp(m~(\og <p))]) > 0. 
(e) If (p is in MP then 1\ is Fredholm if and only if 00 {<p, 1 ) = œ {<p, — 1 ) 

and d(0, [exp(w(log cp, + 1 ) ) , exp( — w(\og cp, —1))] > 0. 

Par t (a) is due to Widom [15] (see also [10], [5]), par t (b) is due to 
Sarason and is implicit in [14], part (c) is due independently to Coburn 
and Douglas [2] and Gohberg and Feldman [9], and par t (d) is due to 
Sarason [13]. Of course if ç> is in AP then /x+(<^) = M~(</>)• If M+(<£>) and 
M~~(V) exist and vanish for an arbi t rary (continuous, invertible) <p we 
shall say tha t <p has vanishing asymptotic mean motion. 

Par t (e) follows, as we now show, from a theorem of Abrahamse [1] con­
cerning the invertibility of a Toeplitz operator 7^ whose symbol \p is 
continuous on ( —oo,0) U (0, 00 ) and satisfies the identi ty \p(x) = \p(2x). 
His theorem asserts tha t I\ is invertible if and only if w(^, 1) = co(^, — 1) 
and 

ds 
M log 2 J1"'&r"-"\s\1^2 J_^

a^* (5 )ï7ïl^-J1
ar** (5 )• 
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is not equal to ir, modulo 2TT. Since the last condition is equivalent to 

tf(0, [exp(w(log \p, 1), exp( — w(\og \p, —1))]) > 0 

we shall have established Theorem 2(e) if we show tha t if <p is an inver-
tible function in MP such tha t <p(x) = \p(x) for |x| > 1, then ri\ is 
Fredholm if and only if 7^ is invertible. 

To see this we shall need the following five lemmas, which, incidentally, 
will not be required again in this paper. If/ and g are functions in L œ ( R ) 
we let 

d+œ(f,g) = ess lim sup,_>+001/(0 - g(t)\. 

Also if F is a subset of L°°(R) we let d+œ(f, F) — inf d+œ(f, g) as g varies 

over F. Similarly we define d-œ(f,g), d-œ(f, F) and dœ(f, g) = max 

[d+œ(f> g)> <*-«>(/, g)\ a n d also d œ ( / , F). 

L E M M A 3 [3]. If ip is an invertible function in L œ ( R ) then 1\ is invertible 
(resp. Fredholm) if and only if T^/ki ̂ s invertible {resp. Fredholm). 

LEMMA 4 [4]. If <p is unimodular then Tv is invertible if and only if 

d(<p,Hœ) < 1 and d(ë, H00) < 1. 

LEMMA 5 [8]. If <p is unimodular then Tç is Fredholm if and only if 

d(<p, Hœ + C„) < 1 and d(ë, Hœ + C0) < 1. 

LEMMA 6 [12]. If <p is a bounded continuous function then 

d(ç,Hœ+ Co) = d^IT). 

LEMMA 7. If \p is continuous on ( — co, 0) U (0, co ) and satisfies 
^(x) = xp(2x) then dœty, Hœ) = dty, Hœ). 

Proof. For e > 0 choose h in Hœ such tha t 

e s s s u p i ( l à / 0 | ^ ( 0 - h(t)\ S dM, H~) + e 

for some /(). Let h„. in Hœ be given by hn(x) = h(2nx) so tha t , since 
\p(x) = \l/(2nx), we have 

esssup[i|2>2-«*o IlKO - hn(t)\ S dœ(\l/,Hœ) + e. 

Since hn is a bounded sequence we may choose a weak star limit point g in 

IT which must satisfy | |^ - g\\ g dœ(t, Hœ) + *• T h u s dty, ET) is 

dominated by dœ (^ , i^œ) and so equali ty holds. 

We can now see, using the notat ion following Theorem 2, tha t 1\ is 
Fredholm if and only if T^ is invertible and so complete the proof of 
Theorem 2(e) . By Lemma 3 we may assume tha t <p and \p are unimodular , 
and so, by Lemmas 4 and 5, we need only show tha t d(\[/, H03) = d(<p, Hœ 

+ C). However, by Lemma 7, d(Js}H
œ) = dœ(\f,, Hœ) = dœ(<p, Hœ) which, 

by Lemma 6, is d(<p, IIe0 + C). 
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3. Local symbol data. 

a) [SO, AP]. Since 5 0 and A P are asymptotically independent, we have, 
for each x in Mœ(SO), a natural homomorphism oux from [SO, AP] to AP 
defined by 

M<p))(y) = <P«x,y)) (y in M (AP)). 

Consequently, if <p is an invertible function in [SO, AP] we may think of 
the mean motion of <p over the point x as the number ix+(ax(<p)). This data , 
which we shall denote by nx

+((p), may be obtained directly from the 
symbol function as follows. Let ta be any net of positive real numbers 
which converges to x in M (SO). Then for <p in [SO, AP) we have 

(6) M / 1 » = \imata-
l{a.rg<p(2ta) - a r g ^ ( / a ) } . 

To see this write y — f + h w h e r e / = ax(<p) and ax{h) = 0. We first note 
tha t Ymia osc(\h\, \ta, 2(a]) = 0. If this were not so there would exist 
e > 0 and xp is [tp, 2t&] for some subnet x$ of xa, such tha t \h\ (x&) ^ e, and 
so any cluster point z in M(\SO, AP]) of {x$\ would be such tha t \h\ (z) ^ e 
and z\SO = x contradicting the fact tha t ax(h) = 0. I t now follows tha t 

lima ta~
l{dsg <p(2ta) - arg (p(ta)\ 

= lima / a
_ 1 {arg/(2/ a ) — arg/(/«)} 

= M
+ ( / ) = H+(<*XM) = H£+M. 

b) [SO, SAP]. Since SO and SAP are asymptotically independent, we 
have, for each x in Mœ(SO), a natural homomorphism &- from [50, SAP] 
to 5 A P | M œ ( 5 , 4 P ) given by 

(AM)(y) = <f{(x, y)) (y in MJSAP)). 

If cp is an invertible function in [SO, SAP] and if \f/ is an invertible function 
in SAP such tha t fc(<p) = yp\Mœ(SAP) then it can be seen tha t the num­
bers 

mx
±{ip) = m±(yp) 

do not depend on the particular choice of i//. Moreover, as in (a), this 
information may be obtained directly from the symbol function. Using 
the notation of (a) we have, for an invertible function <p in [SO, SAP] 

(7) Hx+(<p) = lima /«-1 {arg <p(2ta) — arg<^(Oi 

(8) Hx-(<p) = lima - t<rl{arg <p( — 2ta) - a r g ^ ( - / a ) } 

/

2? a 

(9) mx (<p) = YimJa I <p(s)d. is 

(10) mx (<p) = lima — ta I (p(s)ds. 
- / ; 

- 2 ^ 
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T h e proofs of (7) and (8) are analogous to the proof of (6) given in (a) . 
T o see (9) and (10) note t ha t these formulae are t rue when <p is of the form 
figi + f2g2 • • • • + fngn whe re /* belongs to SO and gt belongs to SAP for 
i = 1, . . . , n. Thus , by approximating, they are true in general. 

(c) [SO, MP}. Since SO and MP are asymptotical ly independent we 
have, for each x in Mœ(SO), a natural homomorphism yx from [SO, MP] 
to MP\Mœ(MP) given by 

(yx(<p))(y) = <P«x,y)) ( y i n J / J M ? ) ) . 

If <p is an invertible function in [SO, MP] and \f> is an invertible function in 
MP such tha t yx.(<p) = \f/\Mœ(MP) then it is clear t ha t the numbers 

(11) œ+(<p) = co(*, 1) 

(12) u-(<p) = co(*, - 1 ) 

(13) w+(<p) = w ( i M ) 

(14) Wx~((f) = IV (if/, —1) 

do not depend on the part icular choice of \p. Moreover this local da t a may 
be obtained directly from the symbol function. Let ta be as in (a), that is, 
a net of positive real numbers which converge in M (SO) to the character 
x. Then we have 

(15) wx
+(<p) = lima (arg<^(2/a) - arg <p(ta)), 

(16) WJT(<P) = Hma (arg <p(-2ta) - a r g ç ) ( - / a ) ) , 

(17) wx
+(<p) = \[maw(ip,ta), 

(18) wx~(cp) = \ima w((p, —ta). 

These formulae are verified as in (a) and (b). 

4. Loca l i sa t ion over Mœ(SO). The following two theorems are the key 
to all the results of this paper. The first is due to Sarason [14] and the 
second is due to Douglas [4]. 

T H E O R E M 8. If f belongs to Lœ(K) and g belongs to SO then TfTg — 'l\Tf 

is compact. 

I t is well known tha t the commuta to r of two Toeplitz operators is 
compact if the symbol of one of them belongs to the space QC = 
(Hœ + Co) H (Hœ + Co). The theorem is proved by using the relation­
ship between the functions of vanishing mean oscillation VMO and QC 
to show tha t QC contains SO. 

T o sta te the second theorem we shall require some notat ion. If A is an 
algebra of functions on the real line, containing 5 0 , then \et*^~A denote 

https://doi.org/10.4153/CJM-1980-081-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-081-2


TOEPLIÏZ OPERATORS 100") 

the corresponding Toeplitz algebra, tha t is, the C*-algebra generated by 
the Toeplitz operators whose symbol belong to A. If x is a point in 
M (SO) then let J x denote the ideal \n^~A generated by those Tr with / i n 
SO a n d / ( # ) = 0. Each such ideal contains the compact operators. 

T H E O R E M 9. Let A be an algebra of continuous functions on the real line 
which contains SO. Then T^ is Fredholm if and only if J\ + J> xisinvertible 
inTAlJxfor each x in M (SO). 

Let J>m be the ideal in-5~4 generated by those Toeplitz operators with 
symbols belonging to C(). In view of Theorem 9 the question of Fred-
holmness for 7 \ will reduce to the question of the invertibility of Tç + Jm 

\\\3TAjJm. We shall need the following distance formulae concerning the 
ideals J x and Jœ. The coset of an operator T in the Calkin algebra is 
denoted by [T], and similarly the coset of$~A is denoted by [^~A]. 

LEMMA 10. Let T be an operator in TA. Then 

(x)d(T,Jj = i n f { | | [ r r / ] | | ; f in Cœ,f(±œ) = 1,0 g / g 1}. 
(ii) d(T,Jx) = i n f | | | [ T 7 ; ] | | ; <P in SO, <p(x) = 1 0 g <p è 1}. 

Proof, (i) Since J'm contains the compact operators we have d(T, <f œ) 
= d([T], [J of\). Since, f o r / in C0, [Tf] commutes with [^~A], we see tha t 

d(iniJJ) = inf(jj[7-] + [S] | | | 

where the infimum is taken o\rer all operators [S] of the form 

[SI = Z [TiW,;] 

w h e r e / i , / 2 , . . . , /„ belong to C0 and 7\ , T2, . . . , Tn belong t o J ^ . This 
follows because the collection of such [S] is a dense subalgebra of [*/œ]. 
Given e > 0 choose [S] of the above form so tha t 

| | m + lS] | | èd(T,JJ + e. 

Now choose g in Cœ such tha t g(-\-oo) = g( — œ) = 1, 0 ^ g ^ 1, and 
such tha t 

L [Tt][Tfi,\ < e. WISTM = 

Thus 
\\[T][Tt]\\ ^ ||([r] + |5])[rj j | + j[[5][2;]|| 

è d{T, J J + 2e. 

Consequently d(T, Jœ) dominates the infimum of (i). On the other hand 
the equation | |[T] + [T] [7V/ ] | | = \\[T Tf]\\ immediately showrs tha t 
d(T, Jœ) — d([T], l^oo]) is dominated by this infimum, and so equality 
holds. 

(ii) The proof of (ii) is exactly analogous to the proof of (i). 
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5. Sufficient criteria. 

T H E O R E M 11. Let <p be a continuous function on the real line which is 
invertible. Then T^ is Fredholm if any one of the following holds. 

(i) <p lies in [SO, AP], JU+(^) exists and is 0. 
(ii) <p lies in [SO, SAP], id+(cp) and ix~~(<p) exist and are 0, and 

lim inf.r^œ d(0, [exp(ra(log <p, x)), exp(m(log <p, -x))]) > 0. 

(iii) ip lies in [SO, MP], l im^.^ (w(<p, x) — co(<̂ , — x)) exists and is zero, 
and 

lim inf^oo d(0, [exp (u> (log <p, x)), exp( —w(log <p, -x))]) > 0. 

Proof. The method of proof for each par t follows the same pa t te rn . 
Thus , the hypotheses will ensure tha t all the local Toepli tz operators 
Tip + J x, # in M (SO) y are invertible and consequently, by Theorem 9, 
1\ is Fredholm. Note tha t in each case J x denotes a different ideal, 
corresponding to the different Toeplitz algebras, bu t this notational 
convenience should not cause any confusion. Since, for x i n R , 7^ + , / , . = 
<p(x) + J>'x we need only concern ourselves with x in Mœ(SO). 

(i) We first show tha t if 6 is a function in [SO, AP] and ax(6) = 0, then 
Te belongs to J> x. Since SO and AP are asymptotical ly independent it 
should be clear t ha t given e > 0, there exists a func t ion / in SO such tha t 
0 Sf è 1, f(x) = 1 and such tha t on Mœ([SO, AP]) we have \f0\ ^ e. 
Since this means ||/0||« ^ e it is clear t ha t we can r echoose / to guarantee 
| | /0 |L = e a n d w e assume we have done this. T h u s 

||[Z',7V]|| = | | [7V] | | é e 

and so, by Lemma 10, we see tha t T% is in J> x. Thus T^ + Jx = TaA(p) 

+ Jx for all x in Mœ(S0). Since M
+(<^) = 0 it follows from (6) tha t 

lix
+(<p) = 0 for all x in Mœ(SO). Thus , by Theorem 2, pa r t (c), T\ + Jx = 

Tax(<p) + J* x is invertible, and Theorem 9 completes the proof. 
(ii) As in (i) if 6 is a function in [SO, SAP] and (3X(6) = 0 then Te 

belongs to Jx. Fix x in Mœ(SO) and let \p be any invertible function in 
SAP such tha t /^(v? — \p) = 0. Since M+(<^) = M~"(<£>) = 0 it follows from 
(7) and (8) tha t nx

+(<p) = M.r(^) = 0 and therefore t ha t A^O/O = 0. 
Moreover, from (7) and (8) it can be seen tha t our hypothesis implies 
tha t 

d(0, [exp(w. + (log if)), exp(m,r ( log <p))]) > 0 

and so since by (9) and (10) 

mx
+(\og(p) = m+( log i/0 and mx~(\og<p) = m~(log \p), 

we see, by Theorem 2 par t (d) , t ha t 7^ is Fredholm. Consequently 
T<p + Jx = T^ + -/a- is invertible and (ii) now follows. 
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(iii) Again, as in (i), if 6 lies in [SO, MP] and x is a point in Mœ(SO) 
then yx(0) = 0 implies tha t Te belongs to J x. Let \p be any invertible 
function in MP such tha t yx(<p — \p) = 0. Since 

l i m , ^ (a)(<p,x) - <a(<p, —x)) = 0 

it follows from (15) and (16) tha t cox
+(<p) — oox~(<p) = 0 and therefore 

tha t œ(\p, 1) — oo (\p, —1) = 0. In a similar fashion, since 

wx
+(\og(f) = w(\og\p, + 1 ) and wx~(\og if) = w(\og\p, —1) 

our hypothesis implies (using (17) and (18)) tha t 

d(0, [exp(w(\og^, + 1 ) ) , e x p ( - w ( l o g ^ , - 1 ) ) ] ) > 0 

and so, by Theorem 2(e) , T^ is Fredholm. Consequently 1\ + J?x = 
Tyf, + Jx is invertible and (iii) follows. 

In the next section we show tha t the condition in (i) above is necessary. 
I t seems likely tha t the conditions of (ii) and (iii) are also necessary. 
However, a proof of this, along the lines of the next section, will require a 
good understanding of the interesting Toeplitz algebras associated with 
these symbols. 

6. Necessary and sufficient conditions for [SO, AP]. 

T H E O R E M 12. Let <p be a function in [SO, AP}. Then T<p is Fredholm if 
and only if <p is invertible and has vanishing asymptotic mean motion. 

Our proof rests on showing tha t the natural mapping {vovci^~AP onto 
^~[so,AP]I J*x is an isomorphism for each x in Mœ(SO). T h a t is, t ha t each 
local algebra a t infinity is isomorphic to the almost periodic Toeplitz 
algebra. Suppose for the moment tha t this is so. If Tv is Fredholm then, 
as in the proof of Theorem 11 (i), T^ + Jx — Tax{(p) + Jx is invertible in 
^" [so ,AP] / ^ x fo r each x in M (SO). Consequently Tax(<p) is invertible m^AP 

for all x in Mœ(SO), and so, by Theorem 2(c), it follows tha t 

Vx+(<P) = IX(0LX(<P)) = 0 

for all x in Mœ(SO). In view of (6) this implies n+(<p) ( = /x"^(^)) exists 
and is 0. T h a t is, tha t <p has vanishing asymptot ic mean motion. The 
converse direction has already been established in Theorem l l ( i ) . 

We prove the required isomorphism (Lemma 16) through the following 
three lemmas, the first of which is the key. For X > 0 we let P\ denote the 
orthogonal projection of H2 onto eiXxH2. 

LEMMA 13. Let f be a function on SO which does not belong to C0. Then, 
for each X > 0 there exists a sequence gn of functions in (I — P\)H2 such 
that Iknlh = I, gn converges to zero weakly and such that \\fgn\\2 è à > Ofor 
some positive d. 
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Proof. Consider first the function g(x) = (eibx — eiax)/x(b — </)1/2, 
where 0 < a < /; < X. Then | |g| |2 = 1 and g belongs to (I — P\)H2. This 
may be seen for example by noting tha t g is the Fourier Plancherel trans­
form of 

-tV2r(b - a)-1 /2
X[a,6] 

where X[«,&] is the characteristic function of [a, b]. Let y = b — a. Then 
we have 

L P . i*_ J _ P 2(1^COST*) 
2*J„ ]êl ~2ryJK .? 

dx. 
Iwy 

Thus 

1 J*2"-', ,2 1 p2 ( l - cos* ) ., K 

where X is an absolute constant , which is strictly positive. 
Suppose now tha t / belongs to SO and does not belong to GV Then 

there exists a positive constant L and disjoint intervals [2wtn, 47r/„], 
n — 1 , 2 , . . . , such tha t | / | > I o n these intervals. Let 

gn(x) = {eixlt- - eix/2t»)(2tn)
1/2x-\ 

Then it follows, from our initial comments , t ha t the functions gn are 
orthogonal uni t vectors which lie in ( / — Py)H

2 for large n. In part icular 
the sequence gn converges to zero weakly. Also 

11/g.H* ^JZ fiTl" \iW *LK>0 
^7T J 2-Ktn 

for sufficiently large n, and so the proof of the lemma is complete. 

LEMMA 14. Let X > v ^ 0 and let f belong to SO. Then 

j | [ ( P x - P,)T,]\\ = \\f\Alœ(SO)\l. 

Proof. T h e mapping from SO into the commuta t ive C*-algebra 
{[(Px-P,)T,];fmSO\ given by 

f-+[(P*-P,)Tf] ( / in SO) 

is a homomorphism. Moreover if/ is in G0 then (P x
 — P\)P/ is compact . 

This may be seen by writing (P x — Pv)Tf as (TVTV* — T\T\*)Tf, where 
TM = 7"eiMx, and localising relative to the circle, t ha t is, apply [4, Theorem 
7.47]. Consequent ly the mapping 

f\Mœ(SO) - • [(Px - P,)Tf] ( / in 5 0 ) 

is a well defined C*-homomorphism of commuta t ive C* algebras, and it 
will be sufficient to show tha t this mapping is infective. But suppose 
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[ (PA — Pp)Tf] = 0. Since the automorphisms induced by the unitary 
(multiplication) operators M e w , p in R, leave multiplication operators 
fixed but translate the operators P\, we see tha t [ ( / — P\-V)T f] — 0. But 
if Q is the projection from L2 to H2 we have (I L* — Q)MfQ compact, 
s i n c e / belongs to Hœ + C0. Thus we conclude tha t Mf(I — P\-V)\H'2 is 
compact and Lemma 13 implies t h a t / is in C0. 

Let ^ be the commutat ive C*-algebra generated by the projections 

Px, X > 0. 

LEMMA 15. Let T he an operator in cfl and let f belong to SO. Then 

\\[TT,]\\ = | | m | | \\f\AUSO)\l. 

Proof. I t will be sufficient to consider the case when T is in the algebra 
generated by the projections Px, X > 0. For such a T it can be seen that 
there exists a complex number a of modulus one and X > v ^ 0 such that 

(Px - P,)T = a\\T\\(Px - Pv). 

Thus, using the previous lemma, 

| | [ 7 T , ] | | ^ ||«[(Px - P,)TTf]\\ 

= \\T\\\\[(i\-pt)Tf}\\ 

è limn \\f\Mjso)\u. 
T h e inequality in the other direction is straightforward and so the lemma 
is proved. 

LEMMA 16. The natural mapping of ^f~~AP onto $~\SO,AP]/^.>• is a $t(ir 

isometrical isomorphism. 

Proof. Let U u t G R, be the translation uni taries on H2 defined by 
(Utf)(x) = f(x — t),x in R. It is known ([6]) that for T in -TAP the 
mapping E ow£/~AP defined by 

E(T) = l i m r 1 I UsTU*ds 
t^oo J 0 

is well defined and in fact E is a faithful expectation onto %'. 
Suppose tha t T is a positive operator in the kernel of the mapping 

T —> T + Jx and fix e > 0. By Lemma 10 there exists a function <p In SO 
with <p(x) = 1, 0 ^ <p ^ 1, such tha t | | [ 7 T J | | ^ e. Now if ^ , = L7,<-, the 
^-translate of <p, then <p — <ps belongs to C0 and so 

U T 11* — T = P 

belongs to Jœ. Consequently 

r 1 I U,TT9U,*ds - T 1 / U,rU*dsT. 
Jo J o 

= r11 U,TU*(T„ - rp)rf.v 
«^ 0 
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belongs to J'œ. Since the first term of the left hand side of this equat ion 
has essential norm no greater than e, and since the second term converges 
with / to E(T)T(p, we see tha t 

d([E(T)T,]}[Jj) S e. 

Now, by Lemma 10(i) there e x i s t s / in Cœ with 0 ^ / ^ l , / ( —oo ) = 

/ ( + oo) - l,a.nd\\[E(T)TvTf]\\ S 2e. But now, since | \<pf\Mœ(SO) |U = 1 

Lemma 15 indicates t ha t | | [ £ ( r ) ] | | ^ 2e. T h u s [E(T)] = 0. However rtf 

contains no compact operators ([2] [11]) and so E(T) = 0. Since E is 

faithful it follows tha t T = 0 and so the proof is complete. 

Remark. Let A be an algebra of functions on the real line and let r(fA 

denote the commuta tor ideal of the Toeplitz algebra 3?~\. I t can be shown 
tha t if the m a p p i n g / —> Tf + ^A, f in A, is an algebra isomorphism, then 
so is the mapping g —> T0 + ^[soM' f ° r £ m [SO* ^ ] - T o s e e this n ° t e 
first tha t ^[SOM contains the compact operators, and note secondly tha t 
it will suffice to show tha t T^^g — T^/T^g belongs to &[SO,A] whenever <p, \p 

are in SO and g,f are in A. This is because the mapping in question is 
always an isometry [4]. However 

?W*<7 ~~ r^<Pf^g = T^iTfg — TfTg) + compact 

and so this semicommutator belongs to ^[SO,A] because Tfg — T'fTg does. 
In particular, in view of [13] Theorem 2, it follows tha t 

3/ [so,AP]ilC&\so,AP) is the isomorphic image of [SO, AP] under the mapping 

/ —» Tf + U[SO,AP]' 
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