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ALGEBRAS AND DIFFERENTIAL EQUATIONS
HELMUT ROHRL*

0. Introduction

One purpose of this paper is a purely algebraic study of (systems
of) ordinary differential equations of the type

D Xz - 3 ic la?l,m’kakr“ka 1=1,.--,m,

where the coefficients are taken from a fixed associative, commutative,
unital ring R, such ags the field R of real or C of complex numbers or a
commutative, unital Banach algebra. The right hand sides of D are con-
sidered to be elements in the polynomial ring R[X,,----,X,] of associat-
ing but non-commuting variables X,,---,X,. An algebraic study calls
for maps between such differential equations and, in fact, morphisms are
defined between differential equations having the same arity m but not
necessarily the same dimension n. These morphisms are rectangular
matrices with entries in B which satisfy certain relations. This leads to
a category ,Diff,, whose objects are precisely the differential equations of
arity m and in which the composition of the morphisms is the usual
matrix multiplication.

Given a ring R, as before, and an integer m > 1, one can define
the category pAlg, of R-algebras of arity m. Its objects are unital R-
modules A equipped with a m-ary, R-multilinear multiplication—i.e., a
R-module homomorphism p:® %24 — A— and whose morphisms are R-
module homomorphisms commuting with the multiplications, the compo-
sition of morphisms being the set-theoretical one. These R-algebras will,
in general, not satisfy any given non-trivial relational or existential re-
quirement; in particular, neither associativity nor commutativity nor
unitality is assumed.
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The main theorem of section 1 states that the category jDiff,, is
equivalent to the full subcategory of pAlg, whose objects are finitely
generated and free as R-modules. Hence we may view algebras as gen-
eralizations of differential equations. So we come to the second purpose
of this paper, namely to develop certain constructions for and to prove
theorems concerning general R-algebras, which are inspired by the study
of the previously described differential equations. The equivalence pDiff,,
— pAlg,, constructed in section 1 is denoted by A4,, and A,(D) is called
the R-algebra associated with D. The idea of associating a R-algebra
with a system D of differential equations seems to have reared its head
the first time in [9]. It was subsequently used in [2], [4], [7], [8], [11];
however, only the last paper mentions functoriality. Section 1 concludes
with the interpretation, in this setting, of some results of [12] and [13],
and with an elaboration of previously [9] touched constructions.

Section 2 addresses itself to the functor “set of solutions”. It can
be easily seen that there is a functor S: pDiff,, — Sets which assigns to
each differential equation D its set S(D) of solutions; in our context,
solution means a mn-tuple of formal power series with coefficients in R
which formally satisfy D. For the purpose of analysis this is enough as
a classical result says that, for B a Banach algebra, the notions of for-
mal solution, convergent solution, and differentiable solution of D are
coextensive. We proceed to define, for any R-algebra 4, an associated
differential operator a,: A[[t]] — A[[£]] which is functorial in A. Denot-
ing kerd, by S(4), it turns out that S: ;Diff,, — Sets and S- A4, : zDiff,,
— Sets are canonically isomorphic. Next, we show that S: zAlg,, — Sets
has a left adjoint L by constructing the value of L on the one-point set
{¢}. The rAlg,-automorphism group of L({¢}) turns out to be the group
of units of R, provided that the field @ of rational numbers is contained
in R.

In section 3 we take up the issue of polynomial first (and higher)
integrals. The assignment of the polynomial ring R[X,, ---, X,] to a dif-
ferential equation D of arity m and dimension » can be made into a
functor P from ;Diff,, to the category of polynomial rings and R-
homomorphisms. For each differential equation D there is a linear, first-
order partial differential operator 6,: R[X,, ---, X,] — R[X,, - - -, X, ], which
gives rise to an endomorphism ¢ of P. The kernel of §, is, by defini-
tion, the ring I (D) of polynomial first integrals of D. Because the right
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hand sides of D are homogeneous polynomials of the same degree m,
the homogeneous components of a first integral which is a convergent
power series are elements of I(D); in other words they can be con-
structed from I, (D). The knowledge of first integrals is important since
they allow the reduction of the dimension of D in integrating D. In
order to obtain a generalization of these concepts to R-algebras, we use
the multiplication p of a given R-algebra A to equip, functorially,

T,(4) = @ ® 24

with a graded R-module endomorphism d,, (see (3.10)) of degree 1 — m.
Then we form

T*(4,8) = @ Homg (T,(4), 5)
Pp=0

and use d,, to form a graded R-module endomorphism &%, of T*(4,S).
If S is a R-algebra, then T*(A4,S) has a canonical R-algebra structure
and d¥; becomes a R-derivation. ¢* is an endomorphism of the bifunctor
T*(—, —). The main result of this section is the existence of an iso-
morphism of functors P — T*(—,R)-A,, which commutes with 6: P — P
and 6* oA, :T*(—,R)0 A, - T*(—,R)0A,. Hence, if we put I,(4,S)
= ker 5} 5, we know that I (D) and I(4,,(D), R) are functorially isomorphic.
Also, higher integrals are defined: I,(A4,S) = ker (6}5)?"'. From an
analyst’s view point it is less satisfactory to deal with the non-commu-
tative polynomial ring R[X,, ---,X,] instead of the commutative poly-
nomial ring R[X,,--.,X,],. In order to accomodate the commutative
case, we construct a graded ideal C*(4,8) of T*(A,S) which is stable
under ¢*s. Hence ¥, induces on T*(4,8), = T*(4,S)/C*(A,S) another
derivation 6%, which is used to define I,(A,S), = ker (6% ,)?*". The afore
mentioned isomorphism of functors P — T*(—,R)-A, induces an iso-
morphism of functors P, — T*(—,R),oA, which again commutes with
6,: P,— P, and 6% 5,: T*(—,R);cA,, > T*(—,R),o A, where §, is induced
by 6. Thus, also in the commutative case the first and higher integrals
of our differential equations are just a special instance of first and higher
integrals of algebras. Section 3 closes with a remark on the parameter
dependence of I%(A,8) = I,(A,S) N T?(4,8) resp. I%(A,S). = I,(4,8),
N T?(A,S),. Here we fix a n-dimensional F-vector space V and a F-
algebra S which is finite dimensional as a F-vector space. The totality
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of F-algebras of arity m on V is identified, via the structure coefficients,
with a suitable Euclidean space S,(V) over F. In the Zariski-topology
of S,(V),dimg I2(A,S) and dimgpI2(A,S). turn out to be upper semi-
continuous.

Section 4 collects some properties of I, (A,S) and I[,(A4,8),. Itis
shown that I,(4,S) and I,(4,S), are non-trivial provided A is nilpotent
and S #= 0. Next, some change-of-ring theorems are established for both
I1,(A,S) as well as I, (4,S).,. They imply that for any F-algebra A,F
being a field, and for any finite field extension F” of F,I,(4,S) and
I,(F'® sA,F’ Q@ zS) (resp. I,(4,8), and I,(F'® zA,F’' & zS),) determine
each other completely. The significance of this lies in the fact (see [12])
that every finite-dimensional F-algebra of arity m > 2 acquires, through
a finite field extension F’ of F' either an idempotent or a nilpotent ele-
ment, and that for F-algebras which possess an idempotent element there
is a way to compute I,(A,S) resp. I, (4,S),. In particular it is shown
that I,(4,S) is trivial for those finite-dimensional F-algebras A, F' being
a field of characteristic zero, which possess an idempotent element whose
left-translation map has no eigenvalue equal to 0, —1, —2,.... These
statements finally imply that I,(A4,S) is Zariski-generically trivial, i.e.,
that 1,(4,S) is trivial on a non-empty intersection of countably many
Zariski-open sets of S, (V). Similar results hold for I,(4,S)..

Section 5 takes off from the following question. Given two differ-
ential equations D, resp. D, of arity m and dimension n, resp. n,, over
a Banach algebra R find all germs of analytic maps @: R* — R™ which
satisfy @(0) = 0 and map every solution of D, which is sufficiently close
to 0 into a solution of D,. Evidently, this leads to a new -category,
2 Dif¥.., whose objects are the differential equations of arity m over R
and whose morphisms are precisely these germs. ;9iff,, contains pDiff,
as a subcategory. A germ @ of an analytic map belongs to p9ift.(D,, D,)
precisely when it satisfies a certain system of non-linear partial differ-
ential equations. The formal power series which solve this system form
a set zDitf.(D,,D,) which serves as the morphism set of yet another
category, rDitfn-rDift. contains p9Diff, as a proper subcategory. As in
section 8 we proceed to cast p9iff, into an algebraic setting. For this
purpose one defines, for two R-algebras A and B of arity m, formal power
series on A with values in B whose constant term vanishes. They form
a R-algebra P(A,B) of arity m whose multiplication is denoted by g4, .
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6%, induces a R-module endomorphism 4, in P(A,B). The substitute
for the previously mentioned system of partial differential equations is
04880 — pa, (@ ™) = 0; thus we are interested in the subset z«ly,(A, B)
of P(A, B) consisting of the “solutions” of this equation. One then shows
that there is a category r</lg, Whose objects are the R-algebras of arity
m and whose morphism sets are precisely the sets just described. zAlg,,
is a subcategory of r.«/ls,, and a formal power series belonging to r</lg,,
has as its linear term a morphism of Alg,. The main theorem of this
section states that 92iff, is equivalent to the full subcategory of z.<lg,
whose objects are finitely generated and free as R-modules. The section
closes with a brief remark concerning the commutative situation.

In section 6 we discuss the symmetry group rG(A4) of an R-algebra
A, that is the group of p.«/lg,-automorphisms of A. It is shown to be
a split extension of pAut (4), the group of zAlg,-automorphisms of A,
by another group rU(A). For this group we obtain a countable tower
of subgroups

2UA) = UM > LU > ... > U > ...

each of which is normal in its predecessor and whose intersection is the
unit element. The successive quotients RU(A)?~1/ U(A)?! are isomorphic
to an additive subgroup of T?(4, A) = Homg (® %4, A) which is contained
in

Q={f:So8upim1=polspimni} C T4, 4) .

If the field of rational numbers is contained in R—as shall be assumed
for the remainder of the introduction—then this subgroup actually coin-
cides with Q2. This is done by constructing, for every fe Q2 an ele-
ment A(f) € RU(A)*-3 which is mapped onto f. Forming a(f) from f is,
in a formal sense, an exponentiation. It is shown that every element
of U(A) can be written uniquely as a locally finite product 2(f)a(/3)-: -,
with f, e Q2. Since g e Q™ holds, pU(A) is not trivial for any non-trivial
R-algebra A. Furthermore we prove that for R a Banach algebra, A(f) is
always a convergent power series. Moreover, for a differential equation
D, zG(A, (D)) is isomorphic to the r2i}f,-automorphism group of D if
and only if there exists an integer p, such that Q2 =0 for p > p,; if
R = R or C, this implies that zG(4,(D)) is a simply connected, nilpotent
Lie group which is a Stein manifold. For non-trivial R-algebras A, R
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again being a commutative, unital Banach algebra, the “one parameter”
subgroup A(rw), re R, of RU(A) is shown to have geometric meaning: if
A = A,(D) then A(ryp) moves each point ac A, (D) that is sufficiently
close to 0 along the trajectory of D through a. At the end of the sec-
tion there is again a discussion of the commutative situation.

The commutative analog of RG'(4,(D)), for R a Banach algebra,
makes its first appearance in [4]. The treatment in [4] is, in contrast
to ours, strictly Banach-analytic. As can be expected, there is a certain
overlap between this paper and [4]. For instance: A(rw) (in [4] p*%) is
recognized as trajectory; the relation fe@Q? & pe @7, is obtained (al-
though our @2, is replaced in [4] by a different object); the epimorphism
rUA D)1 U, (D) — Qm is established in case D is “nicht

entartet”, ie. @, = - =Q'=Qn" = ... =0. Here, the subscript
“c” indicates the commutative version of the entity without this sub-
script.

Section 7 establishes some properties of zG(A). First, it is shown
that there are non-trivial R-algebras of arity m which are finitely gen-
erated and free as R-modules, such that @2+ 0 for all p. Next we
show that for a R-algebra of arity m > 2 which has no Z-torsion and
possesses a unit element,

RUA) = UM = ... = U4
and
RUAY™ = RUA) = ... =0

hold and that there is a canonical injective R-module homomorphism
zU(A) — A. The commutative analogue to this result can be found in
[4]. Next, some change-of-ring theorems are established for Q2. They
imply that for any F-algebra A, F being a field, and for any finite field
extension F” of F, Q% and Q%g,, determine each other completely. The
significance of this lies in the fact (see [12]) that every finite-dimensional
F-algebra of arity m > 2 acquires, through a finite field extension F’ of
F either an idempotent or a nilpotent element, and that for F-algebras
which possess an idempotent element there is a way to compute Q2. In
particular it is shown that for those finite-dimensional F-algebras A of
arity m, F' being a field of characteristic zero, which possess an idem-
potent element satisfying certain conditions,
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HUA) = UA)MN = ... =, UA) D =F
UM = UA) D = ... =0

hold. These statements finally imply that Zariski-generically U(A) has
the structure just described. Again, a brief discussion of the commuta-
tive situation closes this section.

In [4], RUA (D)), is determined in case D is “nicht entartet”. It
is shown to be isomorphic to a certain vector space and, in case m = 2,
a canonical injective vector space homomorphism rU(A4,(D)), — A,(D) is
obtained, provided that A,(D) has a unit element. These results of [4]
are special instances of some of our results.

1. The category of differential equations of arity m

In the sequel, R denotes an associative, commutative, unital ring;
all R-modules are taken to be unital, and subrings inherit the unit ele-
ment.

This paper deals, in part, with differential equations D of the form

1.1 Xi: Zn: aprtn X e X i=1.-,m.

The right side of (1.1) is regarded as an element in the polynomial ring
R[X,, ---,X,] of associating but non-commuting variables X,. m = arD
is called the arity of D, n = dim D is called the dimension of D. It is
sometimes convenient to denote the right side of (1.1) by DX, .-, X)).

Given two differential equations D’ and D over R, with ar D’ = ar D’,
we define a morphism f:D’ — D” to be a matrix over R

f=(f}:'l:=1,"',1?/;].:1,"',’}’&”),

where # = dim D’ and #” = dim D”, such that
a2 DD, XD = DY X - 5K i=1

An easy verification leads to

(1.3) PROPOSITION. The differential equations over R of arity m and
their morphisms, with composition the matrix multiplication, form a
category RDiff,.

Let A be a unital R-module. By a R-algebra structure of arity m
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on A is meant a R-module homomorphism p:® 24 — A, and (4, p) is
called a R-algebra of arity m. By an R-algebra morphism j: (4, /)
— (A7, 1) is meant a R-module homomorphism f: A4’ — A” such that

Q@mAl s Al

& fi ” lf

17
mA A"

commutes. Evidently, the R-algebras of arity m and their morphisms,
with composition the set theoretical composition, form a category ,Alg,.

(1.4) THEOREM. There is a full faithful functor A, : zDiff,, — pAlg,,
which is an equivalence between pDiff,, and the full subcategory of pAlg,,
that is defined by those algebras whose underlying R-module is finitely
generated and free.

Proof. Let D be given by (1.1). Take for the underlying R-module
of A,(D) the R-module R” and define y;, by

pp((3, -5 13) & e @, -, 1)

1.5)
— ( STkl ogmo ST kgl ""2';) )
ST exy o o

Put furthermore, for any morphism f in pDiff,, A,.(f) =f. An easy
computation shows that (1.2) is equivalent with the relations

w
(1.6) Zf]l:a/:}flv"'ykm — Zﬁ a/;/ﬂl,"wlmffll e zk,,l" s for all j, kl’ cee, km .
i=1 L1500 ln

It is equally easy to see that (1.6) are precisely the conditions for a R-
homomorphism f:R* — R® to be a R-algebra morphism from A, (D")
to 4,(D"). Hence A,, is a full faithful functor. In order to obtain the
second part of (1.4), let A be any R-algebra whose underlying R-module
is finitely generated and free. Choose for A a basis €', --.,e" and let

.7 W ® - ® ey = 3 qhvknet
i=1

Let D,,(A) be the differential equation (1.1) with the coefficients afv#n
taken from (1.7). Given a morphism f:A’— A” of R-algebras, express
f as a matrix with respect to the chosen bases, and denote this matrix
by D,(f). Obviously, D, is a functor to pDiff,, from the full subcate-
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gory of rAlg, that is defined by those algebras whose underlying R-
module is finitely generated and free. It is straightforward to check
that A,.D,, = id and D,A, = id hold. Hence D, is an equivalence of

categories.
Call the differential equation (1.1) symmetric if for any permutation
z of {1,..-,m} and all choices of indices ¢, %k, -, kn,,

holds. Call the R-algebra (4,p) commutative if for any permutation =
of {1,-..,m} and all choices of a,,---,a,€A

wo, ® - ay) = pwa,® - Q apm)
holds. Then we obtain from (1.1) and (1.5)

(1.8) ADDENDUM TO (1.4). D is symmetric if and only if A,(D) is com-
mutative.

(1.9) COROLLARY. :Diff,, has finite products. If R is a principal ideal
domain, then RDiff,. s finitely complete. If R is a field then pDiff,, has
coequalizers.

Proof. Clearly, rAlg, is an algebraic category (see [10], p. 145
a.s.0.). Hence pAlg,, is both complete and cocomplete ([10], p. 129, 140).
Since products in pAlg, are cartesian products ([10], p. 129), the first
claim follows from (1.4). Since equalizers in zAlg, are injections ([10],
p. 130), the second claim follows. Since coequalizers in zAlg, are
surjections ([10], p. 142), the last claim is verified.

It should be noted that pDiff,, does not have finite coproducts (even
for R a field), and hence fails to be finitely cocomplete.

(1.10) COROLLARY. Let D be a differential equation of arity m and
dimension n. By putting X = > 7, X,e*, the differential equation reads
in A,(D)

X=pX® - -®X).

Hence, there is a bijection between constant solutions (i.e. critical points)
of D and nilpotent elements of A,(D) and, in case @ C R, a bijection
between ray solutions of D and idempotent elements of A, (D)V.

1 An element of the R-algebra A is called idempotent resp. nilpotent if p(a® --- R a)
equals a resp. 0.
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The second part of (1.10) can be found, in case R = R or C, in [9],
p. 187, for m = 2, and in [2], p. 1165, for m and n arbitrary.

In ;Diff,, we have two distinguished differential equations of dimen-
sion one:

E,: X, =Xr
and
N,:X,=0.

Evidently, A, (N,) is the null algebra of dimension one, i.e. its multi-
plication » satisfies v = 0. In A,(F,), however, the multiplication ¢ is
given by ¢ ® - @ r™) = ¢' ... ¥», With these notations, a previous
result of the authors ([12], (1.1)) can be restated, in a weakened form,
as follows:

(1.11) PROPOSITION. Let F be an algebraically closed field of character-
istic zero. Then, for any differential equation D, zDiff, (E,.IIN,, D)
contains at least two elements.

There is another statement in [13], namely (4) Corollary, which bears
restating for differential equation.

(1.12) PROPOSITION. Let F be an algebraically closed field of character-
istic zero, and let m and n be natural numbers. Identify the differential
equations (1.1) of arity m and dimension n, with coefficients in F, via
these coefficients with the points of S = F™**. Then there is an affine
subvariety A of S, with A %= S, which is defined over the prime field K
of F, such that all differential equations corresponding to points of S — A
have precisely n™ — 1 ray solutions and fail to have constant solutions
#* 0.

It might be appropriate to restate some well known notions for
classical algebras (i.e. m = 2) for algebras of arity m (see also [9]).

1. A subalgebra (i.e. a subobject) of A ¢ Alg,, is a R-submodule A’
of A such that u(4’ ®z -+ @z A’) C A’ holds, p being the multiplication
in A and A’ ®p --- ®z A’ standing for the canonical image of ® 2A’ in
®7A. Suppose now that R is a field and that A equals 4,(D). In this
case, choose a vector space basis b!,--.,b™ of A, (D) such that b, ..., b*
forms a basis of A’. An easy computation shows that D is isomorphic
to a differential equation
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X::D:(X;,'9X;z) I':=17"'7n

such that every monomial occuring in D), i =k + 1,--.,n, contains at
least one of the variables X%.,, ---,X,. It is equally easy to see that
the converse is also true.

2. An ideal (i.e. a kernel) of A e zAlg, is a R-submodule I of A
such that

#(I®RA®R"‘®RA)C17
UARRIQg - RrA)C I, - (AR ARg --- QD) C I

hold, the notation being analogous to the one used in 1. Again assume
that R is a field and that A equals 4,(D). Choose a basis just as be-
fore. Again it turns out that D is isomorphic to a differential equation

4

where each D), i =k + 1, ---,n contains only the variables Xj.,, ---, X,
(see [9], p. 188). And, again, the converse is true. A differential equa-
tion of the form (1.13) is classically called reducible. Hence, irreduci-
bility of D is equivalent to simplicity of 4, (D). At this point, we should
remark that I, with the multiplication induced from A, is an R-algebra
of arity m. The associa:ted differential equation reads, in the notation
of (1.13)

1.14) X, =DiX., --+,X,,0,---,0) i=1--,k.

3. Given the ideal I in A ¢ zAlg,, the quotient module A = A/I
carries a unique R-algebra structure g of arity m, p being the multipli-
cation in A, such that the quotient map ¢: A — A becomes a R-algebra
homomorphism. If we put ourselves into the situation of 2 then the dif-
ferential equation associated with (4, z) becomes

X‘;/:D;/(X;c,+l"",X;,) i:k+1)""n’
where—by definition—
DY (Xy1s -+, X3) = DUXY, -+, X7 .

4. Finally, it should be noted that the product of the two differential
equations D’ and D”, both of arity m, is the differential equation
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174y 0008 N 124
Xpsy= 2 /X Xovem j=1,.---,n".

£1y00038m=1

Hence, D = D’IID” precisely when D is completely reducible in the clas-
sical sense ([9], p. 188, Theorem 5).

5. Let (A,y) and (A”,y”’) be R-algebras of arity m. Then we
define (A7, 1) ®z (A7, ") to be (A’ ®z A”, 1) where

e ®e)® - B, Q) =p(® - ®ap) u'(@/'® - ap) .

If A’=A4,D) and A” = A, (D) then A’ ® A” is finitely generated and
free, and hence there is a differential equation I ®y D” with (A’ @z A", 1)
= A, ®zD"”). If A’ has basis b}, ---,b’” and A” has basis b, -- -,
b"™", with

[.t’(b’k‘ @ . ® b/k,,,) — i[ a;k"‘“*k"‘b'i

=1

and
4 124 / s 17,
PO - @) = 3 gl inbd
i=1

then with respect to the canonical basis "' @ b” of A’ ®, A”, D' ®, D"
has the form
(1.15) Xij — ﬁ: i a/;;kl’“"kma/;,gl’."’lkaxtl e kaem .

Kiyeorskm=1 €1,00eybm=1
Conversely, each differential equation that is isomorphic to one of the
form (1.15) has its associated algebra isomorphic to a tensor product.

2. The solution functor

Let D be the differential equation (1.1). By a formal solution of
(1.1) is meant a n-tuple of formal power series & = (2, - -+, &) € RI[t]]*
with coefficients in R which formally solves (1.1). The set of formal
solutions of D is denoted by S(D). S(D) is not empty as there is always
the trivial solution 0. If R is a valued ring (with values taken in R)
then every formal solution is convergent (in the sense of Cauchy’s
Criterion). If R is a Banach algebra then every convergent solution is
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differentiable and vice versa.

2.1) Remark. Let @ denote the field of rational number. If Q C R
holds, then for every a,e R™ there exists one (and only one) solution %',
of D whose constant term equals a,, This is obvious by the classical
recursion formula for the coefficients of a formal solution. Hence, in
this case, S(D) is rather large.

"(2.2) PROPOSITION. There is a functor S: pDiff,, — Sets that assigns to
each differential equation its set of solutions. S preserves finite products.

Proof. For a morphism f: D’ — D”, let S(f):S(D’) — S(D") be given
by
@.3) Sne = (S riw - 3 700)

It follows by easy computation from (1.2) that S(f)%’ is indeed a solu-
tion of D”. Hence S is a functor. The fact that S preserves finite
products is readily verified.

Given a R-algebra (4, ) of arity m, we can equip the B-module A[[¢]]
of formal power series with coefficients in A with the structure of a R-
algebra of arity m as follows. For

Zo= ot cAlltll,  i=1--,m,
we put
2.4 diNE@Q - QFy) = g}o (]_ﬁ‘_;jm:jp(aljl ®-® amjm))t’ .
Clearly, (A[[t]], pllt]D=": (A, wI[t]] is a R-algebra of arity m. In addi-

tion, A[[t]] possesses a canonical derivation »C?T which is given by

a(s 1)_ SR
pr (;}oajt —;]oyajt .

If f:A’— A” is a morphism of R-algebras then we define f[[£]]: A’[[¢]]
— A”[[t]] by

f[[t]](g}o a;tf) = gof(a/j)tj )
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It is easy to check that f[[t]] is an R-algebra morphism from (4’, x)[[t1]
to (A7, /)Ilt]]l. Hence we have obtained an endofunctor [[t]] of Alg,.
A simple argument shows

(2.5) LEMMA. é}—l{ s an endomorphism of the functor [[t]].

(2.6) DEFINITION. For any R-algebra (4, p) of arity m, define 9,: A[[t]]
— A[[t]] by

3.(@) = i’% — @R - ).

9,4 is called the differential operator associated with (4, ). kerd, = 9;'(0)
is denoted by S(4) and is called the set of solutions of the differential
equation 9,(%) = 0 associated with (4, p).

Evidently, 0 ¢ S(A) whence S(4) is not empty. (2.1) remains still in
force.

An easy computation shows that, with 2 = (Z(¢t), -+, L)),

8 4on () = fl—f — (D), - -, D))

holds.

(2.7) COROLLARY. @ s an endomorphism of the functor [[t]]. S is a
functor from zAlg, to Sets.

Proof. The first claim follows from (2.5). The second assertion is
a consequence of the first claim and the fact that for any morphism f
of R-algebras, f(0) = 0 holds.

(2.8) PROPOSITION. The functors S and So A, from pDiff, to Sets are
cononically isomorphic.

Proof. Let D be a differential equation of arity m and dimension
n. A solution is an element & = (&, - -+, &) € R[[t]]" = R*[[t]]. But R”
is the module underlying A4,(D). If % =3 7,a,t/cR*[[{]] and if
a; = > ., r;e®, with e* the unit vectors in R then, by various defini-
tions,

ANE® @D = ( 3 pe,® - @a))

Jitestim=g
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o n
=2 ( 22 Thk TP ® - @ e’Cm))tf

J=0 \j1teretjm=7 k1,°++,km=1

n 0
= Z Z ( ’)"jlkl e ijkmaliﬁh"',km)tjei

=1 =0 \ji+eeetjm=7 ki,eee, km=1

n n )
= Z ( Z ai_cb'--,kmgg‘kl . '%’km)el

=1 \k1,eeikm=1

where &', = > 7., 7;st!. Hence it follows that 2 is a solution of D if and
only if 4,,5,(Z) = 0; i.e. S(D) = S(A,(D)). It is obvious that this identity
map is natural in D.

(2.9) THEOREM. The functor S: zAlg, — Sets has a left adjoint, and
hence it preserves limits and monomorphisms (= injections).

Proof. Since pAlg, is cocomplete ([10], p. 140) it suffices to show
that for the one-point set {®}, the functor Sets ({0}, S-): pAlg, — Sets is
representable, as

Sets (X, S—) = Sets (u {(D},S—) = [] Sets ({0}, S—)
= [] nAlgn LGOD, —) = rAlg, (T LATH, - ) .

where all isomorphisms are natural; i.e. the left adjoint of S will be
X — [lx L{®P}. In order to construct L({®}), let (F, yur) be the free object
in pAlg, which is generated by the set N =1{0,1,2,.-.}; its existence
is well known ([10], p. 134). The canonical image of 7e N in F shall be
denoted by z;. Let I be the ideal in F' that is generated by the set
(2.10) jz,-— Z /117'(sz® cee ®zjm) i=12,...

Jr+ee ¥ im=7-1

and denote the quotient algebra (F, uz)/I by (L({9}, . If z + I L({d})
is denoted by z, then—we claim—

F =3, 2,t) e S(L{DY)

B S =gt =5 N we @ @)
Jit+e

t 7= 7= j=1 et Tm=j-1

=5( B i@ @) =S ).
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In other words, we have found a solution of the differential equation
associated with L({®#}). Now, let & ¢ Sets ({€},SA). Then Z = > 7. a,t.
There is a unique R-algebra homomorphism f,: F — A which sends each
z; to the corresponding a; Since % is a solution of the differential
equation associated with A, we have

2.11) jo; — > wae;, ® - Qa;) =0 j=12,-..

Jrte T im=j-1

Since all expressions (2.10) are in I, f, induces a R-algebra homomorphism
£, L)) — A. Evidently /4,[[t]1Z = %, and distinet solutions Z give
rise to distinct R-algebra homomorphisms ¢. Conversely, if ¢: L({®})
— A is a R-algebra homomorphism then £[[¢]]Z is a solution of the
differential equation associated with A. Thus

rAlg, (LE®Y), A) 3 ¢ — 4[[t]]1Z € Sets ({0}, SA)

is a bijection. Evidently, it is natural in A. The preservation properties
of S are now standard ([10], p. 110), but can easily be checked independ-
ently.

(2.12) PROPOSITION. As a R-module, L({®}) is countably but not finitely
generated. Movreover, the z, are linearly independent; in particular,
Z #+ 0.

Proof. Obviously, L = L({®}) is countably generated as a R-module.
If L were finitely generated then so would be every homomorphic image
of L, and for such a homomorphism ¢:L — A, the coefficients of 4[[t]]1Z
would be in 4(L). So we have to find an R-algebra A for which there
is a solution whose coefficients generate a submodule of A which is not
finitely generated. Take for the R-module underlying A the ®3., R, and
denote the unit vectors by e, ¢=0,1,.--. Define p: X2 A — A by

. o (y + Deintt for 4, =-.. =14, , =0
men @ - @) = {O otherwise .

Then an easy verification shows that } 7., et/ is indeed a solution of
the differential equation associated with A which has the desired property.
The linear independence of the Z; is clear as the homomorphism to go
with the given solution takes z; to e'.

(2.13) PROPOSITION. Suppose that R is an integral domain with Q C R.
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Then rAlg, — Aut (L({®})) is isomorphic with the group of units of R.

Proof. If @ C R holds then L = L({®}) is just the free R-algebra
over the one-point set, as can be seen from (2.1) or directly. If the
free generator of L is denoted by z, then each algebra endomorphism ¢
of L is determined by 4(z). 4(z) is of the form 7z 4+ p(z), where re R
and p(z) is a polynomial in the non-associating variable z over R which
has neither a constant nor a linear term; hence, if p(2) = 0, degp > 2.
Suppose now that ¢ has a left-inverse 4. Then

2=0'0R@) =1l + ¢PR)
= 7rd'(2) + p(£'(2) .

If d is the precise degree of ¢/(z), then the degree of p(#'(2)) is 2d. Hence
we have a contradiction. Therefore 4(z) = 7z, and ¢ is an automorphism
precisely when # is a unit. ‘

It should be noted that the automorphism ¢ which takes z to 2 maps
the solution Z to the solution } 7., 7™ V*1Z¢J,

We conclude this section with a statement concerning nilpotent alge-
bras.

(2.14) DEFINITION. Let (A4, u) be a R-algebra of arity m. Then (4, p)
is said to be nilpotent of exponent < e + 1 if all e-times iterated com-
positions ®%™V** A — A that can be built from g are zero. An element
a e A is called nilpotent of exponent < e + 1 if the subalgebra of A that
is generated by @ is nilpotent of exponent < e 4+ 1. A is said to be a
nil algebra if every element a of A is nilpotent.

(2.15) PROPOSITION. Suppose that the R-algebra A has no Z-torsion and
that a,c A is nilpotent. If & = a, + --- is a solution of the differential
equation associoted with A then Z e Altl. In particular, if A is a nil
algebra without Z-torsion then S(A) C Alt].

Proof. Let & = > 5.,a,;t7. An easy induction argument, applied to
(2.12), shows that for every j=20,1,.--,7!a; is in the subalgebra gen-
erated by a, If a, is nilpotent of exponent < e then j!a; =0 for j>e.
Since A has no Z-torsion, & is a polynomial of degree < e.

(2.16) DEFINITION. Let (4, p) be a R-algebra of arity m. Then (A4, p)
is said to be associative if all twice iterated compositions ®%*A — A
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that can be built from x are equal to each other®. Similarly, one de-
fines the notion of a power associative algebra.

(2.17) PROPOSITION. Suppose that the R-algebra A is power associative
and has no Z-torsion. If ¥ =a,+ --- € Alt] is a solution of the dif-
ferential equation associated with A then a, is nilpotent. In particular,
if A is power associative, and Q C R holds, then S(A) C A[t] implies that
A is a nil algebra.

Proof. By (2.11), a, = 0 means that for an appropriate element
0 # n, € Z, n, times the e-times iterated product of a, with itself vanishes.
But this implies that a, is nilpotent as there is no Z-torsion in A. Fur-
thermore, Z-divisibility of A implies, due to (2.11), that for every a,c 4
there exists a solution & whose constant term is a,.

3. First and higher integrals

Let D be a differential equation (1.1) of arity m and dimension #.
We associate with it the linear partial differential operator

6D:R[X1’ "')Xn]“"R[XU "',Xn]

that is given, on the monomials, by

4

B 55Xy, -+ X)) =§1;X,c o Xy DXy oy X)Xy X, -

An easy argument shows

(8.2) LEMMA. 6, s a graded R-derivation of degree m — 1. In partic-
wlar, I(D) = ker 6, s a graded subalgebra of R[X,, ---,X,] which con-
tains R.

(3.3) DEFINITION. The elements of I,(D) = ker (dp)?*', ¢ =0,1, ..., are
called the (¢ + 1)* (polynomial) integrals of D.

Obviously, I,(D) = I(D). Evidently one has
(8.4) COROLLARY. (i) I(D)<CI(D)cC...-CcID < ---,

(ii) I,D) is a graded I(D)-module,

i) I(D) = U0 I1,D) is a filtered graded I(D)-module.

There is a contravariant functor P from pDiff,, to the category of

2 A formally more satisfying description of these iterated compositions can be
found in [5], p. 1-3.
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polynomial rings over R in associating but non-commuting variables which
assigns to each differential equation D of dimension n the ring P(D) =
R[X,, ---,X,], and to each morphism f:D’— D” the homomorphism
f*:RIX!, ..., X"%]—R[X], - - -, X, ] which is the substitution homomorphism
induced by

X! = ;} JiXi.
One verifies easily

(3.5) LEMMA. 4 is an endomorphism of the functor P.

From (3.5) one obtains, denoting by pA the category of graded as-
sociative, unital R-algebras of arity 2,

(8.6) THEOREM. There is a contravariant functor I: zDiff,, —r A which
assigns to each differential equation D its algebra of first integrals and to
each morphism f of differential equations the algebra homomorphism fx
induced by f. There are also contravariant functors I,: gDiff,,— gr Mod,
q=1,.--, to the category of graded modules, and I,: pDiff,, — fil gr Mod
to the category of filtered, graded modules which assigns to each differ-
ential equation D the I(D)-module I,(D),q =1, - - -, 0, and to each morphism
f the (relative) module homomorphism f* induced by f.

(3.7 LEMMA. Let & = %) be a solution of D. Then for any T
GR[XI, t e '7Xn]y

%T(.%(t)) — GoDED)) .

Proof. Easy verification.

Denote by C the ideal in R[X,, ---,X,] which is generated by the
polynomials X, X, — X,X,,4,j =1, ---,n. The quotient ring R[X,, ---, X,],
= R[X,, ---,X,]/C is the polynomial ring in associating and commuting
variables X,, .-, X,.

(3.8) PROPOSITION. If T is an element of (8% (C) then for every so-
lution &) of D, <%—>QHT(£” @®) = 0. Conversely, if Q C R holds then
the polynomial T 1is in (0%)"YWC) if for every solution %(t) of D,

(g_t)q“'.r(mt)) — 0 holds.
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Proof. The first part of (3.8) is obvious from (3.7) and the fact
that components of Z(¢) lie in a commutative ring. Conversely, (2.1)
shows that for every ac R™ there is a solution Z,(t) whose constant
term equals a. By (3.7),

0= (%YHT(%” o) = (0" THZ (®) = (0% T) (@) + higher terms .

Hence (6%'T)(@) = 0 for all e ¢ R*. Since @ is contained in R, this im-
plies that the image in R[X,,.-.,X,], of 64T vanishes—which proves
our assertion.

It should be noted that §,(C) C C holds. Hence 6, induces a deriva-
tion, denoted by d,. in R[X,,---,X,].. In this latter case, there is an
analog to (3.8) in which then (6%*)~*(C) is replaced by I,(D), = ker (§,.)¢*.

At this point we ought to remark that the notion of first integrals
for a system of ordinary (as well as partial) differential equations is old
and well known ([6], p. 54) in the case R =R or C. In essence, the
knowledge of a first integral of D permits the reduction of dimD by 1.
The reverse relationship is also classical. There one associates with a
quasi-linear partial differential equation df = 0 the system of character-
istic differential equations ([3], p. 29) in such a manner that for the partial
differential equation d,f = 0, given by (3.1), the associated characteristic
equation is precisely D, as given by (1.1). And again, knowledge of the
solutions of the characteristic equation leads to solutions of df = 0.

We shall now extend the functors I, to all of rAlg,. For that
purpose, let (4,p) be a R-algebra of arity m. Put

(3.9) T.(A) = péi% T, (A),
with T((A) = R, T(A) = A4, T,(A) = @3 A.

Obviously, T,(4) is a graded R-module and is functorial in A. Next,
we define a graded R-module endomorphism d, ,: T,(A) — T,(A) of degree
1—-mbyd,,T,A)—>T, (A as follows:

(3.10) d,,=0 for p <m

—m+1
dyp =2 @1id, @ p® @™ *1id,  for p >m.
i=1
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In particular,
Ay = 2+

Evidently, d, is an endomorphism of the functor 7,. Hence we have
obtained a functor (T, d,) from rAlg, to the category whose objects are
pairs consisting of graded R-modules M and endomorphisms d of M of
degree 1 — m, and whose morphisms are graded R-module homomorphisms
of degree zero which commute with the endomorphisms of the objects
involved.

Let S be an associative, not necessarily commutative R-algebra of
arity 2 and put

T*(A,8) = @ Hom, (T,(4),S)
(3.11) 7
0¥ s = @ Homg (d, ., S) .
p=0

Clearly, this establishes a bifunctor, in A and S, with values in that
category which differs from the previous one by having endomorphisms
of degree m — 1.

Finally, for f,e T?(A,S),7 = 1,2, define f,f,c T?*"(A4,S) by

(3-12) f1f2=0'°(f1®f2)
where ¢: S ®z S — S is the multiplication in S.

(8.13) THEOREM. With the multiplication defined by (3.12), T*(A, S) be-
comes o graded, associative, unital R-algebra (of arity 2) which is com-
mutative whenever S is. §Fs is a R-derivation of T*(A,S). Moreover,
the algebra structure of T*(A,S) is functorial in A and S, and 6* is an
endomorphism of the bifunctor T*.

Proof. The only assertion that needs verification is that 6% is a
R-derivation. Let f;e T?(A,S),7=1,2. Then

o m(fif) = 0o ([1® S oy pripyim
=0 (@) 3 ® i, O ® @rrtid,

= oo (fi®f)o (z ®1id, ® p ® @ idA) ® @ id,

t=1

+oo(Fi®f)o (®m id,® 5 @1id, ® u ® @t idA)
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= 0o ([1® 1) oy pmn @ Q7 idy)

+ 00 (L ® 1) 0 (Q71d4 ® d,,pysm-1)
=0o((f1°dypim-1) @S + 00 (/1 ® (f10d,,ppsm-1)
= (023" UDSe + L1085

(8.14) THEOREM. There is an isomorphism of functors P— T*(—,R)-A,,
which commutes with the endomorphisms 6:P—P and 0* oA, :T*(—,R)
oA, —» T*(—,R)oA,.

Proof. Let D be a differential equation of dimension n. Then P(D)

= R[X,,---,X,]. We define now a R-module homomorphism «j: P(D)

— T*(A,,(D), R) as follows. Denote the unit vectors in 4,(D) by €', .-,

e*. Then the canonical basis of T,(4) is e"® --- @ e?, 7, ---,7, =1,
-+,n. Put

aD(Xkl v ka)(ejl ® tt ® ejp) = 6161.11 e 5kp.7';ﬂ

where §,; is the standard Kronecker symbol. Clearly, «ap is an isomor-
phism of graded R-algebras. Hence, the fact that « is a morphism of
functors needs only to be verified in degree one—which is trivial. The
remaining commutativity statement is easily checked in degree one:

(apdpX ) ® -+ @ etm) = (apDy(X,, - -+, X, ))(EM ® - -+ ® eFr) = alfrbm
(Bup,repX ) ® -+ @ e*m) = (apX)(p(e® ® -+ @ ekn)) = alr-=im |

From here, an easy induction argument on the degree of monomials
shows that

apaD(le L ij) = 5#D,R“D(Xj1 L XJP)
holds, which in turn implies the asserted commutativity.

(8.15) DEFINITION. Let A be a R-algebra of arity m. Then the ele-
ments of I,(4,S) = ker 0F5)**, ¢ = 0,1,---, are called the (¢ + 1)¥
integrals of A with values in S. I,(4,S) is also denoted by I(4,5S), and
UqI,(4,8) is abbreviated by I,(4,S).

(3.16) COROLLARY. Mutatis mutandis, the statements of (3.4) and (3.6)
remain valid.

In order to obtain an analog to (3.8), we form the R-module W (A)
= @5 (T,(AI[t]D), the direct sum of the formal power series modules
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A

R-endomorphism of W,.(A) of degree 0. The tensor product ®: 7,,(4)
X Tp,(A) — Tp.,p(A) induces a tensor product, ®, on the level of formal
power series thus making W,.(4) into a graded, associative, unital R-
algebra.

We note that for

is a graded

Zi0) = 3 agt! e Al = T,  i=1,,p,
we obtain
gl(t) ® ® '%-p(t = i < “Z -r aljl ® tte ® al’lp>tk .

An easy verification shows

Et—(ﬁf (B @ -+ & &(1)
3.17)

=52H® - OFLH® d%t(t) QL)@ - ®E) .

Next, every f e T?(4,8) is extended to an element / of Homg (T,(DIIt,
S[[t]]) by the formula

f(i a’ktk> = i: (@)t .
k=0 k=0
In particular,

3.18) @B @L,M) = (j L S, Qe ®apj,)t"

k=0 T ip=k
holds. Here we obtain
(3.19) LEMMA. Let A be o R-algebra of arity m and let Z(t) be a so-
lution of the differential equation associated with A. Then for any
feT?4,S)
f (@PZ (1) = (@i f )(®”“" LZ @) .

Proof. Denote 62*! by 6. Then
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N\
8f(®?*m-1%(t)) = (due to (3.18))
=5 (T e @ay )

k=0 et iptm—1=k

k=0 <J’1+-°'+fp+m—1=k

* (i f(aﬁ@ e ®a’ji-1®#(a’h® e ®ah+m—1)®a’jt+m® v ®ajp+m—l)))tk

=1

Il

J1seersiptm—1

. (i f(a/h@ e ®ajz—1®ﬂ(aji® e ®ajt+m—1)®aji+m® e ®a’ip+m—1))

{=

. tj1+"‘+jp+m—1

F @ Z(®) @ pltN@™ @) @ ®*~F (1))

I

Il

i 1M

i (@""1 Zt) & Lﬁﬂ ® ®r-t .?l”(t)) = (due to (3.17))

Af d _d
f(Et—@)" fm)) =L@ aw) .

Denote by C?(A4,S) the R-submodule of T?(4,S) consisting of those
elements which vanish on all elements of T,(A) of the form
(320) Z aj,@"‘@“’jp, Qs gy == 0y eAyk:0119"'

JrteFip=k

and put C*(4,8) = P;., C?(4,9).

In order to make the next statement more readable we denote for
feT?A,S), f (®? () by f (Z()). This notation then gives meaning to
h(Z(t)) where h e T*(A,S) is not necessarily a homogeneous element.

(3.21) PROPOSITION. If f is an element of ((6F ") 'C*(A,S) then for
any solution %) of the differential equation associated with A,
(%)ﬁlf(f{ ®) = 0. Conversely, if Q C R holds then f belongs to

(3% ) H)'C*(A, S) if for every solution Z(t) of the differential equation

associated with A, ( ;t )QHf (@) =0 holds.

Proof. The first part of the assertion follows from (3.19) and the
definition of C*(A4,S). Conversely, the analog to (2.1) shows that for
every ac A there exists a solution £,(t) whose constant term equals a.
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By (3.19),

+1 , —

0= (L) @) = G T @ )
= (0¥ 9)**'f(a) + higher terms .

Hence (6%5)*'f(a) =0 for all ac A. For the homogeneous component

)

((0F )1 f)? of degree p this means
(3.22) (@*9)' HP(@?a) =0,  for all ¢4 .

i.e. it vanishes on the elements (3.20) corresponding to ¥ = 0. By sub-
stituting in (3.22) a, + 1a, for a, with sufficiently many 21¢ @, one sees
that ((6¥5)?*'f)? vanishes on the elements (3.20) corresponding to & = 1.
Similarly, the substitution of a, + 2a, + --- + 2*a, shows that ((6¥¢)?*'f)?
vanishes on all elements (3.20), whence ((6F)?*'f)? lies in C?(4, S).

(8.23) LEMMA. C*(A4,8) = @;.,C?(A,S) is a graded ideal of T*(A,S)
satisfying ¥ sC*(A,S) C C*(4,9).

Proof. Let feT?(A,S) and g€ Ci(A4,S). Then

f9< 2. 0 ® - ®%;+q)

Jiteeetipto=k

= Z f(ajl®...®aj,,)g( .ajp+1®"‘®a/jp+q)=0.
Jip 7

J1seees pH1Feee=k—j1—eer—jp

Similarly one shows that C*(4,S) is a right ideal. Finally,

d, T, 0@ ®ay)

..+jp=]¢

= 2 Za’h@'“@ajiq@lu(ajt@"'®a’.h+m-1)®a’h+m®'”®ah‘

Jiteestjp=k i=1

Clearly, this last sum is generated by the elements (3.20).
(3.23) implies that ¢Fs induces a derivation, denoted by dfs, on
T*(A,S8)/C*(A,S) = T*(4,S)..

(3.24) THEOREM. The isomorphism a of functors given in the proof
of (3.14) maps the ideal C < P(D) onto the ideal C*(A,(D),R) and hence
gives rise to a commutative diagram
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RIX,, -, Xl —> T*(A,(D), R),

BDl lﬁD,Rc

RIX,, -, X,), —> T*(A (D), R),

Proof. A simple computation shows that «, maps the generators
X:X; — X,;X, into C*(A,(D),R). Hence we get induced maps and the
commutative diagram.

In order to show that the horizontal maps are isomorphisms, we
begin with a number theoretic fact whose proof will be given below.
Let ,>0,.--,,> 0 be integers. Then (see LEMMA below) there are
mutually distinct integers 2z, > 0,.--,2, > 0 such that for any integers
M >0,-,m, >0, n2, + -+ + MRy = N2y + -+ + Nz, implies n, = nj,
ceeyMg =0, Put E=mnz + -+ + ngz, and p =n, + - -+ + 0, and take
the element (3.20) corresponding to £ and p, with @, ---,a, mutually
distinct, and all the other a;, =0. If we now rename a, by a;, then
this element will be > a; ® --- ® a;, where (j,, - -,7,) runs through all
permutations of the set

{1’...,1,2’...’2,...’q’...’q}’

n1 ng ng

Now suppose that
f = Z L k,Xh . kaeR[Xl, e X

is mapped by « into C?(A,(D),R). Then its image under « has to vanish
on the elements that we just constructed. So, if we choose for the a;
mutually distinet unit vectors e‘, we obtain

ST pinis = ()

where (j,, -+ +,7,) runs through all permutations of the set
/N S S AN
SN —— S ————

This, however, implies that the subsum of f corresponding to this sum-
mation lies in C. Since every term of f belongs to precisely one such
subsum, our assertion is proved.

LEMMA. Let n, >0, ---,n,> 0 be integers. Then there are mutually
distinct integers z,> 0, ---,2, > 0 such that for any integers n; >0, -,
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Ny > 0,

’

M2y + -0+ Mg = M2, + -+ + MR,
implies ni = ny, -+, Ny, = Ny
Proof. Put M = > 2, n, and choose k > (2¢ + 1)M. Put
2= RN Skt e e, i=100,0,
with d,; the Kronecker symbols. Then the equation in the LEMMA reads
kot i}lng + k“‘ziz‘l(?lm; + -+ :ééq_l,,-ng
= k2! inz + kq‘ziz: Oty + -+ + i} Ogo1,il -
Hence
O<n, <k-9krM+kM+ - -+ M) M+E@Q@Q-1M<M+1.

Therefore,

<@+ DM+ q<@2g + DM

q
2_:; (n; — ny)
and

<2M+1< @+ DM.

q
Z; 00y — ;)

Therefore, the uniqueness of the k-adic expansion of integers implies
q
> —n) =0
i=1
S8 —n) =0  j=1,.-.,¢—1.
i=1

Since the determinant of the coefficient matrix equals 1, our assertion
is verified.

Analysts may prefer working with T*(A4, S), rather than with T*(4, S).
Therefore it is advisable to have

(3.25) DEFINITION. Let A be a R-algebra of arity m. Then the ele-

(04,5071

ments of Iq(A, S)c = ker (T*(A’S)c — T*(A,S)c), q = O, 1’ ... are
called the (¢ + 1)* commutative integrals of A with values in S. I(4,S),

https://doi.org/10.1017/50027763000017876 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017876

86 HELMUT ROHRL

is also denoted by I(A4,S)., and (U, I,(4,S). is abbreviated by I,(4,S)..
Again (3.4) and (3.6) remain valid.

In (8.11) and the subsequent discussion, S may be replaced by any
m-ary R-algebra S. Then T%*(A,S) becomes a graded mi-ary R-algebra
by generalizing definition (3.12) in the obvious manner. With respect to
this structure, 6} is a R-derivation in the sense that

FEs(fy e fu) = z Fioe Fio 85D Lt - Sm

holds. C*(A4,8) can be formed as before, and turns out to be a graded
ideal of T*(A,S) (in the sense of section 1) that is stable under d¥s.
Hence T*(A, S), and %3, become available. Clearly, the R-module struc-
ture of I,(4,S) and I (A, S), depends only on A and the R-module struc-
ture of S.

We close this section with a brief remark pertaining to the param-
eter dependence of I, (A4,S) resp. I,(A4,S).. Let F be a fleld and let V
be a F-vector space of finite dimension n. If we fix a F-basis of V,
then a F-algebra structure A of arity m with underlying vector space V
is determined by its structure coefficients which are viewed as elements
of F»™*', Thus, we have identified the set of all such F-algebra struc-
tures with F»"*'. For any such F-algebra A, put

IMA,S) = I,(A4,8) N T?(A4,8) resp. 12(A,8), = I1,(A4,S). N T?(4,9), .
If dimg S is finite then both
dimy I3(A,S) and dimg I2(4,S),

are finite and may be viewed as numerical functions on F*»""'. With
this understanding we obtain

(3.26) PROPOSITION. For fixed p,q, and S (with dimy S < co) both
dimy I3(A,S) and dimg I5(A,S),
are upper semicontinuous on F™"*' with respect to the Zariski-topology.

Proof. Let b,,---,b, be the chosen F-basis of A and let s, --.,sy
be a F-basis of S. Denote by f,,...,.,. the element of T?(4,S) which is
given by

.....

fil,...’ip’k(bjl ® oo ® bjp) = Biljl oo 5 Sk .

ipip
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These elements form a canonical F-basis of T7?(4,S). Hence, any
feT?A,S) can be written as

f = Z xil yyyy lpakfily’“vil)’k .

From this and (3.10) it follows easily that 62'y"'/ has as its coefficients
with respect to the canonical basis linear combinations of the z, ...,
whose coefficients are F-linear combinations of the structure coefficients
of A. Hence f belongs to I2(A,S) precisely when the =, .., , are a
solution of a certain linear homogeneous system whose coefficients are
polynomials in the structure coefficients of A. The co-rank of this linear
homogeneous system is upper semicontinuous on F*"*' with respect to
the Zariski-topology. Hence our assertion concerning dimgI2(4,8) is
proved. A similar argument shows the validity of the second claim.

4. Properties of the functor 7,

We shall call I,(A,S) resp. I,(A,S), trivial if I2(4,S) =0 resp.
I’(A,8), =0 for all p > 0. This is equivalent with I,(A,S) =S resp.
I,(A,8), =S.

(4.1) PROPOSITION. If A is nilpotent of exponent e + 1 and T*(A,S) -0
resp. T*(A,S), = 0 then every I,(A,S) and I,(A,S), is non-trivial.

Proof. Denote d,, qm-no- - °d,,: QA - QP DmDA by d,,.
Then the image of d, , will be contained in the submodule of the codomain
which is generated by tensor products having as factors =, zero-fold
products of A (i.e. elements of A), n, one-fold products of A (i.e. elements
of u(®™A)), +-+,Mg(g + 1-fold products of A. For these integers u,
the following relations are easily established, for ¢ > 0 and m > 2:

+

g+1
p—@+Dm—1=5n>1,

1

+1
q+1=quni, n; >0 and n; £ 0 for some ¢ >1.
=0

It is then easy to verify that d,, = 0 whenever
1+@+Dm—-D<p<@+Det +(g+Dim—1)

holds. Thus I,(A,S) and I,(A,S), are non-trivial for ¢ > e — 1, and
therefore for all values of q.
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(4.2) PROPOSITION. If A — A” is a surjective morphism of R-algebras
then the induced maps I, (A”,S) — I(A,S) and I,(A”,8), — I,(A,S), are
injections. In particular, for any R-algebra A there are canowical in-
jections

and
I (A (X% A), S), — I(A,S), .

Proof. The last assertions follow from the first ones and the fact
that x(®7zA) is an ideal of A. Now, if ¢: A — A” is a surjection so is
the induced map T,(¢p): T ,(4) —T,(A”). Hence T*(p): T*(4”,8) —T*(4,S)
is an injection, as is I,(4”,8) — I,(A,S). Finally, let /’ eI (A", S). be
in the kernel of I,(4”,8), — I(A,S),. Lift // back to T,(4”,S) as f”,
and denote the image of f” in T,(A4,8S) by f. Then f is in C*(4,9).
One concludes easily from (3.20) that this implies f” e C*(A”,S), and
thus / vanishes.

4.3) LEMMA. If S is an integral domain then so are T*(A,S) and, if
S has no Z-torsion, T*(4,S),.

Proof. This is obvious for T%*(A4,S), due to (3.12). As for the
commutative case, let f; e T?«(A4,S), i = 1, 2, such that f,f, e C*(4, S) holds.
This implies that

[ @ a)f(@a) =0, forallacA.
Putting
T, = {a/:fx(®pl a)=0} and T,= {a;f2(®pa @) = 0},

we obtain A =T, U T,. The R-submodules of A that are either con-
tained in T, or contained in T, are ordered by inclusion. A simple ap-
plication of Zorn’s lemma shows that there is a maximal such sub-
module, say N. We claim that N = A. Otherwise, assume that N C T,
holds and choose a,2N. For 0 # n,e N there are infinitely many pairs
(k;, ¢;) of integers with mutually distinct ratios such that either ko, +
4myeT,, for all i, or k,ay + é;n,e T, for all ¢, holds. In the first case
we have

0 = £,(®" (katy + £in)) = 3 kijem -fl(z)

J=0 J

where 3, stands for a certain sum of tensor products involving @, and
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7. Since S has no Z-torsion this implies that, for every j,/,(3;;) = 0.
Consequently, the R-submodule of A generated by @, and n, lies in T.,.
Hence we have the alternative that the R-submodule of A generated by
a, and 7, is contained either in T, or in 7,. Now, if for every n,e N
the R-submodule generated by a, and n, were contained in 7, then we
would have a contradiction to the assumed maximality of N. Hence
there is an element 0 = r,a, + n,, with 7, B and n,e N, which is not in
T, and hence not in N. Therefore, for any neN, the R-submodule
generated by n and 7o, 4+ 7, is contained in T,; hence, again, we have a
contradiction. Thus N = A = T,. The argument following formula (8.21)
then shows that f, belongs to C*(A4,S).

(4.4) THEOREM. Let S be an integral domain containing Q. Then
I(A,S), is integrally closed in T*(A, S),.

Proof. let feT*(A4,S). be integral over I,(4,S8). and let
PcIf(A,S)[X] be a monic polynomial of least degree such that P(f) = 0.
Then

0= BliScP(f) = P’(f)b‘,’f,Sc(f) .

P/(f) does not vanish as P’ is not the zero polynomial and has lesser
degree than P. Since T*(4,8), is an integral domain, due to (4.3), this
means that §¥,(f) =0, i.e., fel(4,S8)..

(4.5) COROLLARY. Let R be an integral domain containing Q and let A
be a R-algebra which is free and of finite dimension n as o R-module.
Then the transcendence degree of I(A, R), over R is <n. If the trans-
cendence degree equals n then I(A,R), = T*(A, R),. If, in addition, R
is factorial and if the transcendence degree equals 1, then I (A, R), is iso-
morphic to the polynomial ring R[X].

Proof. By (8.24), T*(A, R), is isomorphic with R[X,, -.., X,]1.. Hence
the first assertion is obvious, and the second one follows from (4.4).
Now assume that the transcendence degree of I(A4,R), equals 1. Let
» >0 be minimal with respect to I2(4, R), # 0 and choose 0 # t ¢ [?(4, R),.
Evidently, ¢t is a transcendence basis of I (A4,R), over R. Let 0 =
uecli(A,R),. Then there is a polynomial

PX,Y) =>{r XY :ip + jg = N}e R[X, Y],
with P(t,u) = 0. Due to (4.3) we may assume that », # 0 and 7y, # 0
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hold. This, however, implies that every prime divisor of ¢ also divides
u, and vice versa. Thus an easy argument, involving the degrees of ¢
and «, and the assumption that ¢ is of minimal degree, shows that « is
a power of t. Since [,(4, R), is graded, this finishes the proof.

Now we shall discuss some change-of-ring theorems.

(4.6) LEMMA. Let R— R be a wunital ring homomorphism and let A
be a R-algebra of arity m. Then the canonical m-ary structure R’ Qg p
on R Qg A furnishes a commutative diagram
T (R ®pA) —> R ®p T4(A)
dR’@R,u,*l lR’ ®R d/‘,*
T*(R @z A) —> B’ @ T4(A)

where the horizontal arrows are isomorphisms of degree zero. The dia-
grom is functorial in A.

Proof. The canonical structure, R’ @ p, is given by
Rru(ri®a)® - QU Ran) =11 1, Q ua, ® -+ ®ay,)

¢ being the multiplication on A. The horizontal isomorphism R’ ®5 T,(4)
— T (R ®zA) is given by (see [1], p. 489)

Q@ - ®a) » 11O - @A B ay) .

These definitions insure functoriality. The commutativity of the diagram
follows by easy verification.

4.7 LEMMA. Let S be a R'-algebra of arity 2, and let R — R’ be a
unital ring homomorphism. Then the isomorphism in (4.6) induces iso-
morphisms of graded algebras

T*R' @ zA,S) —> T*(A, S
and
T*(R' ® 24,8, —> T*(A, 8, ,

where S’ is the canonical R-algebra structure of arity 2 on S’. They
are functorial in A and S’ and render the following diagrams commu-
tative
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T*R' ® A, S) —> T*(A, pS)
o [otas
THR' Q@ A, S) ——> T*(A, 15"

resp.
TR @ A, ), —> T*(A, p),

* *
5R’®Ry,s'cl laﬂ,xs’c

T*(R' Q pA,S"), —> T*(A, 5",

Proof. The first isomorphism sends f/eT?(R’' ® zA,S’) into the
element f e T?(A, pS’) that is given by

4.8) Ja, @ ®ay) =(1Q0)® -+ XA a,) .

An easy verification shows the required commutativity. From (4.8) it
follows immediately that the first isomorphism maps C*(R'® z4,8")
onto C*(4, zS"). Hence the remainder of (4.7) is established.

Again, let R — R’ be a unital ring homomorphism. Then there are,
for any R-algebra of arity 2, canonical R-module homomorphisms

4.9) T*(4,8) —> T*A, z(B' ® 5) —> T*R' ® A, R’ ® 55)

T*(A, 8), —> T*(A, (R’ ® p9)), —> T*R' @ pA, R’ @ 2S),

which are functorial in A and S. Here, the two last isomorphisms are
the ones described in (4.7). The first homomorphism in the top line of
(4.9) is the composition with the map Sss— 1® se z(R'® £S); since it
maps C*(A4,S) into C*(4, (R’ ® zS)), it induces the first homomorphism
of the bottom line of (4.9). With these homomorphisms we obtain

(4.10) PROPOSITION. Let R — R’ be an injective, unital ring homomor-
phism, let A be a R-algebra of arity m, and let S be a R-algebra of
arity two which is flat as a R-module. Then there are isomorphisms
of R-algebras, resp. R-modules both of which are functorial in A and S,

I,(A,S) = I (R ® zA, R ® zS) N im (T*(4,8) - T*(R' ® zgA, R’ ® z9))
and

I(A,S), = I(R'® rA, R’ ® gS). N im (T*(A4,8), —» T*(R' Q@ A, R’ ® zS).) .
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Proof. Since S is a flat R-module, the top homomorphism (4.9) is
injective, and the first set of isomorphisms follows from (4.7) by easy
diagrammatics. The second set of isomorphisms is established similarly
as one verifies easily that T*(4,S) — T*(A4, z(R’' ® zS)) maps C*(4,S) onto
C*(4, (R’ ® £S)) N im (T*(4, S)).

(4.11) PROPOSITION. Let R — R’ be a unital ring homomorphism and let
A be a R-algebra of arity m. Suppose that either R’ or A is a finitely

generated projective R-module. Then there are isomorphisms of R-
algebras resp. R-modules, both of which are functorial in A and S,

R ® Rl (A,S) = I(R' ® zA,R' ® zS)
and
R, ® RIq(A’ S)c = Iq(R, ® RA7 R, ® RS)c .
Proof. There is a canonical R’-module homomorphism
w: R ® zT*(A,S) - T*(R' ® zA,R’' ® zS)
which is given by
o NN ®a)® -+ Qr,®ay) =7rr -1, f(,® --- Pa,) .

It follows from [1], p. 489 and 282, that under the above assumptions
o is an isomorphism. An easy verification shows that the following
diagram commutes

R ® xT*(A,S) —2> T*(R' @ zA, R’ ® »S)

R® 6:<’Sl la§’®nl"3'®as
R'® pT*(A,S) —2> T*(R' ® A, R’ @ zS) .

Thus we have the first batch of isomorphisms. Since » maps
R'® zC*(4,S) onto C*(R' ®z A, R’ ® zS)—as is checked easily—the second
batch of isomorphisms is established similarly.

(4.12) COROLLARY. Let R — R’ be a unital injective ring homomorphism,
let A be o R-algebra of arity m, and let S be a R-algebra of arity 2
which is flat as a R-module. Suppose that either R’ or A is a finitely
generated projective R-module. Then
(1) 1I,A,S)(resp. I,(A,S),) is trivial if and only if
I(R' @ A, R’ ® zS) (resp. I (R’ ® A, R’ ® zS),) is
(i) I,(A,S) = T*A,S) (resp. I,(A,S), = T*(4,8),) if and only if
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IR QrA, R Q®pS) = T*(R' @ g4, R ® 5S) (resp. [,(R' ® r4,
R' ® zS), = T*(R' ® zA, R’ ® zS).).
Proof. (4.10) and (4.11).

(4.13) THEOREM. Let F be a field of characteristic zero and let A be
a F-algebra of arity m with dimz A < co. Suppose that A possesses a
non-trivial idempotent e such that the F-endomorphism t of A, which is
given by

@) =pe® - --Qe®a),
satisfies
det(4-ids+ ) #0  for £=0,1,---.
Then I,(A,S) is trivial.
Proof. We shall prove that d, ,,» > m, is a surjection; this implies
that ¥ 5 is injective, and hence that I,(4,9) is trivial. In order to obtain

the required surjectivity we show, by induction on ¢, that Qr-7-mtle
® T,(A) is in the image of d,,. This is clear for ¢ = 0 as

d,,(X?e)=@—m+ 1) Rrmte,

and p — m + 1 % 0 since F' has characteristic zero. Next, one verifies
easily that for p —¢>m — 1

d;x,p(@p_q € ® a, ® cct ® a'q)
(4.14) =@—-—q¢—m+ DRI eRe® - ®a,
+ @ eQ@r(a)® 0, Q- Ray + R e@b

with be T, (A) holds. It is well known that there is a F-basis
bis > i=1---,n;;7=1,---,¢
of A such that
t(bs,1) = bisry s t=1,---,m—1
2(basg) = 3 Tigbg
with suitable scalars 7, ;€ F. If we apply (4.14) to a, = b;; then the

induction hypothesis leads to

@—q—m+ DR T e®b;,;Q0,Q - Qa,

4.15
( ) 4 ®p—0-m+1 e® T(bi,j) ® a® - () a, € im dﬂ,p .
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The element occurring in (4.15) can be written in the form
QP e —q—m + Didy + 0)0,,) R e, ® -+ Ra, .

Since, by assumption, (p — ¢ — m + 1) id, + ¢ is invertible and since the
elements b, ; form a F-basis of A, we finally obtain

®P-1"mH e ® T(A) C imd, , .

(4.16) COROLLARY. Let F be a field of characteristic zero, and let S be
o F-algebra of arity 2 with dimp S < co. Then I,(A,S) is Zariski-gen-
erically trivial.

Proof. The proof of (3.26) shows that I,(A4,S) is trivial on a count-
able intersection of Zariski-open sets. This intersection is not empty
as the hypotheses of (4.13) are satisfied for any R-algebra which possesses
a unit element.

It follows easily from the first part of the proof of (4.13)—up to and
including (4.14)—that the following assertion is valid.

(4.17) PROPOSITION. Suppose that Q@ C R holds. Then for any R-algebra
A of arity m which possesses a unit element®, I (A,S) is trivial.

We turn now to the commutative analog of (4.13). Here we have

(4.18) THEOREM. Let F be a field of characteristic zero and let A be
a F-algebra of arity m with dimyz A <oco. Suppose that A possesses an
idempotent element e such that the F-endomorphism T of A, which ts
given by

T(a) = i R e@aQR™ ),

satisfies the following conditions

k

4.19) det (Z ®1id, ® T @@V idy + @ — k —m + 1) ®F idA> £ 0

=1

m+1<p,1<k<p—m+1.

Then I,(A,S), is trivial. The stated conditions are satisfied if no finite
sum of eigenvalues of T is a negative integer or zero. In fact, (4.19)

3 The element u of the R-algebra A of airty m is called @ unit element of A if,
for all ae A and i=1,---,m,

HR T u®aR@R™ u)=a
holds.
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need only be satisfied for all sufficiently large values of p.

Proof. We shall prove that d,,, » >m + 1, maps the F-vector sub-
space C,(A) of T,(A) that is generated by the elements (3.20) onto
Cp_mi(A). Then

ot sf € C?(4,S)
implies that
0= 5£,Sf(cp(A)) = f(dy,pcp(A)) = f(Cp—m-H(A))

holds, and hence the canonical image of f in T*(A,S), vanishes; thus
0% s, isinjective and our assertion follows. The fact that d, , maps C,(4)
onto C,_,.(A) is established by an induction argument similar to the
one used in the proof of (4.13). In order to set up the induction we
return to the proof of (3.24). There, certain elements } ¢, ® --- ®ay,
of C,(A) were constructed. We denote this element by ¢,(2,® --- Qa,)

if, in that notation, n,=p —¢+ 1,7, =--- =n,=1 and @, = e hold.
®? e is denoted by c,(¢), and corresponds to ¢ = 1. First we observe
that

dy,pcp(?s) = (p —m + 1)Cp—m+1(¢)

holds, which provides the starting point for the induction argument.
Next, an easy computation shows that

dy,pcp(a’z ® cr ® a/q) - é Cp-m+1(a’2 ® e ® sy ® Tai ® a/i+l ® et ® aq)
—@—=q—m+2)C n (0, ® -+ Day)

is a linear combination of terms of the form ¢, ,.(0,® --- ®b,) with
7 < q. Hence, by induction hypothesis, this expression is in d, ,C,(4).
Since

i:z Cp-’m+1(a‘2 ® e ® Wiy ® Ta’i ® [L27%) ® Tt ® aq)
+ (p —q—m+ z)cp—m“(az@ ce ®aq)
= c;n—m+1(<21l ®i—l id,® TR ®'-"id,
- 1M+ DO @GO ©a)),

the conditions (4.19) show that ¢,_,,(0,® ---®b,) lies in d, ,C,(A), for
any choice of b,, ---,b,. This finishes the induction proof as the elements
Cpomii(0,® - ®b),q=2,---,p —m + 1, generate C,_,,,(A). The last
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assertion follows by computing the eigenvalues of the F-endomorphisms
(4.19).

(4.20) COROLLARY. Let F be a field of characteristic zero, and let S be
o F-algebre of arity 2 with dimy; S < oco. Then I/(4,S), is Zariski-gen-
erically trivial.

Proof. Same as for (4.16).
We close this section with a claim whose proof is obtained by going
through the proof of (4.18).

(4.21) PROPOSITION. Suppose that QCR holds. Then for any R-algebra
A of arity m which possesses a unit element, I,(A,S). is trivial.

5. The categories p2itf,, and roflg,

Let D’ and D” be differential equation of arity m over a commuta-
tive unital Banach algebra R, and denote by %’ resp. %" their dimen-
sion. Recall that any formal solution is then a convergent solution in
the sense that the power series converges for sufficiently small values of
the variable. We are interested in the germs of analytic maps F: R"
— R™” which have constant term zero and map every solution of D’ with
sufficiently small constant term into a solution of D”. If the components
of F are denoted by F,,---,F,. then, with X'(¢) = (X{(®), - -, X, (1)) a
solution of D’ for which FoX'(t) exists,

1=1

| jt F (XU, - X)) = 3. g§z<X'(t>) DIX/(H)=D;FX®)) ,

By (2.1), this is equivalent with

(5.1) by ggi(x'w;(x') =D/FX)), =1, 0.
2=1 :
If f is a morphism from D’ to D”, then the convergent power series

F&) = (306X - 3 r0x0)

satisfies (5.1) as (1.2) shows. Conversely, every F which satisfies (5.1)
and consists of the linear term only, arises from such a morphism f.
An easy verification leads to
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(5.2) PROPOSITION. Let R be a commutative wunital Banach algebra.
Then the differential equations over R of arity m and the germs of
analytic maps which have constant term zero and satisfy (5.1), with
composition of such maps the set-theoretical one, form a category pDiff.,
which contains pDiff, as a subcategory. The functor S: yDiff, — Sets
extends canonically to rDiffn.

As in the case of first and higher integrals we wish to find a purely
algebraic setting for R2iff,. Again, it will be done in a non-commuta-
tive setting. Since we will have to deal now with several R-algebras of
arity m at the same time we shall denote now the multiplication in 4 by
L4, the one in B by pp, ete.

Given A, B ¢ zAlg,, we put

(5.3) P(A, B) = [| Homy (T,(4), B) .
p=1

The p** component of the element i1e P(A,B) shall be denoted by i®.
P(A, B) is made into a R-algebra of arity m by putting

(5°4) (,UA,B(21 Q- Zm))p = Z Upo (2{1 R ---R ]gnm) .

J14e " Fim=p

If f:A’ - A and g: B— B’ are morphisms of R-algebras, we put
P D@)P = godP o Ty(f) .

An easy verification shows

(6.5) LEMMA. P is a bifunctor from pAlg? X pAlg, to pAlg,.

P(A, B) should be interpreted as the algebra of formal power series
on A with values in B whose constant term is zero. We can apply the
constructions of section 3 to the algebra P(A,B); the graded endomor-
phism d,, ., of T,(P(4,B)) shall be denoted by d 4, 3

Next we define a map

o:P(A,B) X P(B,C)— P(A4,C)
by defining Aok = o(x, 1) through
(5.6) (ZOICP=Z Z 2‘10(le®---®/ch).
q Jiteer+je=p

This latter sum is clearly finite as 7, > 1 forces ¢ < p.
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(5.7) PROPOSITION. The R-algebras of arity m together with P(A, B)
as the morphisms from A to B, with the composition defined by (5.6),
form a category pof, with internal hom-functor which contains pAlg,,
as a subcategory.

Proof. 1t is easy to see that the identity morphism id,: A — A is
given by (d,? =0, for p > 1, while (id,)! is the identity map A — A.
As for associativity of the composition, this can be verified by a straight-
forward, but somewhat messy computation. The imbedding of Alg,,
into </, is achieved by assigning to fezAlg,(4,B) the element
fe gt a(A,B) that is given by f# =0, for p > 1, and f! = f.

Next we define a R-module homomorphism

84,8: P(A,B) — P(A, B)
by
(5.8) @ap? " = 0l pima
Here one verifies
(5.9) LEMMA.

544/3(#,4,3(21 ®. & Zm))
= IUA,B(ZZ: A4 ®. - ® Ay ® 5A/Bzi ®21+1 & - ® Zm) .

Finally we need the R-module homomorphism
7: Q 4P(A, B) — P(A,® %B)
that is given by
(5.10) fA® - @)= R @.

JiteEig=p

Evidently
£a 3@ - @A) = P(A, pp) o4 ® -+ @ 4y)
and
(Rop)? = }_;_] 220 (R £)?
hold.
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(5.11) DEFINITION. Let A,B be R-algebras of arity m and put

2lgn(A, B) = {2: 0482 = p4,3(&™ D} C P(A,B) .

(5.12) PROPOSITION. For any R-algebras A,B of arity m
(i) pAlg, (4,B) C plg, (A, B) (in the sense of (5.7))
(i) f 2e gALlgn (A, B) then e zAlg, (4, B).

Proof. (i) f e pAlg, is equivalent with fopu, = gz @™ f. Due to
(5.4), (5.8), (5.10)

Cupl)™ = fodym = Jopa= ppo @)™ = (pa, s (@™ ™ .
Thus
dasnf = pra, s (@™ ) .
(i) Due to (5.4),(5.8),(5.10)
Fopg=2odym=0ysD™ = (pas(Q" D" = pz(Q™ ) .
(56.13) LEMMA. Let te€ po,(A,B) and 1€ gz (B,C). Then for q < p,

(Opc) %o 7](®q K)P = 27" ™o (d(A,B),q(®q £)? .

Proof.
BpeN?op(@T£)? = 2T ™ od,, 0 > R ... Qi

J1teer+ig=p
q—-m+1

= Ja-m+l, ( > ®itidy ® U ® Ra-m-itl idB> ° Z @ e Qe

Jiteeetjo=p

i=1
g—m+1
— Aq-mtl, Z Z - '®’Ch_l®ﬂB°(’5jl®‘ ,®Kji+m—l)®,cji+m®, .
Jiteeetjog=p t=1
—m+1

=2mts Y ST @ @@ g p (R Rt @ i) -

Jitee+jg=p i=1

= A1"™*lo (d(A,B),q(®q £)? .

(5.14) THEOREM. The R-algebras of arity m with the morphisms from
A to B precisely the elements of potlg,(A,B) form o subcategory gflg,
of gt .

Proof. It is very easy to see that the identity morphism id, belongs
to pHlg,(A,A). Take ke polg,(A,B) and 1€ plg,(B,C). Then
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(CureQor)? = @Qog)?~"* od,, , =2, > 20 ® -+ Qr)od

s4,
q Jitere+jg=p—-m+1 ?

=2, 2 290 ((040)"" ™" 1 QPR -+ - @ gle

Q Jrtesetjg=p-m+l

+ £ Q@ @) Q@ - 4 o+ ¢) = (due to (5.11))
=2, 2 20 (g s @™ )™ QPR - - Qulr 1)

q Ji+eee+jg=p-—m+1

= % 220 (dea,m),qem-o(@T ™ £))? = (due to (5.13))
- Zq] (BT " og(Q=™* )2

= % (056 o 7(Q? £)? = %} (5,6(@™ D)7 o p(Q* £)?
=2 5 ree(n®- ® 27) o (X £)?

q qiteeetgr=

=2 2 > et ® - ®27)

o(lci1® ®[;i41® "‘®I€i‘1)
=2 ST pee (Ao ® - - - @ fiu))

q qi+ecc+qr=q i1+"'+iq=p

R Uzo(ffarr@ ... )NR --.)
= PN ppCO((Zox)j‘®"'@(Z°Ii)j"')

jl+"'+jm=

= #A,c(@m (1 ° ’C))p ’

which finishes the proof.

We now return to (5.1). The germs of analytic maps considered
there shall be regarded as elements F' in the formal power series module
R[[X], -+, X.]] of associating but non-commuting variables. However,
(5.1) remains meaningful for formal power series F with F° = 0. If we
use the formal power series F' with F° = 0 which satisfy (5.1) rather than
the germs of analytic maps with F° = 0 which satisfy (5.1) then we obtain,
similar to (5.2), but now for any base ring R, a category r2iffm.

(5.15) THEOREM. There is a full faithful functor &, : zgDiffm — glgnm
which 1s an equivalence between rDitf, and the full subcategory of
rlgn that is defined by those algebras whose underlying R-module is
finitely generated and free.

Proof. We put «,(D) = A,(D) and define o/,(F) by the following
formula

ol W(F)? = z: ap (FPe"
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where the ¢”! are the unit vectors in A, (D”), ap. is as in (3.14), and
the F? are the components of F'?. Clearly, «7,,(F) is in P(A (D), A,(D")).
Evidently, o/, maps identities to identities. Suppose we are given F: D’
—D and G: D — D"”. Let

GUX) = 3 kX, e Xy

k1 ykg=1
Then
n
GoF)P =3 >, DI B RN L
q<P K1y rkg=1 jit et jg=p
and thus

A n(GoFYY = 5 ¢"tap (G o F)D)

n .
=3 S ki (FL) - (F)
g<p k1,00, kq=1 ji+--++jg=p

On the other hand

(An(@ oA nEN =2, 2, Ap(@(AnyEF)Q - @ L y(F)

q<p j1+ecr+jg=p

=2 5 Sanet(SeFn @ 03 an Fider)

g<Sp jr+eer+jo=p i=1

=2 2 iaD(Gé’)e""O 5 ap(FL - ap(FDen® - @ et

g<P ji+ee+jg=pi=1 k1yeeekq=1

=> 2. i ckor ke (F2) - - aD'(Fig) ’

4Zp Ju++ Fig=p kayrikg=1

This makes «7,, at least a functor into p<«/,. Next, for F:D’'— D",
put 6 = 0,01 /unpn to obtain by (3.14)

Gt n(E))? = (A (NP ™ 0 Ay = 32 apFL) 0y
= 350, aap (FP e = 37 ap o, Fe" ,
= izl

which by (3.1) is the linear combination of the ¢! with coefficients the
left sides of (5.1) for p —m + 1. Finally, put g = g, 0 wnn and
¢’ = pp~ to obtain

™ Any(FN? = 3 o (ApF)® - @ A p(F)m

Jr+edHim=p
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il

n e
#/' ° (Z aD,(F{I)eI/i ®R...® Z aD,(F{f"‘)e"")
Jrtesetjm=p i=1 =1

= Z ﬂ”o i aD,(F{:) . aD,(F‘ZZ'::)eil R - Qein

Jitesetim=p T1yereytm=1

n ot
= Z Z O(D,( Z a;/uy-.-,lmF.gll RN F{::)e//i
i -." J

f1+ oot jm=D

which is the linear combination of the ¢’ with coefficients the right
sides of (5.1) for p — m + 1. Hence F € zZitt,(D’, D) is equivalent with
A (F) € pollgn(l n(D), L ,(D7). Thus, o, is full and faithful. The
assertion that o, is an equivalence with the described subcategory is
obvious.

Next we should like to remark, without giving the routine proof,
that any ¢ zolg(A,B) with 22 =0, for p > p,, induces a map S(1):
S(A) — S(B) by putting

SQ(E @) = z 2@ W) .

Hence, the functor S: zAlg, — Sets can be extended to the subcategory
of g, whose morphisms are “finite” in the above sense.

(5.3) and (5.4) still make sense in case the R-algebras A and B have
arities, say m’ and m, which are possibly distinet from each other. In
this event, (5.5) is replaced by a bifunctor P: ,Alg® x pAlg, — zAlg,.
For three R-algebras A, B and C of respective arity m’, m, and m”, (5.6)
remains meaningful. This allows us, just as in (5.7), to form a category,
»of, which contains [], zAlg, as a subcategory. The definition (5.8) of
d4p also makes sense in this setting, and (5.9) remains valid. (5.10)
and (5.11) remain meaningful, and the validity of (5.12), (5.13), and (5.14)
can be established just as in the previous proofs.

We close this section by pointing out that there is a commutative
version to the R-algebra P(A4,B); it is obtained by dividing out by the
ideal [];..C?(A,B)—see the remarks on page 8.18. The resulting R-
algebras, P(4, B),, can be used to form categories o/,. and zlg,. into
which many of the arguments of this section carry over. In particular,
the multiplication g, on P(A,B) induces a multiplication p, z, on
P(A,B),, 045: P(A,B) — P(A, B) induces 84,5 : P(4, B), — P(4, B),, and

Rﬂlgmc(A’B) = {2: 5A/Bc'2 = ﬂA,Bc(@m 2)} c P(AyB)c .
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6. The symmetry group of an algebra

Given a differential equation D of arity m over a Banach algebra
R, it is important to obtain information on the group of r2iff,-auto-
morphisms of D (see [4]). This group shall be called the symmetry
group of D and is denoted by G'(D). If we replace 2iff, by zDitt,
then the corresponding group will be denoted by RG(D). In view of
(5.15) it makes sense to investigate zG(A), the group of plg,-automor-
phisms of an R-algebra A of arity m; again RG(A) will be called the
symmetry group of A. The group of pAlg,-automorphisms of A, an
algebraic group, will be denoted by rAut (4).

(6.1) PROPOSITION. pAut(A4) is a subgroup of rG(A).

(6.2) PROPOSITION. The set of elements A€ zgllg,(A,A) with A =id,
forms a normal subgroup rU(A) of rG(A), and RG(A) is a split exten-
ston of rAut(4) by RUA).

Proof. Evidently, the identity morphism on A is in zfU(A). Due
to (5.6), (Ack)' = 2'ok'; hence rpU(A) is closed under forming product.
A simple computation shows that inverses exist in U(A). Normality of
=U(A) follows from the relation on first components that was just stated.
Since zAut (4) N RU(A) =1, the quotient map rG(4) — G(A)/U(A) is
an injection on zAut (4). It follows from (5.6) that 1¢ ,G(A) is equiv-
alent with A'e zbAut(4). Hence G(A) = zAut(4).-RU(A4). Thus the
quotient map induces an isomorphism zAut(4) = G(A)/U(A). The
splitting map is obvious.

The commutative analog of RU(A4,(D)) N zG'(D) has been determined
in [4] in case R is a Banach algebra and D is “nicht entartet”.

Due to (6.2), a further discussion of the structure of pG(4) has to
focus on RU(4).

Denote by rU(A)™?T the set of all 1¢ RUM) with X = ... =17 = 0,
Put RUA)™M = RU(A), and write the multiplication, that is composition,
in RU(A) as addition. Then we obtain, denoting—as we did prior to
section 5—the multiplication in A by g,

(6.3) THEOREM. RU(A)? is a normal subgroup of rU(A)?-Y, and the
quotient group rU(A)P-1/,U(A)" is isomorphic to an additive subgroup

of
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64 Q= {r:Sodupines = 40 3@ L ® F @ @i} © T4, 4)
If for every ve R, either v or —r has a (p — 1) voot, then this additive
subgroup is in fact a R-submodule of T?(A, A).

Proof. It is easy to see from (5.10) that RU(A)?? is a subgroup of
2U(A). Moreover, for rc zU(A)? Y, we obtain from (5.10)

(—r)? = —(?)
and thus, for 1e¢ U and 1 <p’ < p,
(=r+ D+ =2 3 (=4 DE"® - Q)

q jiteetje=p’
=1idok? + (—& 4+ D? oid
= 45 T (= @)
q Jiteetig=p’

= &7 4+ (=0 oid + ido2” = 0.

Hence pU(A)! is a normal subgroup of ,U(A)*-. Another easy com-
putation shows that

A+ )P =k and (& + £)? = &2 + 7.
Hence the map
rUA)P ok — e T?(A,A)
induces a homomorphiom
(6.5) RUAP ] L UCAYP — T?(A, A)

which is clearly an injection. The image of (6.5) is an additive sub-
group of T?(A,A). Let re R and te zUA)*Y, and define »-x by (r-x)?
= y#'~1.x?",  Then a simple computation shows that ».« is again in
zUA)P-3, Thus, under the additional assumptions, the image of (6.5)
is a R-submodule of T?(4,4). In any case, if we take the p’* compo-
nent of the defining relation (5.11) for #, then we get by (5.4) and (5.8)

m
kP ol pimoy = 05" TEP = po Zl®l_l id, ®£? ® Q™ *id, .
=
Hence £? lies in Q2.

Let us return for a moment to (6.4). Given f € @2, we can equip the
R-module A with the multiplication f, thereby obtaining a R-algebra (4, f)
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of arity p; the graded R-homomorphism (3.10) corresponding to (4, f) is
ds.. Then we obtain

(6.6) COROLLARY. (i) Q2 ={f:fod.,pim1 = podspimat C T?(A,A).

(i) feQ2 if and only if pecQF.

(iii) peQ@m.

For R a Banach algebra and A = A,,(D) an analog to (6.6) can be
found in [4].

Let B be a R-algebra of arity m. A R-module homomorphism
d: B — B is called a R-derivation if

5B, ® - @ by) = 3 B ® -+ Dby Db ® by, @ e Dby
by, bp,eB
holds.
(6.7 LEMMA. Let (B,ps) be o R-algebra of arity m without Z-torsion

and let 6: B— B be a Z-derivation with respect to pg. Let furthermore
f:®2 B — B satisfy the following conditions

(1) AFO.® - ®b,) =F(F 0@ @b @I®b B - ®,).
(1) f—od#B,P+m—1 = ppodspin-1
Suppose that a,e B satisfies da, = pz(@™ a,)) and that a, e, ---€B are
subject to
jo, = > fle,®---Q®a;), i=12,-..

Jrkes T ip=i-1

Then

b= 3 4, ® - ®ay).
Jrte T im=j

Proof. The claim is correct for j = 0 by assumption. We proceed
by induction on j. Assume that the formula is correct for ¢ < j — 1.
Then

joay =3 3 Fa,® - ®ay))

Jreee¥Tp=j-1

-5

Jiteetjp=7-1

p

10,,® - ®aj,._1®ﬂs(k 2, 0n®- ®“"m)®a““® ' )

1kt km= 15
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= Z fo d#B,m+P—1(all ® e ® a't’m—l—ﬂ—l)

f1deeetdmpp—1=7-1

= Z HB©° df,m-)-p~l(a'151 ® e ® a’t’m+1z—1)

L1+t bmpp_1=7—1

= F‘B(g Z — Ay, ®---Q gy

1+t imtp—1=7-11

®f(a“ ®--® a4i+p~1) ® L ® - )

= #B(] 2. i 2. ;@ - Qay,_,

fidteretgm=7~11=1 b1+ o+l p—1=J41

®F@,®  Qa,,, )Qa, ® - )

= ‘UB< Z ) 1ia11® e ®a’ji—1®(j’i + 1)a’ji+1®a.7'z'+1® )
Jiteretgm=J—

i=1

:W( 5 ajl®...®ajm).

Jak e F =g

Since B has no Z-torsion, the induction step is completed.
For R a Banach algebra, A = A,(D), D “nicht entarted”, and p =m
the commutative version of the following result appears in [4].

(6.8) THEOREM. Suppose that @ C R holds. Then for any R-algebra A
and any p, the map RUAP ,UA)? — QF established in (6.3) is an
1S0OMmorphism.

Proof. We apply (6.7) to (B,us) = (P(A,A), pa 1), 0 = 044, &y = id4
e P(A4,4), and f:pf,f, where f is a given element of Q2 and gy, ; is
obtained just as p, , using f rather than x. We have to verify the
conditions (i) and (@ii) of (6.7). Using (3.10),(5.4) and (5.8) we get

Oasalpty, s - @A = pp (4R - R )90, qimo1
= 3 [o®-- ®2§;P)o§;®i*1idA®,¢®®‘H’id,1

Jiteetip=q
2

= Z f © Z 2{1 ®--® 2{231 ® (Zfi © dllxji+7n—l) &® Z{:——il e

Jitee+jp=q 2=1

P . N .
= Z foj/—'? pra R ® i ® (5A/A2£i)]i+m-1 ® Mip ® .-

Ji+eFip=a

= F‘f,f(g AQ - B ®iyudi ®A® - ® Zp)q )

which establishes (i). Furthermore we have
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1.7 @a, ay,pam-ih @ -0 @ 2p 1))
= 1 BR® - O A ® s ® - @ D)
®Aisn ® -+ @ Ayym))’
= LD SR QU @l ® - ®
RAr @ - @ Azt

Since f is an element of %, the “inside” sum satisfies
P , . . . ‘
Jo Q- QU QpA® - QAL QM Q - @Ay
Fpe Q- QAT QSR - QAP QAP ® - Q4T

as can be checked on elements immediately. So, if we reverse the pre-
ceding argument, we obtain a verification of (ii). Since @ C R holds,
we can define, inductively, the a,’s to satisfy the required relations in
(6.7). Then, however, by (6.7),

(6.9 04740y = #A,A( 2. - ay @ ® a’Jm) .

JitestTim=g

@, by definition, has the following components
ay=1id,, af=0 for q = 1.
A simple verification shows that
af=f, af=0 for g+#p
A routine induction argument shows that
a? =0 for q +#jp—1)+1.
Define 1€ P(4,A) by

22=0 for q#jp—1+1

JPp-D+1 . H4i(p—-D+1
A = )

]":O,l,~"

Evidently, ' =id, and 1?7 =f. (6.9) is then equivalent with 1¢
rllgn(A, A); and thus 2 belongs to rU(A)*-" and has f as its image
in @z

Given f € @2, the element 1€ RU(A)*" which was constructed in the
proof of (6.8) shall be denoted by A(f).
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(6.10) COROLLARY. Suppose that Q C R holds. For feQ?, the element
A(f) satisfies the following conditions:

aN=0 for ¢ = 1mod (p — 1)
A = /%rdfmo cerody oy for 1 =1,2,.--

Proof. Apply (6.7) to (B, uz) = (P(A,4), ps,0), 8 = 6y, 0y = id,, and
J = ps;. Then, obviously, (i) and (ii) of (6.7) are satisfied. Hence
Oprpj1 = F‘Lf(jﬁm; :7,_10’% ®--® “j,,> = ja; .

Therefore,
JAFY E=D = Jaf =0+ = (G0, )P = @D o d oy
Thus, a straightforward induction argument delivers our formula.

(6.11) COROLLARY. Suppose that Q C R holds. Then for any non-trivial
R-algebra A of arity m, Qr # 0 and hence both RUA)™ M and RU(A)
are non-trivial.

Proof. By (6.6),0 == pe Q7. By (6.8), 1 is the image of some ele-
ment %=1 in zfU(A)™ Y, which is contained in pU(A).

(6.12) COROLLARY. Suppose that @ C R holds. Let N be o trivial R-
algebra of arity m with TP(N,N) #0 for some p >2. Then both zU(A)»-1
and RU(A) are non-trivial. In particular, this is true if R is any field
of characteristic zero.

Proof. T?(N,N) = Q7.

Before formulating the next statement we ought to recall that, rather
at the beginning of this section, the product—that is composition— in
2U(A) was written as (not necessarily commutative) addition. With this
understanding we obtain

(6.13) COROLLARY. Suppose that @ C R holds. Then,for every f e zU(A)
there ewxists uniquely a sequence of elements f,e Q% p =2,3,.-. such
that f = A(f) + A(fs) + ---; this sum is locally finite.

Proof. Clearly, —a(f* + f has vanishing second component, and
Sf=J* is an element of Q). Suppose we have constructed f, - - -, f, such
that f,eQ% p =2,---,q, and that —a(f) — -+ — Af) + f is in
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UM, Then we take f,, = (—A(f) — -+ — 2(f) + N***. These
inductively constructed elements will satisfy our claim. TUniqueness of
the f,’s is obvious.

For a differential equation D of arity m we denote by Q% the R-
module @2, where p is the multiplication of the R-algebra A,(D). Fur-
thermore, for 1e¢ P(A,(D),A,(D)) we denote by «z(2) the formal power
series

S @329 ,

g=1

where «3;' is applied to each component of A? separately. With these
notations we have

(6.14) PROPOSITION. Let R be a commutative unital Banach algebra.
Let furthermore D be a differential equation of arity m and dimension
n over R. Then for any f e Q%, ap'(A(f)) is in z2iff.(D, D) and satisfies
A(f) = L n(api (). Moreover, zG'(D) = G(D) if and only if either of
the following conditions is satisfied

(i) there exists an integer p, such that

RUA,, D)) = ,UA,(D)P+ = ...
(i) there exists an integer p, such that
Qp=Qp"'=...=0.

In this case, rG'(D) has the additional properties stated in (7.16)
for pU(A).

Proof. Due to the definition of /,—see proof of (5.15)—the as-
serted equality is clear. Hence it remains to be shown that «3;'(A(f)) is
a convergent power series. Since the roles of f and p are interchange-
able, it suffices to deal with p rather than f. Due to (3.14) and (6.10)
we obtain, putting A = A,,(D),

_ 1 _
ap AR = Tapl(dnn,m" vt ol jimen+1)
1 A
= y.—,otil(%‘/ﬁ"” o« 00 (dyp,m))
1

= 7'—5%_ l(al_)l(d,up,'ln)) .
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A straightforward computation shows that
65 (@) = (DX, - -+, Dy(X0)
holds. Put
M = max {|avn])

and let Pe R[X,, --+,X,] be a homogeneous polynomial of degree g whose
coefficients are bounded, in norm, by M’. Then a simple computation
shows that the coefficients of §,P are bounded, in norm, by gMM' .
Hence the coefficients of 64 'P are bounded by

gg+m—1)--- (g + (G —2)(m — D))M'M~* .
This, in turn, shows that the coefficients of a3'(A(x)?™ Y+ are bounded

by

%fm@m — D (G — D — 1) + DM < (mM)? .

Since ap'(A(w)?™ 0 *) has at most n/™ P! monomial terms, this implies
convergence. The remaining assertion follows from (6.13).
The example
Xt:XZn7 ?::1,"',7’&
shows that «3'(A(f)) cannot be expected to be an entire function.
(6.15) PROPOSITION. Let R be a commutative unital Banach algebra.
Let furthermore D be a differential equation of arity m over R whose
associated R-algebra A, (D) has multiplication up. Then, for every
acA,(D) that is sufficiently close to 0, there exists a ¢ > 0 such that
for all se R with |s| <&,
ap (A(sup)) - Zo(t) = gy,,(s)(t)
holds, where & ,(t) denotes the unique solution of D with & ,(0) = a.
Proof. Evidently, the left side of the formula constitutes a solu-
tion of D, due to (6.14) and the definition of 2iff,. Hence we only

have to determine its constant term. A straight forward computation
shows that this constant term equals

(6.16) o i 2(ﬂD)j(m—l)+1(®j(7n—l)+l a)s’ .
J=1

https://doi.org/10.1017/50027763000017876 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017876

ALGEBRAS AND DIFFERENTIAL EQUATIONS 111

Denote the coefficient of s/ in (6.16) by a; and put b; = A(up)?! ™+
Then a; = b;(®I™-V*1q). Since A(yp) is in RrUA,(D)),(5.8) and (5.11)
imply

bJ—lod#D.j(m—lHl = Z #D"(bh@ e ® bjm) ’ i=12,....

Jree¥im=j-1

(6.10) shows that

70y = by 10y jom-n 41 -

Hence

jo; = 2 pp(e;, @ -+ - Day,) .

ikt im=j-1

This, finally, shows that (6.16) equals Z,(s).

Thus, the “one-parmeter” subgroup {i(sup):seR} of RU(A.(D))
permits a geometrical interpretation: given any initial value a € 4,(D)
which is sufficiently close to @, it moves a along the trajectory through
a.

We come now to a brief remark concerning the parameter depend-
ence of Q2. Using the same conventions as at the end of section 3 we
obtain

(6.17) PROPOSITION. For fixed p, dimy Q2 is upper semicontinuous on
Fr** with respect to the Zariski-topology.

Proof. Let é!--.,e® be the unit vectors in F*. For feT?(4,6A)
put

e ® - ® etr) = i—lfl“ ..... kagl

Then it follows from (6.4) that fe @2 is equivalent with the fjw*»
satisfying a certain system L, of homogeneous linear equations whose
coefficients are Z-linear combinations of the structure coefficients of the
F-algebra A. The corank of L, is therefore upper semicontinuous on
F»** with respect to the Zariski-topology. Hence our first assertion is
established.

We close this section with stating—without proof—the changes that
oceur as one switches from po/lg, to pflg,.. If the corresponding groups
are denoted by rG'(D), zG(D)., zG(A)., rU(A),, and RU(A)" then all
previous statements and proofs remain in force, provided that
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(i) in (6.4) and subsequently @2 is replaced by
Qo = (o0 f = o7t © T7(A, A),
where p, is the canonical image of p in T™(A4, 4),
(ii) in (6.10), the pertinent formula is replaced by
i(p—-1)+ 1 —-1)+ -
A(f)Ie-nt = —;TB?,A? Yoo oo

(iii) in (6.11) and (6.12), A is assumed to be a non-trivial commuta-
tive R-algebra.

These claims are verified by simply checking the previous proofs.

7. Properties of the symmetry group

(7.1) PROPOSITION. Suppose that @ C R holds. Then there are non-
trivial R-algebras A of arity m, whose underlying R-module is finitely
generated and free, such that RU(A)*1/ UA) = 0 for all p > 2. In
case R is a Banach algebra, RU(A*"1 contains for all p>2 global ana-
lytic maps which are not in RfUA™ and, if A = A, (D), z2iff,(D,D)
< 22itfn(D, D).

Proof. Let A = R" and define, on A, a m-ary multiplication x such
that

H@™ A) € R*' x {0} and
0#amA ={0: p(RTAQRaR@RY" " A)=0,i=1,..-,m}

This can be easily done. Then there are elements 0 == f? ¢ T?(4, A) with

FPR? A) Cannd  and fARTTAQ @™ A)Q@RPTA) =0,
i=1--p.

Define 2¢ P(4,A) by
A=1idy, 2= 7, and 2" =0 for p'#p,1.

A straightforward computation shows that 2 is indeed in RU(A)*Y as
O, s = py = #A,A(@m Dt and (0440 =0 = #A,A(@m D% q>1. In case
R is a Banach algebra and A = A4,(D), this 1 is a global analytic map
R* — R*. On the other hand, if we define 2¢ P(4,A4) by

leidA, ZPZTpfp, p:2’3)"'
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with f? # 0 satisfying the previous relations then a suitable choice of
the r,e R will force 1 to be a formal power series in RU(A) which is
not convergent.
Thus, r2iff.(D’, D") is—in general—a proper subset of z2iff. (D', D).
For R a Banach algebra and A = A,,(D) the commutative version of
the following result and of (7.5) can be found in [4].

(7.2) PROPOSITION. Let A be a R-algebra of arity m >2 which has no
Z-torsion. If A has a unit element then

(1) U = ... = zUA" N = zU(A) and

() RUA™ = UA)™Y = ... =0.

Proof. (i) By (6.3) it suffices to show that the R-modules (6.4)
vanish for p=2,...-,m — 1. The defining relation for the R-module
(6.4) reads on elements ¢, ® --- Q@ ap,m_,

SI@® @@ ® - ®yn) ® Oy ® - ®yin)

(7.3)
= ;/l((h@ te ®az‘-1®f(ai® tet ®ai+p—1)®ai+p® e ®ap+m—1) .

Let # be the unit element of A. Then (7.3) renders for u —=a, = - .-

= Qpim-1

(7.4) pf(X?uw) = mf(&*w,

and hence f(®?u) =0. This will now be used to start an induction
argument. So, assume that

f(a,l® . ®az®®p-l—ru®ap_r+l® . ®ap) =0

for all choices of a; and 4 <k, r <gq. Keeping in mind that k + ¢ < »
<m —1, we evaluate (7.3) on ¢,® - - - Qa, @R? 4 *" 14y Rqa,_ ., Q- Ra,
and obtain for £k =0,q¢ >0

@—f @ URay 1 Q- Ra,) =0,
for k> 0,9=0
®—-bf(e®. - Qa @K *u) =0,
for k> 0,9>0
P—Ek—q+2f,® R, QX" UQa, ., Q-+ Ra,)
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=m(f@,® - ®a, QX * W) @™ URa, 4, @ - Da,)
+ 2400, ® - R, @Q™ ' FUR R T UR A, Q-+ Ray) .

The first of these relations renders through induction
SJu®ae,® - --®a,) =0,
the second one furnishes
Jo,® - - ®a,  Qu) =0;
and these, together with the third one, finally result in
fla,®---®a,) =0, @y, -, a,€ A,

by choosing k=1,¢q=p — 1.

(i) Let 2 be in RU(A)™. Then, by definition, 2> = ... =1 = 0.
We prove, by induction on p, that 22 =0 for all p > m. If 12 =0 for
2 < q <p, then it follows from (5.11)—by computing the (p + m — 1)
component—that f = A? satisfies (7.3). Hence we obtain again (7.4) and,
as p > m, f(Q?u) =0. This, however, makes it possible to repeat the
argument of (i). Thus f = A = 0, which sets the induction in motion.

(7.5) PROPOSITION. Suppose that Q@ C R holds. Let A be a R-algebra
of arity m which possesses a unit element. Then rU(A) = Q7. More-
over, there is a canonical, injective R-homomorphism Qr — A.

Proof. (6.8) and (7.2) render the isomorphism pU(4) = Q. Denote,
again, by # the unit element of A. Evidently, the map

Qraf— (@ weA
is a R-homomorphism. In order to see that it is an injection we prove,
by induction on £ + 7, that f(Q®™u) = 0 implies
(7.6) Jo,®  ®a,Q3" " u®a,,® - Qay,) =0

for all ¢,» with ¢ + »r < m. Assume that this is true for all /,» with
¢+ 7 <k+q. By evaluating (7.3) on ¢,® -+ ® a;; @ @™ ' 4y ® a,,,
® - Qay,, we obtain, using the induction hypothesis

m—-Qf @ u®a,® - Qa,) =0 ifk=0,q+0

m—-ReMe®- - Qa@L@™*u) =0 ifk+0,9g=0

m—q—k+2f(,Q Qe @R 1R, ® -+ R,y =0
if k£0,g£0.
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These relations, however, imply (7.6) as is easily seen. Thus, the last
claim is established.
Next, we shall deal with change of rings. Here we have

(7.7 LEMMA. Let R— S be a unital ring homomorphism such that S
is o finitely generated projective R-module. Then for any R-algebra A
of arity m there is a S-module isomorphism

0:S® zT?P(A,A) - T(SQ A,S® z4)
that is given by
oSSR NV R -+ ®(5,®a,) =885, f(,Q - Qay,) .
Proof. [11, p. 257,279, 282, 283.

(7.8) PROPOSITION. Let R — S be a wunital ring homomorphism such
that S is o finitely generated projective R-module. Then o induces iso-
morphisms

S® QL = Qkg,, and QF = o(1® zT7(4,4)) N Qg
Proof. By (7.7) and the definition of S® zx we have

o(8® N(8,®a) V- - ®(8;-1®;_ )RSV ) (8: Q1) Q) (S14m U)X+ +)
= 88;* 'Sp+m—1®f(a’l®' '®ai-1®#(at®' ')®az+m®' '®ap+m_1)

and
SQr(5:00) Q- - Q(8;21Q ;) (SR f)(8:R ) R+ ) B (84, R, ,) R +)
= 88;- 'Sp+m—1®ﬂ(a’l®' '®ai—l®f(ai®' ')®ai+p®' '®ap+m—1) .

These formulas, when added up with respect to ¢, show that » maps
S ® Q% into Q%g .. Conversely, if fis in Q%s,. then we have

SAAOW® - 1R )OE@ A ®a)® -
- QU Uy ) ®AD ) ® ---)
=3 Q1R - 10w )Of(1®w® -
C Uy ) DA® ) ® -+

It is well known ([1], p. 238) that there are finitely many elements ¢, €S
and of € S* such that idy = 3, 0¥0, holds. Let

AlRa)® - QL ®ay) = ;tg(al,--~,a,,)®b¢(a1,---,ap),

(7.9)
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where t,(a,, ---,a,) €S and b/(a,, ---,a,) € A, and put, identifying R® A4
with A,

Fi@,® - Qe = (0 RIAIF(ARe)® -+ @A R ay)
= Zg: a;"‘(té(a‘n Ty a’p)) ® bc(a’v Tty a’p) .
Then (7.9) becomes

DI0® @@ ® e ® ) @ n ® - )
Z"::l‘ZZ: O‘?(tz(ai’ M) ai+p—1)) ® ,U(ax ® a;._ 1 ® bz(au M) H—p 1)

® Qirp ® e ® a’m+p—-l)
/l(al R, ®fj(a/i ® & Uirp-1) @ Uiyp ®..-& O yp-1) «

o,

mg

In other words, f; belongs to Q2. Now,

A6 ®a)® - ®(s5,®0a,) =5+ 5,/ (1R ® -+ ®A® ay)
=8 SpZé: Zo‘;k(tl(an o ')a’p))oj®be(a‘1) v "ap)

28, 2.0, (0, Q- ®ay,)
=200, /N5, Ra)® -+ V(s,®0ap),

and thus f=>,0(0; ®f; as had to be shown to obtain the first iso-
morphism. As for the second isomorphism, we only have to show that
o1 ® f) e Qig,, implies f e Q2 However, substituting o1 ® f) for 7 in
(7.8) leads immediately to (7.3), as had to be shown.

(7.10) THEOREM. Let F be a field of characteristic zero and let A be
o F-algebra of arity m > 2 with dimp A < oo. Let e be a non-trivial
idempotent of A such that for the F-endomorphisms r; of A, which are
given by

Tq;(a)-’:/x(®i—1e®a/®®m_i6), i:ly...’m’
the following conditions are satisfied:

(i) forp=2,---,p%m

ker (p'id,; - fj Ti) =

(ii) for any L e Homzp(A4,A4) and any £ =1,2, .-
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() 4L =7, L — Lz, implies L =0
() ¢L =<,L — Lz, tmplies L =0
(iii) for any Le Homz (A ® 4,4) and any ¢ =0,1, --.

4L + Lo(r;®idy + id,®1z,) =0 implies L =0

. det (idA-X - ,i)
(iv) T (m) = 0
Then
Q) FUA) = ;UM = ... = UA)1
@) FUA™ = U@  = ... =0

(3) there is a canonical, injective F-homomorphism Q7 — A
@) FUA) is a one-dimensional F-vector space.

Proof. (1) It follows immediately from (7.3) and (7.10), (i), that
for p <m and feQz f(®?e) =0.
It is well known that there is a F-basis

bi;, 1=1---,n;7=1,---,¢t,
of A such that
tn(big) = bisry,  t=1,-m;—1
(b, 5) = Z’l 7o

with suitable scalars »; ;€ F. We want to prove, by induction on », that,
for r <op

(7.11) R 7"e®a, Q-+ Ra,) =0 for all @, ---,a,€A .

Assume that (7.11) is valid for » < q. By evaluating (7.3)—see proof of
(7.2)—on X *"'e@b;; ¥R --- ®a, we obtain

®—Df(@e®b;,;,008 - ®a,)
(7.12) + f(@7 1 eQrnbi ) ®a,® - ay)
=a(f(Q*7e®b;,; 0@ - Bay) .

Put
Jii =@ e®b,,;00,Q - Qay,) .
Then (7.12) becomes
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D~ D+ Sors = alS0p) s t=1,--,m; —1
nj
(p — Q)fnj,j + ; 70,3 00 = Tl Sy -

Define the F-endomorphism L of A by putting L(b; ;) = f;;. Then the
last relations can be written as

(»p — oL =7,L — Lz, .

By assumption, ¢ # p implies L =0 and thus f;; = 0. Therefore, (7.11)
is valid for » =0, .-.,p — 1. Similarly, we obtain that

(7.13) Jo,® - ®a, @X?P7e) =0 for all a;,---,a,¢ A

is valid for » =0, .--,p — 1.

Next, choose a F-basis 'D,,, of A which behaves relative to r, as the
basis b;; does relative to z,. We want to prove, by induction on 7,
that for » < p

T14) [, R "e®a,Q ---Ra,) =0 for all a,,---,a,cA4 .

This, of course, means that Q2 =0, for p =2, ..., m — 1—which is the
first assertion. Assume that (7.14) is valid for » < ¢, and evaluate (7.3)
on ‘b, @RP " ?e@b; ;,®a, & .-+ ®a, Using (7.11) and (7.13) we
obtain the relation

J@, @R e®b;;®a,® - D ay)
(7.15) + @ —q—Df(0, R e®b,;®a® - Qa,)
'l" f(/bk,£®®p_q—l e®7mb;,j ® az@ tee ®a’q) = 0 .
As before, we define a F-homomorphism L: A A — A by putting
L(by,, @D, = f(b,, @R 1e®b;,; 00, - @ay,) .
An easy computation shows that (7.14) now becomes

P—q—DL + Lo(r;®idy +id,®zyn) =0.

Since ¢ < p — 1 holds, assumption (iii) implies L = 0. Thus the induc-
tion argument is finished, and the first assertion is proved.

(2) As for the second claim, let 2 be an element of U(A)™. By
definition we have 2= ... =1 = 0. We want to prove, by induction
on p, that 22 =0, for all p >m. If 29 =0, for 2 < ¢ <p, then it follows
from (5.11)—by computing the (p + m — 1)* component—that [ = A7
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satisfies (7.3). As in (1) we obtain f(®?e) =0, as p = m holds. This,
however, makes it possible to repeat the previous argument, which leads
to f = 0.

B) Again, (6.8) and (7.9), (1) and (2), render the isomorphism
rUA) = Q. And, as before, we have the canonical F-homomorphism

Qraf—f(®me)ecd.

And, again, we will have to prove that f(®™e¢) = 0 implies f = 0. The
proof proceeds literally as in (1), since the assumption f(®™e) =0 fur-
nishes the starting point for the induction argument.

(4) An easy computation shows that f e Q7 implies

m

mf@me) = >, r,(f(®™e)) .

3=1

In other words, f(®™ e) is an eigenvector, with eigenvalue m, of > ™, z,.
Since (@™ e) is such an eigenvector, condition (iv) implies that f(®™ e)
is a scalar multiple of p,(®™e). Hence Q7 is one-dimensional, and (1),
@), (3) imply (4).

(7.16) COROLLARY. Suppose that, under the general assumptions of
(7.10), (ii)) and (iil) are satisfied and (i) is valid for all p > p, for some
Do. Then RUA)P = ;UA)»+] = ... =0, and hence rU(A) can be ob-
tained by finitely many successive extensions of certain finite dimensional
F-vector spaces; moreover, zU(A) is a unipotent algebraic group. In
particular, if F = R or C, then—under the stated conditions—zU(A) is
a unipotent, simply connected real resp. complex Lie group which, in the
complex case, is a Stein manifold.

Proof. The proof of (7.10) shows that the assumptions imply Q2+
=Q** = ... =0. Hence UA)" = ;U = .... Since the inter-
section of these groups is trivial, they all have to be trivial. Algebra-
icity of U(A) follows from (5.12), and the remaining assertions are now
either obvious or a matter of definition.

(7.17) Remark. Condition (iv) of (7.10) is only needed to prove asser-
tion (4). In the absence of (iv) one still has that U(A) is isomorphic
to a finite dimensional F-vector space, namely Q7.

(7.18) THEOREM. Let F be a field of characteristic zero. Then the as-
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sertions of (7.10) are Zariski-generically valid for F-algebras of arity m.

That is
(1) FU(A) = FU(A)D] = e . = FU(A)[m—l]
2) FUAM = U™ = ... =0

3) rU(A) is a F-vector space of dimension 1.
Proof. Due to (6.8), these assertions are equivalent with
Q=0 for p=m, and dim,Qr=1.
Let ¢!, ..., e" be the unit vectors in F». For feT?(4,A), put

FE @ - @ ehr) = g_‘:fikw-nkpei ,

Then it follows from (6.4) that fe@Q? is equivalent with the fiv—»
satisfying a certain system L, of homogeneous linear equations whose
coefficients are Z-linear combinations of the structure coefficients of the
F-algebra A. One checks easily that the number of these linear equa-
tions equals n™*?. Therefore, Q2 =0, for p # m, is equivalent with
rank L, = »'*?; this in turn is equivalent with the structure coefficients
lying in a certain Zariski-open set Z,. (7.2) shows that none of the sets
Z, p %+ m, is empty as for any m there is a F-algebra of arity m on
F» which has a unit element (e.g. [[?E,). Finally, dim, Q@ =1 is equiv-
alent with rank L, = n**? — 1; this is equivalent with the structure
coefficients lying in a certain Zariski-open set Z, which, by the previous
argument, is not empty. Hence our claim is established.

Finally, we shall state—again without giving detailed proofs—the
changes that occur as one switches from z.o7lg, to zlg,.. (7.1) remains
valid for rU(A)? rather than pU(A)?. (7.2) also stays in force. Here
one has to observe that for feT?(A,A) and f, its canonical image in
T7(A, A),,

5f,Acfc = 5;5,.4#1(:
is equivalent with
(7.19) 0Fuf — 0Fapc C*(A,A) .

One verifies easily that (7.4) still holds. This starts, as in the proof of
(7.2), an induction argument on ¢ which shows that f vanishes on all
elements of the form c¢,(¢;® --- ®a,) (see proof of (4.18)). Then the
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reasoning contained in the proof of (3.21) leads to the desired result.
Similarly, (7.5) remains valid with an analogous adjustment in proof.
It is easy to see that (7.7) stays true and that o maps S® pC?(4, A)
onto C?(S® zA,S® rA), thus inducing an isomorphism

0e: S® T4, A), — T*(S ® 24, S ® rA), .

The validity of (7.8) for QI and Q%g,. follows exactly as in the proof
of (7.8). Now, in place of (7.10) we get

(7.20) THEOREM. Let F be o field of characteristic zero and let A be
o F-algebra of arity m > 2 with dimp A < co. Let e be a non-trivial
idempotent of A such that for the F-endomorphism T of A, which is
given by

T(a) = }”: U@ e®@a Q@™ e) ,

the following conditions are satisfied:
(i) for any L e Homy (R g4, A) and any pair of integers p, ¢ with
0<qg<pand p>2 other than p =m and q =0

ToL =@ — L+ Loy ®id, ® T ® ®*id,

implies L = 0
(ii)
det (id, X — 1), 0
Xy m # 0.
Then
Q) FUA), = yUA)N = ... = ;U)LY
@) FUAM = U = ... =0

(3) there is a camonical, injective F-homomorphism Q7 — A
@4 FUA), is one-dimensional F-vector space.

Proof. The proof proceeds along the lines of the proof of (7.10).
It follows from (7.19) and hypothesis (i), for ¢ = 0 and p + m, that for
any feT?(A,A) with f,. e Qz,

J(®?e) =0.

This is used as the anchor point for an induction, on ¢, that f vanishes
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on the image of ¢, ,: ®% A — Q2 A where ¢, , is defined by (see proof
of (4.18))

CP:q(a’1® e ®aq) = Cp(aq@ e ®a/q) .
The induction hypothesis, applied to (7.19), renders then

Tofotp,= D — focyq+ focp,qoi—l" ®1id, @ T ® @*tid, .

Hence hypothesis (i) leads to the assertions (1)-(8) (see also proof of
(7.10)). (ii), finally, implies (4)—just as in the proof of (7.10).
(7.16), (7.17), and (7.18) remain valid in the commutative situation.
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