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An Extension of Craig’s Family of Lattices

André Luiz Flores, J. Carmelo Interlando,
and Trajano Pires da Nébrega Neto

Abstract. Let p be a prime, and let (;, be a primitive p-th root of unity. The lattices in Craig’s family are
(p — 1)-dimensional and are geometrical representations of the integral Z[(,]-ideals (1 — (,)’, where
i is a positive integer. This lattice construction technique is a powerful one. Indeed, in dimensions
p — 1 where 149 < p < 3001, Craig’s lattices are the densest packings known. Motivated by this,
we construct (p — 1)(q — 1)-dimensional lattices from the integral Z[(pq]-ideals (1 — (,) (1 — (g)/,
where p and g are distinct primes and i and j are positive integers. In terms of sphere-packing density,
the new lattices and those in Craig’s family have the same asymptotic behavior. In conclusion, Craig’s
family is greatly extended while preserving its sphere-packing properties.

1 Introduction

In this section we briefly review the construction of lattices from number fields and
give a summary of our contribution. The main goal is to establish notation. More
details on this background material can be found in [1}3]] and the references therein.

Let K be a number field of degree d, and let oy,...,0,4 be the embeddings
(Q-monomorphisms) of K into C, the field of complex numbers. As usual, o; is
real for 1 < i < r, and oy, is the complex conjugate of o forr + 1 < j < r +s.
Hence, d = r + 2s. The canonical embedding ox: K — R? is the injective ring
homomorphism defined by

UK(x) :(01 (X), R Ur(x)7 §R0'7+1(.x), %Uf’+l (x)7 RS} %UrJrS(x); %O'Prs(x)) )

where Rz and 3z are the real and imaginary parts of the complex number z, respec-
tively.

Let Ok be the ring of algebraic integers of K, and let a be a nonzero Ox-ideal of
absolute norm N q (a) = |Ok/al. The set ox(a) = {ox(a) | a € a}, also called the
geometric representation of a, is a d-dimensional point lattice (or lattice, for short)
whose fundamental region has volume

(1.1) V(ok(a)) = 27°/| Disc(K)| - Ng/q (a),

where | Disc(K)| is the absolute value of the discriminant of K, see [3, p. 107]. We
also say that o (a) is the lattice associated with a.

Given o € a, the squared Euclidean distance between the point og(a) € R?
and the origin is equal to |ox(a)]* = cx Trx/q (adr), where cx = 1 if K is totally
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real, cx = % if K is totally complex, Trx/q () denotes trace, and & is the complex
conjugate of a; see [1} p. 225]. The parameter

p =3 min{|og(a)| | a € a,a # 0}

is called the packing radius of ok (a).

The center density §(A) of a d-dimensional lattice A is equal to p?/V (A), where
V(A) is the volume of a fundamental region for A. The sphere-packing density of A
is A = V39(A), where V; is the volume of a d-dimensional sphere of radius 1; see
[} pp. 6-13]. In view of (II), the center density of the lattice ok (a) is given by

zspd
/| Disc(K)| Ni /o (a)

Let F be the field Q((p), and let p be the integral Og-ideal (1—(,). The (p—1)-di-
mensional Craig lattice ([1 Ch. 8]) is defined as A(l) = op(p'). Fori < (p —3)/2,

the packing radius of A ’ , is lower bounded by \/> /2; see [2]]. Moreover, for large
n = p — 1, these lattice packmgs satisfy

(1.2) d(ok(a)) =

(1.3) 1 2 log, A, log2 log, n,

where A, represents the density of the n-dimensional packing; see [1}, p. 17].

The contribution of the present work is to extend Craig’s technique as follows. Let
L be the cyclotomic field Q/(¢,q), where p and g are distinct primes. Let J;; = PIQS
be an integral O;-ideal where p = (1 — (,) and Q = (1 — ;) are also O;-ideals,
and 7 and j are positive integers. The new lattices are defined as 07 (3J;;). Note that
for each i and j, 0(3;;) is an n-dimensional lattice, where n = (p — 1)(g — 1). In
Section 2, we show that the packing radius of o (J;;) is lower bounded by \/2pqij/2
fori < (p—1)/2and j < (q — 1)/2. In Section 3 we calculate the center density of
01(3;;) and show that similar to Craig’s lattices, the new lattices are asymptotically
good with respect to their densities A,;; that is, (L3) holds for largen = (p—1)(g—1).

2 The Packing Radius of o;(3J;;)

In this section we will prove that Tr(£€) > 4pqij for any element £ # 0 in J;;. This
is the statement of Theorem which will immediately provide a lower bound for
the packing radius of 07 (3;;). A few definitions, observations, and lemmas preceding
that result are in order.
Any x € Z[(pq] can be expressed as x = Zk 0 kaP where x; € Z[(,] for k =
0,...,p—2,0rasx =y 1_ Oka , where yi € Z[(,] fork =0,...,q — 2. With this
notation in mind, define the mappings

q—2 q—2
Nt UGl > ZUG) by x=3 ko Sy,
= =0
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and
p—2 p—2
Nt ZUGpgl > Z0G) by x=D_ mf o Y xe
k=0 k=0

Observe that A, (respectively, \;) is a homomorphism from the additive group of
Z[(pq] into the additive group of Z[(,] (respectively, Z[(,;]). The next two lemmas
follow by direct inspection, hence their proofs are omitted.

Lemma 2.1 Letw = Zf;oz Wk<§ € Z[¢p). Then

p—2 p—2 2 p—2
Tro(c,)/0(ww) = p(ZW%) — (Zwk> =(p— 1)( Wi) — ZZwkws.

k=0 k=0 k=0 k<s

Lemma 2.2 Letx = 5:702 kaLf € Z[Cpql. Then

p—2 p—2 p—2
Tra(g,)/0(x%) = p (Z Tra,)/0 (xkxk)> — Tra,)/0 (Z xk) <Z xk) :

k=0 k=0 k=0

Lemma 2.3 Letx = Y0~ xiCk € Z[Cpg). Then A(Cix) = Ag(x) — pxp—1—q for
any integer a such that1 <a < p — 1.

Proof Write
-2
Cix = Chlxo +x1Cp + -+ +Xp2Cp %)
-2
= —Xp_1—a+ (%0 — Xp_1-a)(p + (%1 — xpflfa)glzy +o ot (X3 — Xp_1-4a) 5

and calculate A, of the latter expression using the definition of the mapping. ]

Lemma 2.4 Letx = Y 0 o xiCk € Z[Cyq), and let f(X) = 3077 xi Xk € Z[¢,1[X].
Let fO(X) denote the k-th derivative of f for 0 < k < p — 1. Ifx € v, where
1 <i < p,then

f=f1)y=---= f7D(1)=0 (mod pZ[¢,)).

Proof Note that x € p' if and only if there are polynomials g(X), h(X) € Z[()[X]
such that

fX) =x0+ 10X+ +x, 2 XP72 = g(X)(X — 1) + h(X)(XP — 1).

The proof is completed by successively differentiating both sides with respect to X
and evaluating them at X = 1. ]

Lemma 2.5 ([2, Lemma 2, p. 149])  Letn # 0 be an element of p' with 1 < i < %.
Then TI'(Q(CP)/Q(’I’]’I_]) > 2p1

https://doi.org/10.4153/CMB-2011-038-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2011-038-7

648 A. L. Flores, J. C. Interlando, and T. P. da Nobrega

Theorem 2.6 Let & # 0 be an element of Jj = P'Q/, where 1 < i < L5 and
1<j< %. Then Trqyc,,)/0(§€) = 4pqij.

Proof LetM = {1 € J;; | o # 0and Trg,,) 0 (p/2) is minimum}. We can express
M as the disjoint union Mo U M, where My = {1 € M | Ap(p) = A\g(pr) = 0} and
M; = M\ Mp. The proof is carried out by showing the following claims.

Claim 2.7 IfMy = &, then Tr(ol(gpq)/@z(fé) > 4pqij forall§ # 0in J;;.
Claim 2.8 IfMy # @, then Tr@z(gm)/@g(fé) > 4pqij forall§ # 0in J;;.

In preparation for the proofs of Claims[2.7land 2.8} observe that an element x €
Q7 can be written as x = (1 — (4)’z, where z = Zf;oz sz],f is in Z[(pq]. Hence,

x = Y075 xkCk, where xi € (1 — )IZ[¢,) for k = 0,...,p — 2. Similarly, x =
ST yiCk, where yi € (1 — ¢)IZ[C,) fork=0,...,9 — 2.
Proof of Claim[2.7] Define

T={reZl]| I e M with \(&') =tp}

and ¢y € T by
Tr(Ol(Cq)/Q(t()%) = min{TrQ(Cq)/Q(tf) ‘ t e T}

Further, let £ € M, be such that \;(§) = t,p. During the rest of the proof, we will
use the representation

-2
£:X0+X1Cp+"'+XP_2<£ s

where x;, = Z?;Oz ak,gCg and ty = 21;02 hg(jﬁ. We have
p—2 p—24q-2 q—2 p—2
(2.1) MEO =D %= amiCy =D amil.
m=0 m=0 (=0 (=0 m=0
On the other hand,
q—2
(22) (€)= top = (ZM;) p.
=0

From (2.I) and (2.2)), it follows that
p—2

(2.3) > g = phy.
m=0

For y = C;f with a > 1, observe that Tro(c,,) 0(yy) = Tro,,) /Q(gz) is also min-
imum, that is, y € M. Since My = @, we can assume that A\;(y) # 0. The last
statement can be seen as follows:
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(i) IfAy(&) # 0and A\p(§) = 0, then \y(y) = )\p(Cgf) = C;)\p(f) = 0, whence

Aq(y) # 0.
(ii) If X (&) # 0and Ap(§) # 0, it is no loss of generality to assume that A\;(y) # 0.
Otherwise, A, (y) # 0and A\;(y) = 0, and we would reverse the roles of £ and y.

By Lemma

A (y) = Ag(Gp8) = Ag(§) — pxp—1—a = p(to — xp—1-a) # 0.
From the fact that y € M and the definition of t,, we have

(2.4) Troc,) /0 ((Xm — t0) (X — t0)) > Troc,) /0 (fofo)

form =0,...,p — 2. The left-hand-side of (2.4) is equal to

q-—2 q-2 q-2 2
0> (s — ) (z - zhf) ,
=0 (=0 (=0

which in turn is equal to

q—2 q—2 q—2 q—2 2
q(z a2 g+ Y hx) - ( )
(=0 =0 (=0

The right-hand-side of (2.4) is equal to

(50~ (5

=0
From
q—2 q—2 2
Tro(c,) /0 (XmXm) = 61( aﬁw) - ( awv) ,
=0 (=0
we obtain
q—2 q—2 q—2
oyl = 20( S anit ) ~2(Lane) (o).
1=0 (=0 (=0
Therefore,
p—2 p—2 q-2 p—2 ,q-2 q-2
S Troe o) > 3 zq(z h) ) ( ) ( m)
m=0 m=0 (=0 m=0 > (=0 (=0
q—2 p—2 q—2 p—2 q—2
= 2q<z amyghg> — 2( am,g> ( h[) .
(=0 m=0 (=0 m=0 =0

https://doi.org/10.4153/CMB-2011-038-7 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2011-038-7

650 A. L. Flores, J. C. Interlando, and T. P. da Nobrega

From (2.3),
p—2 q—2 q—2 q—2
> Tra,) /o GonXm) > 2q<Z(phe)hz) - z(z phz> (Z m)
m=0 =0 =0 =0
9-2 q—2 2
o(o(50) - (54))
=0 =0
that is,
p—2
Z Tro¢,) /0 XmXm) = 2p Tra,)/a (fofo)-
m=0

Observe also that

p—2 p—2
Tra) /0 ( (Z xm) (Z xm> ) = Tra)/a ( A€ )/\(§)>
m=0

m=0

= TrQ(Q)/Q(UoP)(@)) =p’ Troyc,) /0 (tofo)-

Lemma[ZT]and the latter equality yield

p—2 p—2 p—2
Tro g,/0(€6) = P(Z Tr@ucq)/@z(xmm)) = Trag,/a ( <me> ( xm> >
m=0 0

m=0 m=

> p(2p Tro(,) Ja(toko) ) — p° Tro(c,) /0 (tofo) = P’ Troc,) /0 (tofo)-
Fori < PT71, we obtain

Tro(c,)/0(x0%0) = p(p — 1) Tra(,)/a(fofo) = 2pi Tra,)/a(tofo) = 4pqij,
where the latter inequality follows from Lemma[2.5] [ |

Proof of Claim[2.8] Let £’ € My, and consider the representations
p—2 q—2
§'= D xnly and €’ =3 yig;
m=0 =0

where x,,, = Z?;Oz am,/C,f and y, = anj} amCp'. From Lemma[2.2]

p—2 p—2 p—2
Tro,)/a(él) = p <Z Tr@(g)/@z(%&)) — Tra,)/0 < (Z xm> (Z xm) )

m=0 m=0 m=0

p—2
=p <Z Tf@(q)/toz(xmxrn)>

m=0
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as \y(x) = 0. Regarding the latter summation, observe that

2

q—2 q—2 2 q—
oty atoin) = a( L) = (Loms) =a( X etr)
(=0 =0

=0

because

implies that Zf;;é am,¢ = 0. Thus, we obtain the following expression:

2 p-2

> a@ .

a—
(=0 m=0

Tr (¢, /0(E€) = pq<
By way of contradiction, suppose that Trqc,,)/0 (x%) < 4pqij. This is equivalent to
-2 p—2

(2.5) > a,, < 4ij.

0 m=0

=

o~
Il

Therefore, for the matrix of coefficients A = (a,,¢), exactly one of the following two
statements is true:

(i) There is a row with fewer than 2 j nonzero elements.
(ii) There is a column with fewer than 2i nonzero elements.

If that were not the case, then each row and each column of (a?,) would have at least
2i and 2j strictly positive entries, respectively. We would conclude that the sum of
the entries is greater than or equal to 4ij; that is, 21;02 Zi;f) a,, > 4ij, which
contradicts (2.9).

In what follows, we assume that (i) occurs. If (ii) occurs, the 2proof is analogous.
Let m( be an integer with 0 < my < p — 2, and x,,, = Z;o amnﬁgng, where the
number v of nonzero coefficients a,,, , satisfies v < 2j — 1. Since ZZ;OZ amy ¢ = 0,
a parity verification shows that v # 2j — 1. Hence, v < 2e for somee < j — 1.
Consider the polynomial f(X) € Z[X] such that x,,, = f({,;). We can write f(X) as:

fX)=X"+X2 4+ X — (X" + X2+ 4+ XN),
where s, and #; € {0,...,9 — 2} for k = 1,...,e. The exponents s; and t; may
eventually repeat.

Since x,,, € Q/, applying Lemma 24 to f(X), the successive derivatives satisfy
®(1) =0 (mod gq) fork=0,...,j— 1. These congruences imply that
q J g ply

Zsz = Zt,? (mod p)
k=1 k=1
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foru=0,...,j— 1. It follows that the elementary symmetric functions of the s; and
tr of degree less than j coincide modulo q. Hence,

ﬁ(X —5) = ﬁ(X — ) (mod gq).
k=1 k=1

These polynomials have the same roots modulo g, so after reordering, we have s, = #;
(mod q). Recalling that s, € {0,...,q — 2}, we conclude that s; = #; and, con-
sequently, f(X) = 0. This is impossible since x,,, 7 0. Therefore, Trq(,,) /@1(55) >
4pqij holds true in this case. ]

3 Asymptotic Center Density of the Lattices 0,(3J;;)

We start out by obtaining a lower bound for the center density of o7(J;;). This is
easy now that we know that the packing radius p of 0;(3;;) is lower bounded by
\/Pqij/2; see Theorem[2.6] Together with elementary results concerning cyclotomic
fields in [4], the formula in (.2) yields

2(p=D(g-1)/2 | (@

(3.1) 5(0'L(Sij)) > (r—Da—12 ; .
Eﬁllqj”ﬂm - pla—Dig(p=1)j

) (p—1(g—1)/2

1 (q—1)H(—2i) (p—D(1—2j)

)
p q @

(l]) (pfl)z(q*

For fixed p and g, the latter expression is maximized when i = [(p — 1)/(21n(p))]
and j = [(q—1)/(2In(q))], where [-] represents the nearest integer function.
Knowing the optimal values of i and j, now we can determine A, the density of
or(3i)), for large n.

Theorem 3.1 Ifiand j are chosen as above, we have
1log, A, Z —1log, log,,n

where n = (p — 1)(q — 1) is sufficiently large.

Proof The proof is carried out assuming that both p and q approach infinity inde-
pendently. We remark that, in a similar manner, one can prove the theorem’s state-
ment in the case where p (respectively, q) is kept constant while g (respectively, p)
approaches infinity.

Let 6, = 0(01(J;j)). From A, = V,,é,,, it follows that log, A, = log, V,, +log, 4,

where log, V,, = —7 log, 5= — %logz(mr) —ewith0 < e < lofze; see [, p. 9]. Thus
1 1 n 1 €
. log, V,, = —Elog2 3me " In log, (nm) — o
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Since n = (p — 1)(q — 1), we have from (3.I)) that

1

- >
nlogz 0, >
L/(p—1(q—1) o (g —=1)(1 —2i) (p— 11— 2j)
;(f log, (i) + ST log, p + - 5 log, ‘I) .
Therefore,

1
—log, A, >
n 082 -

1 ij 1—2i 1-2j 1 e 1
2logz( n) +2(p - 10g2p+2(q_ D log, q— o log, (nm) — n+210g2(27re).

By substituting the optimal values of i and j in the latter expression, one can show
that for sufficiently large p and g,

1log, A, > —1log,log, n + K,

where & is a positive constant. u
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