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Abstract

We study branching multiplicity spaces of complex classical groups in terms of GL2 representations. In
particular, we show how combinatorics of GL2 representations are intertwined to make branching rules
under the restriction of GLn to GLn−2. We also discuss analogous results for the symplectic and orthogonal
groups.
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1. Introduction

1.1. Branching rules describe a way of decomposing an irreducible representation
of a whole group into irreducible representations of a subgroup. With applications in
physics, branching rules for classical groups have been extensively studied. See, for
example, [6, 7, 9, 11].

In this paper, we study combinatorial aspects of branching rules for complex
classical groups, under the restriction of GLn to GLn−2, Sp2n to Sp2n−2, and SOm to
SOm−2, by investigating the GL2 module structure of branching multiplicity spaces.
Recently, Wallach, Yacobi and the present author studied Sp2n to Sp2n−2 branching
rules in terms of SL2 representations [5, 10, 12]. Our results for the symplectic group
are compatible with those in the above papers once we restrict GL2 to SL2.

1.2. A group homomorphism φα from the complex torus (C∗)k to C∗ defined by

φα(t1, t2, . . . , tk) = tα1
1 tα2

2 · · · t
αk
k

is called a polynomial dominant weight of the complex general linear group GLk =

GLk(C), if it satisfies

α = (α1, . . . , αk) ∈ Zk and α1 ≥ · · · ≥ αk ≥ 0.
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We shall identify the polynomial dominant weight φα with the exponent α. We can
also identify φα with Young diagram having αi boxes in the ith row for all i. The sum
α1 + · · · + αk will be denoted by |α|.

Then, by theory of highest weight, polynomial dominant weights uniquely label
complex irreducible polynomial representations of the general linear group, and we
will let Vα

k denote the irreducible representation of GLk labeled by Young diagram α,
or equivalently, highest weight α. See, for example, [3, Section 9].

1.3. The irreducible representation Vλ
n of GLn labeled by Young diagram λ is

completely reducible as a GLn−2 representation. By Schur’s lemma (for example,
[1, Section 1.2]), for a pair of polynomial dominant weights λ and µ of GLn and GLn−2

respectively, the branching multiplicity of Vµ
n−2 in Vλ

n is equal to the dimension of the
space

Vλ|µ = HomGLn−2 (Vµ
n−2, Vλ

n ) (1.1)

of GLn−2 homomorphisms, and then, as a GLn−2 representation, Vλ
n decomposes into

isotypic components as

Vλ
n =

⊕
µ

Vµ
n−2 ⊗ HomGLn−2 (Vµ

n−2, Vλ
n ) (1.2)

where the summation runs over the highest weights µ of Vµ
n−2 appearing in Vλ

n . In this
sense, we call the space (1.1) a GLn to GLn−2 branching multiplicity space.

1.4. After a brief review on the representations of GL2 in Section 2, we describe
the GL2 module structure of GLn to GLn−2 branching multiplicity spaces in Section 3.
We develop a combinatorial procedure of tiling branching multiplicity spaces with GL2

pattern blocks in Section 4. This procedure will show, in particular, how combinatorics
of GL2 representations can be intertwined to make branching rules under the restriction
of GLn to GLn−2. We will discuss analogous results for the branching of Sp2n to Sp2n−2
and SOm to SOm−2 in Section 5.

2. Irreducible representations of GL2

In this section, we review algebraic and combinatorial models for GL2

representations.

2.1. For a polynomial dominant weight (x, z) ∈ Z2 of GL2, the irreducible
representation with highest weight (x, z) can be realized as

V (x,z)
2 = C ⊗ Symx−z(C2)

where g ∈ GL2 acts on the spaces C and C2 via scaling by the factor of det(g)z and
matrix multiplication, respectively. Here, Symd(C2) denotes the dth symmetric power
of the space C2, and det(g) denotes the determinant of the matrix g ∈ GL2. See, for
example, [1, Section 15.5].
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2.2. The irreducible representations of GLk can be described in terms of Gelfand–
Tsetlin patterns [2]. For GL2, Gelfand–Tsetlin patterns for V (x,z)

2 are triangular arrays
of the form [

x z
y

]
with y ∈ Z and x ≥ y ≥ z, which can label weight basis vectors v ∈ V (x,z)

2 ,(
t1 0
0 t2

)
· v = (t1yt2

x+z−y)v,

for all diagonal matrices diag(t1, t2) of GL2. See, for example, [3, Section 8.1] or [8].
Then the character of the GL2 representation V (x,z)

2 is

ch(x,z)(t1, t2) =
∑

y

t1
yt2

x+z−y (2.1)

where the summation runs over all integers y such that x ≥ y ≥ z, or equivalently, over
all Gelfand–Tsetlin patterns with top row (x, z).

2.3. We remark that if we restrict GL2 to its subgroup SL2, then V (x,z)
2 is isomorphic

to Symx−z(C2). By taking t1 = t and t2 = t−1 in (2.1), its character can be given as

ch(d)(t) = t−d + t−d+2 + · · · + td−2 + td

where d = x − z. See, for example, [1, Section 11.1] or [3, Section 2.3].

3. Branching multiplicity spaces

In this section, we study the GL2 module structure of GLn to GLn−2 branching
multiplicity spaces.

3.1. Let us recall branching rules for GLk down to GLk−1, under the embedding of
GLk−1 in the upper left corner of GLk. For polynomial dominant weights α and β of
GLk and GLk−1, respectively, we write β v α and say that β interlaces α, if

α1 ≥ β1 ≥ α2 ≥ β2 ≥ · · · ≥ αk−1 ≥ βk−1 ≥ αk.

L 3.1 ([3, Section 8.1], [8]). Let α and β be polynomial dominant weights of GLk

and GLk−1, respectively.

(1) The multiplicity of a GLk−1 irreducible representation Vβ
k−1 in Vα

k , as a GLk−1

representation, is at most one. It is precisely one when β interlaces α.
(2) As a GLk−1 × GL1 representation, Vα

k decomposes as

Vα
k =

⊕
βvα

Vβ
k−1 ⊗̂ V (|α|−|β|)

1

where the summation runs over all β interlacing α.
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Next, let us consider polynomial dominant weights λ and µ of GLn and GLn−2,
respectively. We say that µ doubly interlaces λ, if there exists a polynomial dominant
weight κ of GLn−1 such that µ interlaces κ and κ interlaces λ, that is, µ v κ v λ. By
applying the above lemma twice, it is straightforward to see the following proposition.

P 3.2.

(1) The irreducible representation Vµ
n−2 appears in Vλ

n as a GLn−2 representation if
and only if µ doubly interlaces λ.

(2) The multiplicity of Vµ
n−2 in Vλ

n is equal to the number of all possible κ satisfying
µ v κ v λ.

(3) As a GLn−2 × GL1 × GL1 representation, Vλ
n decomposes as

Vλ
n =

⊕
µvκ

⊕
κvλ

Vµ
n−2 ⊗̂ (V (|κ|−|µ|)

1 ⊗̂ V (|λ|−|κ|)
1 )

where the summation runs over all µ doubly interlacing λ and κ satisfying
µ v κ v λ.

By comparing (1.2) and Proposition 3.2, we can describe the branching multiplicity
space

Vλ|µ = HomGLn−2 (Vµ
n−2, Vλ

n )

in terms of integral sequences κ such that µ v κ v λ, or arrays of the formλ1 λ2 λ3 · · · λn−1 λn

κ1 κ2 κ3 · · · κn−1

µ1 µ2 · · · µn−2


where the entries are weakly decreasing along the diagonals from left to right, which
we will call interlacing patterns.

3.2. Our next task is to show that every GLn to GLn−2 branching multiplicity space
can be factored into GL2 representations. For polynomial dominant weights λ and µ of
GLn and GLn−2 respectively, let IP(λ, µ) be the set of interlacing patterns whose top
and bottom rows are λ and µ respectively. Also, for a sequence σ of weakly decreasing
nonnegative integers

σ1 ≥ σ2 ≥ · · · ≥ σ2n−3 ≥ σ2n−2,

let GT (σ) be the set of all (n − 1)-tuples of Gelfand–Tsetlin patterns for GL2 whose
top rows are (σ2i−1, σ2i) for 1 ≤ i ≤ n − 1.

T 3.3. Let λ and µ be polynomial dominant weights of GLn and GLn−2, andσ =

σ(λ, µ) be the sequence (x1, z1, . . . , xn−1, zn−1) obtained by rearranging the sequence

(λ1, λ2, . . . , λn, µ1, µ2, . . . , µn−2)
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in weakly decreasing order, that is, x1 ≥ z1 ≥ · · · ≥ xn−1 ≥ zn−1. Then, the map from
IP(λ, µ) to GT (σ) sendingλ1 λ2 λ3 · · · λn−1 λn

κ1 κ2 κ3 · · · κn−1

µ1 µ2 · · · µn−2


to ([

x1 z1

κ1

]
,

[
x2 z2

κ2

]
, . . . ,

[
xn−1 zn−1

κn−1

])
is a bijection.

We will prove the theorem in the context of pattern-tiling in Proposition 4.3. Our
proof will show in particular how combinatorics of GL2 representations are intertwined
to make branching rules under the restriction of GLn to GLn−2. We also note that a
direct proof can be given by using the observation that if µ doubly interlaces λ, then
x1 = λ1, zn−1 = λn, and

z j = max(λ j+1, µ j) and x j+1 = min(λ j+1, µ j) (3.1)

for 1 ≤ j ≤ n − 2.
As an immediate consequence of Theorem 3.3, since there are exactly x − z + 1

possible Gelfand–Tsetlin patterns with top row (x, z), we have the following corollary.

C 3.4. For µ doubly interlacing λ, the multiplicity of Vµ
n−2 in Vλ

n , or
equivalently the dimension of the branching multiplicity space Vλ|µ, is

n−1∏
j=1

(x j − z j + 1)

where the x j and z j are defined from the rearrangement (x1, z1, . . . , xn−1, zn−1) of the
sequence (λ1, . . . , λn, µ1, . . . , µn−2) in weakly decreasing order.

We note that this formula can be derived from [12, Proposition 3.2]. See the remark
after Theorem 3.5.

3.3. In the setting of Proposition 3.2, consider the diagonal block GL2 complement
to GLn−2 in GLn: [

g1 0
0 g2

]
∈ GLn

where g1 ∈ GLn−2 and g2 ∈ GL2. This GL2 commutes with GLn−2 acting on Vµ
n−2

in (1.2), and therefore, the GLn to GLn−2 branching multiplicity space carries the
structure of a GL2 module.
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T 3.5. For µ doubly interlacing λ, the GLn to GLn−2 branching multiplicity
space Vλ|µ is, as a GL2 representation, isomorphic to the tensor product of GL2

irreducible representations

HomGLn−2 (Vµ
n−2, Vλ

n ) � C ⊗ V (x1,z1)
2 ⊗ V (x2,z2)

2 ⊗ · · · ⊗ V (xn−1,zn−1)
2

where C is the one-dimensional representation given by det(g)−|µ| for g ∈ GL2; and
x j and z j are defined from the rearrangement (x1, z1, . . . , xn−1, zn−1) of the sequence
(λ1, . . . , λn, µ1, . . . , µn−2) in weakly decreasing order.

P. By taking GL1 × GL1 in Proposition 3.2 as a maximal torus of GL2, we can
consider the following formula as the GL2 character of the branching multiplicity
space

ch(Vλ|µ) =
∑
κ

t|κ|−|µ|1 t|λ|−|κ|2

where (t1, t2) ∈ GL1 × GL1 and the summation runs over all κ such that µ v κ v λ. Then

(t1t2)|µ| · ch(Vλ|µ) =
∑
κ

t1
|κ|t2
|λ|+|µ|−|κ|

=
∑
κ

t1
(κ1+···+κn−1)t2

(x1+z1+···+xn−1+zn−1)−(κ1+···+κn−1)

=

n−1∏
j=1

∑
κ j

t1
κ j t2

x j+z j−κ j

and, by Theorem 3.3, x j ≥ κ j ≥ z j for each j. This shows that ch(Vλ|µ) is the product
of (t1t2)−|µ|, the character of the one-dimensional representation twisted by det(g)−|µ|,
and the characters of the V

(x j,z j)
2 . This finishes our proof. �

The following SL2 module structure of the branching multiplicity space was studied
by Yacobi in his thesis (see [12, Proposition 3.2]):

HomGLn−2 (Vµ
n−2, Vλ

n ) � Symx1−z1 (C2) ⊗ · · · ⊗ Symxn−1−zn−1 (C2).

Our theorem can be understood as a result obtained by lifting SL2 to GL2.

4. Tiling branching multiplicity spaces

In this section we develop a combinatorial procedure of tiling branching multiplicity
spaces with Gelfand–Tsetlin patterns for GL2, thereby proving Theorem 3.3.

4.1. First, in order to consider some directed paths in a graph, we place vertices on
the coordinate plane as

Pn = {(a, b) : b = 0, 1 ≤ a ≤ n} ∪ {(a, b) : b = −1, 2 ≤ a ≤ n − 1}.
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For example, P7 is

e e e e e e e e e
e e u u u u u e e
e u u u u u u u e
e e e e e e e e e

Then we consider directed paths from u = (1, 0) to v = (n, 0) in 2n − 3 steps visiting
each point in Pn exactly once, when we are only allowed to move right(→) or up(↑) or
down(↓) or up-right(↗) or down-right(↘) at each step.

E 4.1. These are two paths for P6 out of 16 possible ones.

u

��??
??

??
? • // •

��

•

��??
??

??
? • // v

•

OO

• // •

OO

•

OO

u // •

��

•

��

•

��

• // v

•

??�������
•

??�������
• // •

OO

Each directed path can be presented by a sequence of allowed steps. For example,
the two paths for P6 in Example 4.1 can be presented as, respectively,

[ ↘ ↑ → ↓ → ↑ ↘ ↑ → ] ,

[ → ↓ ↗ ↓ ↗ ↓ → ↑ → ] .

At each step of a path, it is clear whether we are on the line y = 0 or the line y = −1;
and if we are on y = 0 then the next step should be down(↓), and if we are on y = −1
then the next step should be up(↑). Therefore, in presenting directed paths for Pn from
(1, 0) to (n, 0), we may omit up(↑) and down(↓) arrows. Then, by denoting moving
right(→) on the line y = 0 and on the line y = −1 by harpoon-up(⇀) and harpoon-
down(⇁), respectively, we can present every path uniquely with the following four
arrows:

↘ , ⇀ , ⇁ , ↗ .

4.2. From this observation, we define pattern blocks attached to arrows and a tiling
given by a directed path.

https://doi.org/10.1017/S1446788712000560 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000560


[8] Branching multiplicity spaces 369

D 4.2.

(1) For each i with 1 ≤ i ≤ n − 1, the ith pattern block corresponding to the down-
right, harpoon-up, harpoon-down and up-right arrows is

↘ ⇀ ⇁ ↗

xi xi zi zi

yi yi yi yi

zi xi zi xi

(2) For each directed path from (1, 0) to (n, 0) of Pn, its tiling is the concatenation of
pattern blocks defined by the sequence of arrows presenting the path such that:

(a) yi is at coordinate (i + 0.5, −0.5);
(b) xi and zi above yi are at coordinates (i, 0) and (i + 1, 0), respectively;
(c) xi and zi below yi are at coordinates (i, −1) and (i + 1, −1), respectively

for 1 ≤ i ≤ n − 1.

With this definition, the two paths given in Example 4.1 can be given as

[ ↘ ⇀ ⇁ ↘ ⇀ ] and [ ⇀ ↗ ↗ ⇁ ⇀ ] ,

and the corresponding tilings arex1 x2 z2 x4 x5 z5

y1 y2 y3 y4 y5

z1 x3 z3 z4


and x1 z1 z2 z3 x5 z5

y1 y2 y3 y4 y5

x2 x3 x4 z4


respectively.

4.3. For each tiling, we identify two subsequences of (x1, z1, . . . , xn−1, zn−1). Let
λ = (λ1, . . . , λn) be the subsequence on the line y = 0; and µ = (µ1, . . . , µn−2) be the
subsequence on the line y = −1. In the above example, λ and µ are, respectively,

λ = (x1, x2, z2, x4, x5, z5) and µ = (z1, x3, z3, z4);

λ = (x1, z1, z2, z3, x5, z5) and µ = (x2, x3, x4, z4).

We note that, with the order x1 ≥ z1 ≥ x2 ≥ z2 ≥ · · · , the entries of the sequences λ and
µ satisfy the identities (3.1).
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The following proposition shows that the tiling procedure given in Definition 4.2
provides the correspondence stated in Theorem 3.3.

P 4.3.

(1) For a given tiling, let us impose the order

x1 ≥ z1 ≥ x2 ≥ z2 ≥ · · · ≥ xn−1 ≥ zn−1,

on the entries xi and zi of pattern blocks, and let λ and µ be its subsequences
placed on the lines y = 0 and y = −1, respectively. If yi satisfies xi ≥ yi ≥ zi for
each pattern block, then µ v (y1, . . . , yn−1) v λ, that is, for all r and s,

λr ≥ yr ≥ λr+1 and ys ≥ µs ≥ ys+1.

(2) Conversely, let an interlacing pattern

µ v (y1, . . . , yn−1) v λ

be given. If we place its entries λi, µ j and yk on coordinates (i, 0),
( j + 1, −1) and (k + 0.5, −0.5) for all i, j and k, then we obtain a tiling
defined by the directed path connecting the λi and µ j in weakly decreasing
order. That is, if (x1, z1, . . . , xn−1, zn−1) is the rearrangement of the sequence
(λ1, . . . , λn, µ1, . . . , µn−2) in weakly decreasing order, then xi, yi and zi form a
pattern block and satisfy

xi ≥ yi ≥ zi

for 1 ≤ i ≤ n − 1.

P. It is enough to check out the inequalities for all possible pairs of consecutive
pattern blocks in a tiling listed below. Note that these are also all possible partial
interlacing patterns with two triples (x, y, z) and (x′, y′, z′).x x′

y y′

z z′


x x′ z′

y y′

z


 x′

y y′

x z z′

 x′ z′

y y′

x z


x z

y y′

x′ z′


x z z′

y y′

x′

 z
y y′

x x′ z′


 z z′

y y′

x x′


In the first case, (λ1, λ2) = (x, x′) and (µ1, µ2) = (z, z′). With x ≥ z ≥ x′ ≥ z′, we have

x ≥ y ≥ z and x′ ≥ y′ ≥ z′ if and only if

x ≥ y ≥ x′ ≥ y′ and y ≥ z ≥ y′ ≥ z′.
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In the second case, (λ1, λ2, λ3) = (x, x′, z′) and µ1 = z. With x ≥ z ≥ x′ ≥ z′, we have
x ≥ y ≥ z and x′ ≥ y′ ≥ z′ if and only if

x ≥ y ≥ x′ ≥ y′ ≥ z′ and y ≥ z ≥ y′.

The rest of the cases can be shown similarly. �

4.4. We give an example illustrating tiling procedures, and therefore showing the
GL2 module structure of branching multiplicity spaces. Let us consider polynomial
dominant weights (xi, zi) ∈ {(8, 5), (4, 2), (1, 0)} of GL2, and Gelfand–Tsetlin patterns([

8 5
y1

]
,

[
4 2

y2

]
,

[
1 0

y3

])
where yi ∈ Z varies for xi ≥ yi ≥ zi for all i.

In order to assemble these GL2 pattern blocks to build GL4 to GL2 branching
multiplicity spaces, we consider all the directed paths for P4.

u // •

��

•

��

v

•

??�������
•

??�������

u // •

��

• // v

• // •

OO

u

��??
??

??
? • // •

��

v

•

OO

•

??�������

u

��??
??

??
? •

��??
??

??
? • // •

•

OO

•

OO

Using down-right, up-right, harpoon-up and harpoon-down arrows, they can be
represented as

[ ⇀ ↗ ↗ ] [ ⇀ ⇁ ⇀ ]

[ ↘ ⇀ ↗ ] [ ↘ ↘ ⇀ ] .

Then, from Definition 4.2, we obtain the tilings8 5 2 0
y1 y2 y3

4 1


8 5 1 0

y1 y2 y3

4 2

8 4 2 0
y1 y2 y3

5 1


8 4 1 0

y1 y2 y3

5 2


corresponding to the branching multiplicity spaces

HomGL2 (V (4,1)
2 , V (8,5,2,0)

4 ), HomGL2 (V (4,2)
2 , V (8,5,1,0)

4 )

HomGL2 (V (5,1)
2 , V (8,4,2,0)

4 ), HomGL2 (V (5,2)
2 , V (8,4,1,0)

2 )
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which are, by Theorem 3.5, as GL2 representations, isomorphic to

C ⊗ V (8,5)
2 ⊗ V (4,2)

2 ⊗ V (1,0)
2

where g ∈ GL2 acts on C by det(g)−5, det(g)−6, det(g)−6 and det(g)−7, respectively.
We note that if some of the entries in the sequence (x1, z1, . . . , xn−1, zn−1) are

equal, then different paths may give the same tiling, and therefore the same branching
multiplicity space.

5. Branching multiplicity spaces of other classical groups

As in the case of the general linear group, we can study the GL2 module structure
of branching multiplicity spaces for the symplectic group. We can also obtain similar
results for the orthogonal group within certain stable ranges. For more about stable
range conditions in branching rules for classical groups, we refer readers to [4].

5.1. We denote the complex symplectic group of rank n and the complex special
orthogonal group of rank bm/2c by Sp2n and SOm, respectively. The dominant weights
of Sp2n and SO2n+1 are of the form (λ1, λ2, . . . , λn) ∈ Zn with λ1 ≥ · · · ≥ λn ≥ 0; and
the dominant weights of SO2n are of the same form with λ1 ≥ · · · ≥ λn−1 ≥ |λn|.

We will state branching rules for individual cases (see, for example, [1, Section
25.3] or [3, Section 8.1]) with the convention of Gelfand–Tsetlin patterns, that is, the
entries in each array are weakly decreasing along the diagonals from left to right.

5.2. Let Wλ
2n be the irreducible representation of Sp2n with highest weight λ. Then

for a dominant weight µ of Sp2n−2, the multiplicity of Wµ
2n−2 in Wλ

2n as a Sp2n−2
representation is equal to the number of Sp2n dominant weights κ such thatλ1 λ2 λ3 · · · λn

κ1 κ2 κ3 · · · κn

µ1 µ2 · · · µn−1

.
Note that we can identify this Sp2n to Sp2n−2 branching rule with the GLn+1 to GLn−1

branching rule in Proposition 3.2. Therefore, as GL2 representations,

HomSp2n−2
(Wµ

2n−2, Wλ
2n) � HomGLn−1 (Vµ

n−1, Vλ′

n+1)

where λ′ = (λ1, . . . , λn, 0) (see [12, Theorem 3.1]). Then we can apply Theorem 3.3
to tile the Sp2n to Sp2n−2 branching multiplicity space with GL2 pattern blocks. From
Theorem 3.5, we can express the branching multiplicity space as a tensor product
of GL2 representations. Also, by restricting GL2 to its subgroup SL2 and using the
explanation in Section 2.3, we can obtain the SL2 module structure of the branching
multiplicity space.

We remark that Wallach and Yacobi studied Sp2n to Sp2n−2 branching multiplicity
spaces with Sp2 = SL2 and n copies of SL2 in [10, 12], and Yacobi and the present
author studied their algebraic and combinatorial properties in [5].
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5.3. Let Wλ
2n+1 be the irreducible representation of SO2n+1 with highest weight λ.

Then for a dominant weight µ of SO2n−1, the multiplicity of Wµ
2n−1 in Wλ

2n+1 as a SO2n−1

representation is equal to the number of dominant weights κ of SO2n such thatλ1 λ2 λ3 · · · λn

κ1 κ2 κ3 · · · |κn|

µ1 µ2 · · · µn−1

.
Note that if µn−1 = 0, then the interlacing condition makes κn = 0, and this branching

rule becomes exactly the same as the GLn to GLn−2 branching rule in Proposition 3.2.
Therefore, if µn−1 = 0, as GL2 representations,

HomSO2n−1 (Wµ
2n−1, Wλ

2n+1) � HomGLn−2 (Vµ′

n−2, Vλ
n )

where µ′ = (µ1, . . . , µn−2). Similarly, if λn = 0, as GL2 representations,

HomSO2n−1 (Wµ
2n−1, Wλ

2n+1) � HomGLn−1 (Vµ
n−1, Vλ′

n+1)

where λ′ = (λ1, . . . , λn−1, 0, 0). Then, we can apply Theorems 3.3 and 3.5 to tile the
SO2n+1 to SO2n−1 branching multiplicity space with GL2 pattern blocks and to factor
it into GL2 representations or SL2 representations.

5.4. Let Wλ
2n be the irreducible representation of SO2n with highest weight λ. Then

for a dominant weight µ of SO2n−2, the multiplicity of Wµ
2n−2 in Wλ

2n as a SO2n−2

representation is equal to the number of SO2n−1 dominant weights κ such thatλ1 λ2 λ3 · · · λn−1 |λn|

κ1 κ2 · · · κn−2 κn−1

µ1 µ2 · · · µn−2 |µn−1|

.
If µn−2 = 0, then the interlacing condition makes κn−1 = λn = µn−1 = 0 and this

branching rule becomes exactly the same as the GLn−1 to GLn−3 branching rule in
Proposition 3.2. Therefore, if µn−2 = 0, then, as GL2 representations,

HomSO2n−2 (Wµ
2n−2, Wλ

2n) � HomGLn−3 (Vµ′

n−3, Vλ′

n−1)

where µ′ = (µ1, . . . , µn−3) and λ′ = (λ1, . . . , λn−1). Similarly, if λn−1 = 0, then κn−1 =

λn = µn−1 = 0 and as GL2 representations,

HomSO2n−2 (Wµ
2n−2, Wλ

2n) � HomGLn−2 (Vµ′′

n−2, Vλ′′

n )

where µ′′ = (µ1, . . . , µn−2) and λ′′ = (λ1, . . . , λn−2, 0, 0). Then we can apply
Theorems 3.3 and 3.5 to tile the SO2n to SO2n−2 branching multiplicity space with
GL2 pattern blocks and to factor it into GL2 representations or SL2 representations.
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