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FREDHOLM TOEPLITZ OPERATORS AND
SLOW OSCILLATION

S, CoPOWER

The purpose of this paper is to show how Fredholm criteria for Toeplitz
operators, whose symbols lie in an algebra 1, may often be generalized to
cover alarger symbol algebragenerated by 1 and SO, the slowly oscillating
functions. Here 41 and SO are algebras of continuous functions on the real
line, so that we are concerned principally with the effect of a single
discontinuity in the symbol function.

We shall treat the cases when . is the almost periodic tunctions, the
semi-almost periodic functions and the multiplicatively periodic func-
tions. Sufficient criteria for Fredholmness are obtained in Section 5. The
more difticult task of establishing necessary and sufficient criteria is only
achiceved here for the slowly oscillating almost periodic functions and this
is done in Section 6.

Our results are obtained by localisation, and in particular by making
frequent use of Douglas’s theorem (4, 7.47]. Its relevance here is due to a
result of Sarason which ensures that a Toeplitz operator with slowly
oscillating symbol commutes, modulo the compacts, with all other
Toeplitz operators. As we shall see, the localisation method allows us o
establish Fredholm criteria whilst knowing precious little about the
underlying symbol algebras, in terms of distance estimates and structure.

Our context is the line and so 77, denotes the Toeplitz operator defined
on f1*, the Hardy space corresponding to functions analytic in the upper
half plane, whose symbol is [, a function on the real line R. Also H" refers
to the Hardy space of functions on the real line which are boundary
functions for functions analvtic in the upper half planc.

1. Asymptotic independance. We first define and discuss some of the
algebras of functions that we shall be considering. All functions on the real
line are assumed to be continuous unless otherwise indicated. For a func-
tion [ defined on a set [ we shall let osc(f, /) denote the oscillation of f
over [, that is, the supremum of | f(s) — f (/)| for s and ¢ in I.

Cy : Functions vanishing at 4+ and —w.

(.. : Functions possessing limits at +% and —«.

SO : Functions f such that g(x) = osc(f, [v, 2x]1 U [ —x, —2x1) belongs

to C.
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AP : The uniformly almost periodic functions.
MP : Functions f such that f(x) = f(2x) for |x| > 1.

The letters M P stand for multiplicatively periodic and functions in .1/ P
are determined by their restrictions to [ —2, 2]. If 4 is a function algebra
on R then we shall let 1/(4) denote the maximal ideal space of 4 and, if
A contains Cy, let M_(A4) denote these characters of M (4) which anni-
hilate Cy. The set M (4) is a compact subset of M (4) referred to as the
fibre of M (A) at (or over) infinity. We may define, without ambiguity,
M (A4) for function algebras 4, on R, which do not necessarily contain (',
by setting M (4) = M_(4 + Cy). The fibre at infinity is the interesting
part of the maximal ideal space for the function algebras listed above.
The following facts are easily verified: The fibre M _(C,) is a two point
space; the fibre 1 (SO) is a connected space; the fibre A (AP) is
homeomorphic to M (AP), the Bohr compactification of R; the fibre
M (MP) is naturally homeomorphic to the disjoint union of two circles.

Our intuition tells us that the last four function algebras listed above
behave quite differently at infinity. This belief is captured by the follow-
ing concept of asymptotic independence. If 4 and B are two function
algebras then let [4, B] denote the function algebra that they generate.

Definition. Two function algebras 4 and B on the real line are said to be
asymptotically independent if M_ ({4, B]) is naturally homeomorphic to
M (A4) X M, (B).

The natural homeomorphism referred to is, of course, the restriction
map x — (x|4, x|B), and asymptotic independence requires that it be
onto. It turns out that the function algebras C,_, SO, 4P and MP arc

(pairwise) asymptotically independent except for the pair {C,,, M P}. In
fact we even have, using the obvious notation,

M, (SO, AP, MP]) = M_(SO) X M_(AP) X M,(MP).

We shall content ourselves with the proof of the following lemma and
some remarks which illustrate the general method.

Lemyma 1. The fibre M (]SO, AP)) is naturally homeomorphic lo
M, (SO) X M(AP).

Proof. Let x belong to M, (SO), let y belong to M(4P) and let

g1, €9 . . ., &n be almost periodic functions. We first show that there
exists z in M_([SO, AP]) such that /SO = x and g;(z) = g;(y) for
1=1,2,...,m.

For each positive integer » let L, be an n—'-almost period for the almost
periodic function A(t) = D7y [¢:(t) — g:;(v)|. Since h(y) = 0 it follows
that each interval of length L, contains a point / such that 2(f) < 2n~".
In fact if any interval of length Z, failed to have this property we would

https://doi.org/10.4153/CJM-1980-081-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1980-081-2

1060 S. C. POWER

deduce, by translating, that A(t) = n~' everywhere, which contradicts
h(y) = 0. Now let /, be any net of points in R which converge to x in
M(SO). Construct, for each #, a perturbed net ¢, where ., is any point
in an interval of length L,, containing 4., such that &(t.,) < 2n~". It is
routine to show that the perturbed net ¢, , still converges to x for each n.
Now, for each #, let 5, be a limit point in 3/ ([SO, A P]) for the net ¢, , and

let 5 be alimit point in M ([SO, 4 P]) for the sequences,, n = 1,2, .... It
is readily checked that z|SO = x and A(z) = 0, that is, g;(z) = g:(v) for
1=1,2,...,m as desired.

IFor each finite family, G say, of functions in 4 P let 24 be the character
of M (SO, AP]), as constructed above, whose restrictions to SO and G
are x and y respectively. Then {34} is a net in M, ([SO, 4 P]) which con-
verges to a character w such that »/SO = x and w|AP = y. Thus the
natural mapping provides the desired homeomorphism since it is onto.

[f [ is a continuous function on R then its asymptotic norm, denoted
[[f1]a, is given by

(1l = timsup,_, S Ts] > x).

It is straightforward to show that the asymptotic norm of [ is the norm of
the restriction of f to the fibre over infinity of any C*-algebra of con-
tinuous functions which contains it. A relatively straightforward con-
sequence of the Gelfand theory is that if 4 and B are two commutative
C*-subalgebras of a commutative C*-algebra then M ([4, B]) = M(4) X
M(B) if and only if ||ad]| = ||al| ||0}| for all « in 4 and b in B. Combining
these facts, it follows that if ¢'and D are C*-algebras of continuous func-
tions on the line then C and D are asymptotically independent if and only
it || fgll. = Ifllallg]l. for all fin C and ¢ in D. This useful property provides
an alternative proof of Lemma 1 and rapidly establishes the asymptotic
independence of the pairs (SO, C.), (SO, MP), (SO, [C.,AP]), (AP, )P)
and many more besides.

The space | C.,, AP] is referred to as the space of semi-almost periodic
functions [13] and we shall denote it by SAP.

2. Symbol data. Let ¢ be a continuous function defined on the real
line. A well known fact concerning the Toeplitz operators 1, is that its
essential spectrum contains the range of ¢. Consequently we may assume,
without loss of generality, that ¢ is invertible and that arg ¢ is a con-
tinuous function, where, for the sake of definiteness, we take
0 < arg ¢(0) < 27.

The following data (1)-(5) associated with the symbol function ¢ has
proved to be important in establishing Fredholm criteria. In the next
section this information will be localized to points in M (SO), in order to
accommodate the introduction of slowly oscillating functions. Assertions
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involving the symbol 4= should be interpreted as making two statements
in the obvious fashion.

21
(1)  Averaging function. m(g, ) = t_lf e(s)ds (—o0 <t < +400).
t

(2)  Means at =0, mE(p) = lim,y, m(e, t).

(3)  Mean motion at 4=00. uE(p) = lim,_ 4.t~ (arg ¢(2t) — arg ¢(1)).

(4)  Winding function w(e,l) = arg ¢(2t) — arg ¢(1).
2¢ dS
(5)  Weighted mean function w(e, t) = f{ o (s) ]—?_IT(SQE

For the sake of convenience of comparison, and also for later use, we
collect together some of the known criteria for Fredholmness of Toeplitz
operators in the following theorem. Let [\, v] denote the line segment
joining the complex numbers \, v, and let d(-,-) denote the usual distance
function between points and sets in a metric space.

THEOREM 2. Let ¢ be a bounded continious function on the real line which
1s bounded away from zero.
(@) If ¢ is in C, then T, 1s Fredholm if and only if

lim, e (0, [¢(x), ¢(—x)]) > 0.
(b) If ¢ is in [SO, C,] then T, is Fredholm if und only if
lim infd'—)m d<07 i@(x), ‘p(—"(:)}) > 0'

(c) If ¢ isin AP then 1, ts Fredholm if and only if ut(¢) = 0.

(d) If oisin SAP then 1, is Fredholm if and only if ut(¢) = u=(¢) = 0
and d(0, [exp (m* (log ¢)), exp(m~(log ¢))]) > 0.

(e) If o isin MP then T, 1s Fredholm if and only if w(e, 1) = w(p, —1)
and d(0, [exp(w(log ¢, +1)), exp(—w(log ¢, —1))] > 0.

Part (a) is due to Widom [15] (see also [10], [5]), part (b) is due to
Sarason and is implicit in [14], part (c¢) is due independently to Coburn
and Douglas [2] and Gohberg and Feldman [9], and part (d) is due to
Sarason [13]. Of course if ¢ is in AP then ut(¢) = u=(¢). If ut(¢) and
u(¢) exist and vanish for an arbitrary (continuous, invertible) ¢ we
shall say that ¢ has vanishing asymptotic mean motion.

Part (e) follows, as we now show, from a theorem of Abrahamse [1] con-
cerning the invertibility of a Toeplitz operator 7y whose symbol ¢ is
continuous on (—o0, 0) \U (0, 0 ) and satisfies the identity y (x) = ¢ (2x).
His theorem asserts that 7 is invertible if and only if w (¢, 1) = w (¥, —1)
and

-t ds * ds
f L arg y(s) T5] log 2 —fl arg ¥ (s) T+ Tog 2
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is not equal to 7, modulo 2. Since the last condition is equivalent to

(i(O, Lexp(w(bg ¢v l)y CXP(“"w(lOg ‘Pv _1))]) > 0

we shall have established Theorem 2(e) if we show that if ¢ is an inver-
tible function in MP such that ¢(x) = ¢(x) for |x| > 1, then 7, is
Fredholm if and only if Ty is invertible.

To see this we shall need the following five lemmas, which, incidentally,
will not be required again in this paper. If f and ¢ are functions in L (R)
we let

dioo(f, ¢) = esslim sup i [f(1) — ¢(0)].
Also if F'is a subset of L”(R) we let d.,(f, I) = inf d,(f, ¢) as ¢ varies
over F. Similarly we define d_,(f, ¢g), d—(f, F) and d,(f, g) = max
{d+oo<fv g)v d—m(fv g)} and also dm(f» ]:)
LemMmA 3 [3]. If ¢ is an invertible function in L= (R) then 1, is invertible
(resp. Fredholm) if and only if T, is invertible (resp. Fredholm).
Levwva 4 [4]. If ¢ s unmimodular then 1, 1s invertible if and only if
de, H?) <1 and d(e, H”) < 1.
LemMa 5 [8]. If ¢ is unimodular then 1, 1s Fredholm if and only if
d(e, H® + Cy) <1 and d(e, H® 4+ Co) < 1.
LemMMA 6 [12]. If ¢ 15 « bounded continuous function then
d(e, H” 4+ Co) = d (¢, HY).

-

LemMma 7. If ¢ is continuous on (—o0,0)\J (0,0) and satisfies
Y(x) = ¢(2x) then d,(§, H”) = d(y, H”).

Proof. For € > 0 choose k in H” such that

ess supz W) — h(t)] = d (Y, H”) + ¢

for some f,. Let k, in H® be given by h,(x) = h(2"%) so that, since
Y(x) = ¢(2"), we have

ess sup|ze-ng (W) — b ()] = du(¥, H”) + e
Since £, is a bounded sequence we may choose a weak star limit point g in

H® which must satisfy ||y — ¢|| = d, (¥, H®) + «. Thus d(¥, H”) is
dominated by d, (¢, H*) and so equality holds.

We can now see, using the notation following Theorem 2, that 7, is
Fredholm if and only if 7 is invertible and so complete the proof of
Theorem 2(e). By Lemma 3 we may assume that ¢ and ¢ are unimodular,
and so, by Lemmas 4 and 5, we need only show that d(y, H”) = d(¢, H”
+ C). However, by Lemma 7, d(y, H”) = d(y, H*) = d_ (¢, H”) which,
by Lemma 6, is d(¢, H* + C).
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3. Local symbol data.

a) [ SO, AP]. Since SO and 4 P are asymptotically independent, we have,
for each x in 3 (SO), a natural homomorphism e, from [SO, AP] to AP
defined by

(a:(e))(¥) = ¢((x,y)) (yin M (4P)).

Consequently, if ¢ is an invertible function in [SO, 4 P] we may think of
the mean motion of ¢ over the point x as the number u* (a,(¢)). This data,
which we shall denote by u,"(¢), may be obtained directly from the
symbol function as follows. Let /., be any net of positive real numbers
which converges to x in M (S0). Then for ¢ in [SO, AP] we have
(6)  wt(e) = limg ta M arg ¢ (2t,) — arg ¢(ta)}.
To see this write ¢ = [ 4+ hwhere f = a,(¢) and a, (k) = 0. We first note
that limg osc(|k], [ta, 20]) = 0. If this were not so there would exist
e > 0and xzis [/, 2t3] for some subnet x3 of xq, such that [k|(x5) = ¢ and
so any cluster point z in 1/ ([SO, 4 P1) of {xs} would be such that |[k|(z) 2 «
and z/SO = x contradicting the fact that a,(h) = 0. It now follows that

lim, to='arg ¢(2(,) — arg ¢(ta)}

= lim, l,"farg [ (2t,) — arg f(t.)}

= ut(f) = wta™(e)) = (o).

b) [SO, SAP]. Since SO and SA P are asymptotically independent, we

have, for each x in 3/ (SO), a natural homomorphism 3, from [ SO, SA4 P]
to SAP|M_(SAP) given by

Bele)) (¥) = ¢((x,y)) (¥ in M (SAP)).

If ¢ is an invertible function in SO, S4 P] and if ¢ is an invertible function
in SA P such that 8,(¢) = ¢|M_(SAP) then it can be seen that the num-
bers

pt(e) = ut(Y)
mE(p) = m*=(¥)

do not depend on the particular choice of ¢. Moreover, as in (a), this
information may be obtained directly from the symbol function. Using
the notation of (a) we have, for an invertible function ¢ in [SO, S4P]

(7) wf(e) = lima lafarg ¢(2l.) — arg ¢ (la)}
(8) p (@) = lime — toMarg ¢ (—2f) — arg ¢(—ta)]

2“(1
©9)  m (o) = limate f o(s)ds

a

(10) m, (¢) = lim, — foflf—/ ‘ e(s)ds.

a
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The proofs of (7) and (8) are analogous to the proof of (6) given in (a).
Tosee (9) and (10) note that these formulae are true when ¢ is of the form
fig1 -+ fegs . . .. 4 fug, where f; belongs to SO and g; belongs to SAP for
1 =1,...,n Thus, by approximating, they are true in general.

(c) 1.SO, MP]. Since SO and MP are asymptotically independent we
have, for each x in M _(S0O), a natural homomorphism v, from [ SO, /7]
to MP|M_(MP) given by

(ve(@)) (¥) = ¢((x,9))  (yin M, (MP)).

If ¢ is an invertible function in [ SO, M P] and ¢ is an invertible function in
MP such that v,(¢) = ¢|M_,(MP) then it is clear that the numbers

(11)  wf(¢) = wy, 1)
(12) w7 (¢) = wly, —1)
(13) wi(e) = wly, 1)
(14) w7 (¢) = w(y, —1)

do not depend on the particular choice of . Moreover this local data may
be obtained directly from the symbol function. Let /, be as in (a), that is,
a net of positive real numbers which converge in 3} (SO) to the character
x. Then we have

(15)  wt(e) = limq (arg ¢(2fa) — arg ¢(f)),
(16) (o) = lim, (arg o(—21,) — arg ¢(—1)),
(17)  w (¢) = lims w(e, la),

(18) w, (¢) = lim, w(e, —ta).

These formulae are verified as in (a) and (b).

4. Localisation over 17/_(S0O). The following two theorems are the key
to all the results of this paper. The first is due to Sarason [14] and the
second is due to Douglas [4].

TrEOREM 8. If f belongs to L™ (R) and g belongs to SO then 1,1, — 1,1
is compuct.

It is well known that the commutator of two Toeplitz operators is
compact if the symbol of one of them belongs to the space QC =
(H” 4+ Cy) N (H” 4 Cy). The theorem is proved by using the relation-
ship between the functions of vanishing mean oscillation 1"M/0 and QC
to show that QC contains SO.

To state the second theorem we shall require some notation. If 4 is an
algebra of functions on the real line, containing SO, then let.7 , denote
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the corresponding Toeplitz algebra, that is, the C*-algebra generated by
the Toeplitz operators whose symbol belong to A. If x is a point in
M (SO) then let £, denote the ideal in.7 ; generated by those 7', with fin
SO and f(x) = 0. IZach such ideal contains the compact operators.

THEOREM 9. Let A be an algebra of continuous functions on the real line
which contains SO. Then T, is Fredholm if and only if T, + F ,isinvertible
m T /I, for each x in M (SO).

Let .#_ be the ideal in.7 ", generated by those Toeplitz operators with
symbols belonging to Cy. In view of Theorem 9 the question of Fred-
holmness for 7', will reduce to the question of the invertibility of 7', + %,
ing ,/.f.. We shall need the following distance formulae concerning the
ideals £, and £ _. The coset of an operator 7" in the Calkin algebra is
denoted by [7'], and similarly the coset of .7, is denoted by [.7 ,].

LEmMA 10. Let 1 be an operator in Ty, 1Then

G) d(T, S,) =inf{||[TT/l]; finC,, f(w)=10=f

(i) d(7, F,) = inf{[{[T T,)|l; ¢inSO,ex)=1 0=¢

Proof. (i) Since ¥ contains the compact operators we have d(1', .£_)
= d(17,[F.]). Since, for fin Cy, [1';] commutes with .7 ,], we see that

a(l7], [A.]) = inf{{|[77 + [SII}}

where the infimum is taken over all operators |.S] of the form

[S] = ; (7:017,]
where f1, fo, . . ., f, belong to Cyand 14, T, ..., T, belong to.7 4. This
follows because the collection of such [S] is a dense subalgebra of [.Z_].
Given ¢ > 0 choose [.S] of the above form so that

T+ (SN = d(T, I,) + e

Now choose ¢ in C, such that ¢(+0) = g(—x0) =1,0 =< ¢ £ 1, and
such that

IST]I = <e

MBI

Thus
UL = A7) + LSDLIT I A+ HISILT ]
<d(1, S2,) + 2e

Consequently d(7, #.,) dominates the infimum of (i). On the other hand
the equation ||{[T] + [T1T-/|| = [|[T T,]|| immediately shows that
(T, f.) = d([T],|F.]) is dominated by this infimum, and so equality
holds.

(i1) The proof of (ii) is exactly analogous to the proof of (i).
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5. Sufficient criteria.

THEOREM 11. Let ¢ be « continuous function on the real line which is
wnvertible. Then T, is Fredholm if any one of the following holds.
(1) ¢ lies in [ SO, AP], ut(¢) exists and 1is 0.
(i1) ¢ les in SO, SAP], ut(¢) and u=(¢) exist and are 0, and

lim inf,_., d(0, lexp(m(log ¢, x)), exp(m(log ¢, —x))]) > 0.

(iii) ¢ lies in [ SO, MP], lim, . (w(¢, x) — w(e, —x)) exists and 1s zero,
and

lim inf, . d(0, lexp(w(log ¢, x)), exp(—w(log ¢, —x))]) > 0.

Proof. The method of proof for each part follows the same pattern.
Thus, the hypotheses will ensure that all the local Toeplitz operators
T, + S, xin M(SO), are invertible and consequently, by Theorem 9,
T, is Fredholm. Note that in each case .#, denotes a different ideal,
corresponding to the different Toeplitz algebras, but this notational
convenience should not cause any confusion. Since, forxinR, 7, + .#, =
¢(x) + #, we need only concern ourselves with x in 3 (SO).

(i) We first show that if 6 is a function in [SO, 4 P] and «,(8) = 0, then
Ts belongs to £ ,. Since SO and AP are asymptotically independent it
should be clear that given ¢ > 0, there exists a function f in SO such that
0=<f=1,f(x) =1 and such that on M_([SO, AP]) we have |ff] < e
Since this means ||f6||, = e it is clear that we can rechoose f to guarantee

[|f6]].. = e and we assume we have done this. Thus

WAl = T ]l = e
and so, by Lemma 10, we see that 7 isin &, Thus 7, + F, = 1w,
+ J, for all x in M_(SO). Since ut(¢) = 0 it follows from (6) that
pt(¢) = Oforall xin 3 (SO). Thus, by Theorem 2, part (¢), T, + .#, =
Tortey + F . is invertible, and Theorem 9 completes the proof.

(ii) As in (i) if 6 is a function in [SO, SAP] and 3,(6) = 0 then 1%
belongs to £ ,. Fix x in M_(SO) and let ¢ be any invertible function in
SAP such that 8,(¢ — ¢) = 0. Since ut(¢) = u=(¢) = 0 it follows from
(7) and (8) that w,t(¢) = u,~(¢) = 0 and therefore that w*(y) = 0.
Moreover, from (7) and (8) it can be seen that our hypothesis implies
that

d(0, [exp(m*(log ¢)), exp(m,~(log ¢))]) > 0
and so since by (9) and (10)
m;t(log ¢) = m*(logy) and m,(log ¢) = m~(log ),

we see, by Theorem 2 part (d), that 7y is Fredholm. Consequently
T+ S, =Ty + F,isinvertible and (ii) now follows.
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(iii) Again, as in (i), if 6 lies in [SO, MP] and x is a point in M (SO)
then v.(8) = 0 implies that T’y belongs to ... Let ¥ be any invertible
function in MP such that v,(¢ — ¢) = 0. Since

lim.z'—>oo (w(‘pyx) - w(‘?v _x)) =0

it follows from (15) and (16) that w,"(¢) — w,~(¢) = 0 and therefore
that w(y, 1) — w(y¥, —1) = 0. In a similar fashion, since

w,"(log ¢) = w(log ¢, +1) and w,~(log ¢) = w(logy, —1)
our hypothesis implies (using (17) and (18)) that
d(0, [exp (w(log ¢, +1)), exp(—w(log ¢, —1))]) > 0

and so, by Theorem 2(e), 7y is Fredholm. Consequently 7, + £, =
Ty + S, is invertible and (iii) follows.

In the next section we show that the condition in (i) above is necessary.
It seems likely that the conditions of (ii) and (iii) are also necessary.
However, a proof of this, along the lines of the next section, will require a
good understanding of the interesting Toeplitz algebras associated with
these symbols.

6. Necessary and sufficient conditions for [SO, 4 P].

THEOREM 12. Let ¢ be a function in (SO, AP]. Then T, is Fredholm if
and only if ¢ 1s invertible and has vanishing asymptotic mean motion.

Our proof rests on showing that the natural mapping from.7 4 onto
I 1s0.4p1/F . is an isomorphism for each x in 3 (SO). That is, that each
local algebra at infinity is isomorphic to the almost periodic Toeplitz
algebra. Suppose for the moment that this is so. If 7}, is Fredholm then,
as in the proof of Theorem 11(i), 7, + S, = Ta,() + . is invertible in
T 1s0.ap1/ F . for each x in M (SO). Consequently 1%, is invertible in.7 ,p
for all x in M, (SO), and so, by Theorem 2(c), it follows that

wt (o) = pla(e)) =0

for all x in M_(S0). In view of (6) this implies ut(¢) (= u=(¢)) exists
and 1s 0. That is, that ¢ has vanishing asymptotic mean motion. The
converse direction has already been established in Theorem 11(i).

We prove the required isomorphism (Lemma 16) through the following
three lemmas, the first of which is the key. For A > 0 we let P, denote the
orthogonal projection of H? onto e H?2.

LemMA 13. Let f be « function on SO which does not belong to C,. Then,
for each N > 0 there exists a sequence g, of functions in (I — P\)H? such
that ||g.]|: = 1, g, converges to zero weakly and such that || fg,||» = 8 > 0 for
some positive 4.
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Proof. Consider first the function g(x) = (e® — e™)/x(b — «)'"?,
where 0 < « < b < \. Then ||g|l. = 1 and g belongs to (I — Py)H?. This
may be seen for example by noting that g is the Fourier Plancherel trans-
form of

—1\/77} (/) — (l)_l"“')xlz,,p,]

where x(..5 1s the characteristic function of |«, b]. Let v = b — «. Then

we have
L . 1 21 — gos'yx)d
o lg] - Y T T ax.
ZTm y _7l"y n X

Thus

2ry—1 y 27 9 N
1 g = L | 2Amcost) g

2T ry=1 g 2y J . t”

where K is an absolute constant, which is strictly positive.

Suppose now that f belongs to SO and does not belong to Cy. Then
there exists a positive constant L and disjoint intervals [2wt,, 4=t,],
n =1,2,...,such that |f| > L on these intervals. Let

Y -
g,l(x) = (eir/ln _ e””’ﬂ)(‘lt,,)”‘-’x“,
Then it follows, from our initial comments, that the functions g, are

orthogonal unit vectors which lie in (/ — P,)H? for large n. In particular
the sequence g, converges to zero weakly. Also

4m ity

1 2 2
ooz 5= [ el 2 2K > 0
for sufficiently large », and so the proof of the lemma is complete.

Py = POT ]I = [fIM (SOl

LemMA 14. Let X > v = 0 and let f belong to SO. Then

Proof. The mapping from SO into the commutative C*-algebra
{{(Px — P,)T]; fin SO} given by
f—= Py = P)T,] (finSO)
is a homomorphism. Moreover if f is in Cy then (Py — P,)7’, is compact.
This may be seen by writing (P — P,)1;as (1,7,* — I\T\*)1',, where
T, = T.wz, and localising relative to the circle, that is, apply [4, Theorem
7.47]. Consequently the mapping

fIM,(SO) = [(Py — P,)Ty] (fin SO)

is a well defined C*-homomorphism of commutative C* algebras, and it
will be sufficient to show that this mapping is injective. But suppose
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[(Py — P,)T,] = 0. Since the automorphisms induced by the unitary
(multiplication) operators 3 iz, p in R, leave multiplication operators
fixed but translate the operators Py, we see that [({ — Py-,)1,] = 0. But
if Q is the projection from L* to H? we have (/.2 — Q)M,;Q compact,
since f belongs to H” + Cy. Thus we conclude that M,(I — P\_,)|H*is
compact and Lemma 13 implies that f is in C,.

Let % be the commutative C*-algebra generated by the projections

Py, N > 0.
LemMA 15. Let 1 be an operator in G and let f belong to SO. Then
TN = [T 1Mo (SO

Proof. 1t will be sufficient to consider the case when 7" is in the algebra
generated by the projections Py, X > 0. For such a 7" it can be seen that
there exists a complex number a of modulus one and N > v = 0 such that

(Py — P)T = «a||T]|(Py — P,).
Thus, using the previous lemma,

WA = flal (Py = PO)TT ]|
I, = PO
TN F1M o (SO) o

The inequality in the other direction is straightforward and so the lemma

v

IV

is proved.

LemMa 16, The natural mapping of T 1p onto T (so.ap1/F o+ 15 a stur
isomelrical 1somorphism.

Proof. Let U, t ¢ R, be the translation unitaries on H? defined by
(U, f)(x) = f(x — t),x in R. It is known (|6]) that for 7" in.7 ,p the
mapping E on.9 ,p defined by

E(7) = lim rlf

t

U U *ds
>0 0
is well defined and in fact £ is a faithful expectation onto %'.

Suppose that 7" is a positive operator in the kernel of the mapping
T— T+ #,and fix e > 0. By Lemma 10 there exists a function ¢ in SO
with ¢(x) = 1,0 = ¢ =< 1,such that [|[77,]]] £ e Nowif ¢, = Ue, the
s-translate of ¢, then ¢ — ¢, belongs to Cy and so

UT,U* = Ty = Ty,

belongs to .# .. Consequently

12 t
! f UTT,U¥ds — f UJU*dsT,
) )

0 [(

l
= f U TU*(T,, — T.)ds
)

(
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belongs to £ .. Since the first term of the left hand side of this equation
has essential norm no greater than ¢, and since the second term converges
with ¢t to E(T)7,, we see that

d(E(D)T,), 1 7.)) £ e

Now, by Lemma 10(i) there exists f in C, with0 < f = 1, f(—®) =
f(400) = 1,and ||[E(T)T,T,]|| £ 2e. Butnow, since ||of | M, (SO)||., = 1

Lemma 15 indicates that |[[E(T)]|| £ 2e Thus [E(7)] = 0. However 7’
contains no compact operators ([2] [11]) and so E(I") = 0. Since [£ is
faithful it follows that 7" = 0 and so the proof is complete.

Remark. Let A be an algebra of functions on the real line and let 7,
denote the commutator ideal of the Toeplitzalgebra .7 4. It can be shown
that if the mapping f — 1, + % 4, fin A4, is an algebra isomorphism, then
so is the mapping ¢ — T, + @ (s0.41, for g in [SO, A]. To see this note
first that € (s0.4) contains the compact operators, and note secondly that
it will suffice to show that 7,4, — 7\,,Ty, belongs to € (so.4 Whenever ¢,
are in SO and g, f are in 4. This is because the mapping in question is
always an isometry [4]. However

Toppg = Toslyy = Ty(T'yy — T'4T,) + compact
and so this semicommutator belongs to % so.4; because 7'y, — 11", does.
In particular, in view of [13] Theorem 2, it follows that
I 50.4p)/ € 150.4p) is the isomorphic image of SO, 4 P] under the mapping
ST+ %[SO,AP]'
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