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SYSTEMS OF DIFFERENTIAL EQUATIONS

WITH FULLY NONLINEAR BOUNDARY CONDITIONS

H.B. THOMPSON

We give sufficient conditions involving / , g and ft in order that systems of dif-
ferential equations of the form y" = f{x,y,y'), x in [0,1] with fully nonlinear
boundary conditions of the form g((y(0),y(l)),(y'{0),y'{l))) = 0 have solutions
y with (x, y) in ft C [0,1] x Rn. We use Schauder degree theory in a novel
space. Well known existence results for the Picard, the periodic and the Neumann
boundary conditions follow as special cases of our results.

1. INTRODUCTION

In this paper we obtain existence results for solutions of second order systems of

ordinary differential equations with fully nonlinear boundary conditions which include

the Picard, the periodic and Neumann boundary conditions as special cases.

In Section 2 we consider the problem

(i-i) y" = f(x,y,y') ie[o,l]

with the fully nonlinear boundary conditions

(1-2) ff((j/(O),y(l)),(l/'(O),j/'(l))) = O.

The Picard (also called Dirichlet) boundary conditions correspond to the special case

fl°((»(0), 2/(1)); (y'(0), 2/'(l))) = 2/(0) - A = 0 and

^((2/(0),2/(1)); (j/'(O),y'(l))) = 2/(1) - B = 0,

while the Neumann boundary conditions correspond to the special case

<7°((y(0), 1/(1)); (2/(0), 2/'(l))) = 2/'(0) - ^ = 0 and

^((2/(0),2/(1)); (2/'(O),2/'(l))) = 2/'(l) - B = 0,

and the periodic boundary conditions correspond to the special case

ff°((y(0), 2/(1)); (2/'(0), ?/(l))) = 2/(0) - 2/(1) = 0 and

5^(2/(0), 2/(1)); (2/'(0), 2/'(l))) = 2/'(l) - l/'(0) = 0.
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198 H.B. Thompson [2]

A solution y is a twice continuously differentiable, R" valued function satisfying (1.1)
everywhere and the boundary conditions (1.2). Our proofs are based on Schauder degree
theory and ideas introduced by the author in [10]. There is an extensive literature on
two point boundary value problems related to the class of problems we consider. Our
results extend some of those of Bebernes and Schmitt [1], Habets and Schmitt [5],
Gaines and Mawhin [3], Knobloch [6], Knobloch and Schmitt [7], Lan [8], Granas,
Guenther and Lee [4], and the author [11]. Gaines and Mawhin [3] were the first to
consider second order systems in the present context.

For the convenience of the reader we include the following notation.

For a bounded open subset T of [0,1] x R", let dT denote the boundary of T, let
T denote its closure and for x £ [0,1] let T(x) denote its rr-cross section and dT(x)
denote the boundary of T(x). Thus T(x) = {y £ R n : (x, y) G T}. By the boundary of
T we mean the curved boundary so that we exclude the sets {0} x T(0) and {1} x T(l).
Let y — (j/i, • • • , yn) € R" , yT denote the transpose of y, I denote the identity on R"
so I(y) - y for all y, I~ denote the mapping given by I~(y) = (j/i, -y2,..., -yn) for
all y, BT = {y £ R n : \y\ < r}, and B(x, r) = {y £ R n : \y - x\ < r}. Also if A and
B are subsets of R" we denote by Cm(A,B) the set of functions from A to B with
continuous m-th order partial derivatives endowed with the usual maximum norm. If
A is a bounded open subset of R n , p £ R " , Q £ C(A; R n ) and p £ Q{dA) we denote
the Brouwer degree of Q on A at p by d(Q,A,p).

Let Cl be a bounded open subset of [0, l ] x R n . If 0 € U{x) for all x £ [0,1], then
we define L: [0,1] x R" -»• R by

f 1, for (x,y) £U
(1.6) L(x,y)=<

[ ini{k > 0: (x,y/k) £ £2}, otherwise.

Thus L ̂  1 and (x,y/L(x,y)) belongs to the boundary of Q for all (re, y) not in fl.

When y is a function of x uniquely determined from the context we shall abbreviate
L{x,y[x)) to L(x).

2. NONLINEAR BOUNDARY CONDITIONS AND COMPATIBILITY

We consider problem (1.1) together with the fully nonlinear boundary conditions

(1.2).

DEFINITION 2.1: We call £2 an admissible bounding set for (1.1) if it is a bounded
open subset of [0,1] x R" with the following properties:

(1) [0,l]x{0}cfi;
(2) fi(rc) is star shaped with respect to the origin for all x £ [0,1];
(3) the mapping L(x, y) defined by (1.6) is Lipschitz continuous on [0,1] xR";
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(4) for each point (t, u) e dCt with t e [0,1] there is neighbourhood N and
a continuously differentiate function r : N —> R such that

(a) ft n N C {(x,y) € N: r(x,y) < 0} and

(b) r(i,u) = 0,

(c) if t € (0,1), then r: N -t R is twice continuously differentiable
and

r"f(t,u,p) = rxx(t,u) + 2rly{t,u)p + pTryy(t,u)p + ry(t,u)f(t,u,p) ^ 0,

for all p S R" such that r'(t, u,p) = rx(t, u) + r^(t, u)p = 0;
(5) there is a continuous vector field n: [0,1] x R" —> Rn such that

n(t,u)Try(t,u) ^ \ry(t,u)\ > 0 and

n(t,u)Tu > |w| > 0

for all (t, u) € dtl with t € [0,1].

Set A = fi(0) x n ( l ) .

REMARK 2.2. It is easy to see that (5) of Definition 2.1 is satisfied if dfl is smooth
and L is uniformly Lipschitz continuous.
In place of (1) of Definition 2.1 we can allow

for some <j> € C2[0,1], with the appropriate changes in the other assumptions.

It is not difficult to show that Definition 2.1 is equivalent to [11, Definition 3.1].

DEFINITION 2.3: We call / admissible for (1.1) if it satisfies

(1) /£C([0,l]xR" xR";Rn),
(2) | / | ̂  0(|p|), where /°° s/(f>(s) ds = oo and

(3) | / | sj 2C(yTf + \p\2j + K, where C,K are non-negative constants.

Let G: [0,1] x [0,1] -> R be the Green's function for (1.1) together with the
homogeneous boundary conditions A = 0 = B in (1.3). Thus

f x(l - t), for 0 < x ̂  t ^ 1
G{x,t)=\

\ { l - x)t, for 0 ̂  t ̂  x ̂  1.

Let w(x, A, B) = A(l - x) + Bx.
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DEFINITION 2.4: We call the vector field V - (t/)0,V'1) S C ( A ; R 2 n ) strongly
inwardly pointing on A if for all (C, D) € A

(2.1) r'(0,C,V)0(C, D)) < 0, for C e d(l(0) and associated function r.

(2.2) r'{l,D,il>l{C,D)) > 0, for D € d n ( l ) and associated function r.

We call $ inwardly pointing if the strict inequalities are replaced by weak inequalities.

In what follows where there is a strongly inwardly pointing vector field $ on A
clearly defined from the context Q will denote the vector field defined by

(2.3) G(C, D) = g((C, D); * (C , £>)) for all (C, D) e A.

DEFINITION 2.5: Let g e C(A x R 2 n ; R 2 " ) . We say g is strongly compatible
with Cl if

(2.4)

for any strongly inwardly pointing vector field f on A and

(2.5) g((C,D),(p,q))^0

for all (C,D,p,q) € A x R 2 n satisfying either

(C, D) € Sfi(0) x n ( l ) , r'(0, C,p) < 0, or

(C, £>) € O(0) x 3O(l) , r ' ( l , D, q) > 0 or

(C, £>) e 5^(0) x 90(1) , r'(0, C,p) < 0, r ' ( l ,£>,9) > 0.

We say g is compatible with fl if there is a sequence j , e C ( A x R2 n; R2 n) strongly
compatible with f2 and converging uniformly to g on compact subsets of A x R 2 n .

REMARK 2.6. If g is (strongly) compatible with fi then the Brouwer degree (2.4)
is independent of the strongly inwardly pointing vector field fy. To see this, for
strongly compatible g let ^ i , i = 1,2, be two such vector fields. Setting *f>(C,D,0) =
0*i(<7, D) + (1 - 0)tf2(C, £>) and ft(C, D, 9) = g((C, D); *(C, £>, 6>)) on A x [0,1], it
follows that H is a homotopy for the Brouwer degree (2.4).

REMARK 2.7. Let H be admissible for (1.1), then there exists a strongly inwardly
pointing vector field ^ on fi. This can be seen as follows. Since L(x,y) is Lipschitz
and r and 17 satisfy (4) in the definition of admissible, if

(2.6) *(C, D) = fc(-n(0, C), n( l , £>)),

for all (C, Z?) € A , then ^ is a strongly inwardly pointing vector field on A for any
sufficiently large positive constant k.
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REMARK 2.8. Let O be admissible for (1.1). Moreover assume there is a continuously
differentiable function r: [0,1] x R n —> R satisfying (4) and (5) of Definition 2.1 such
that O = {(x,y) € [0,1] x R " : r(x,y) < 0 } . Let e > 0, 77 > 0 and let \p = (V'0,?/'1)
be defined for all (C, D) G dO(0) x 9O(l ) by

(2.7) ^{C, D) = I —' Y—- , —-— 1—' 1.

Extend f toa continuous R2n valued function on A, then ^ is a strongly inwardly
pointing vector field on A. Moreover, if (2.5) holds for all inwardly pointing vector
fields we may use (2.7) when computing the Brouwer degree (2.4).

Moreover since fl(x) is starshaped with respect to 0 and L(x,y) is Lipschitz it
follows that ry(i:y)Ty > 0 for all (i,y) G 9O for i = 0,1. Thus, as in Remark 2.7, if

?) = fe(-rs(0,C),rtf(l,D)), or

for all (C, D) € A, then * is a strongly inwardly pointing vector field on O for any
sufficiently large positive constant k.

Also, in this case (2.5) holds if Q ̂  0 for all strongly inwardly pointing vector
fields. To see this let {C,D,p,q) G dA x R2n satisfy C G 9O(0) and r'(0,C,p) < 0.
First assume D G O(l). Since r'(0,C,p) is a continuous function of E 6 90(0), there
is S > 0 such that r'{0,E,p) > 0 for all E G B{C,28) and B{D,2S) Ddft{l) = 0. Let
$ be a strongly compatible vector field on A and let

f \E-C\il>°(E,D)/6 + (l-\E-C\/6)p, for (E,D) G B(C,S) n A
ib (E, D) = \p \ ip°{E,D), otherwise.

( \E-C\rP1(E,D)/5 + (l-\E-C\/6)q, for (E,D) G B(C,S) n A
1b (E, D) — <

9 [ il>l(E,D), otherwise.

Thus (^p,^) is a strongly compatible vector field on A with («/)°(C, D), ̂ ( C , £>)) =
(p,g). Then g((C,D),(p,q)) j= 0 follows. The case D € 9O(l), C G 0(0) and
r'(l,Z?,g) > 0 follows by a similar argument. The case C G 90(0), D € 9O(l)
r'(0,C,p) < 0, r'(l,D,q) > 0 follows by the above choice of (ipp,ipg) where 6 > 0 is
chosen such '.hat r'(0, £\p) < 0, r '(l, F,q)>0 for all £ G B(C,26) and F G B(D, 28).

In the case O is an admissible bounding set given by r G C1([0,1] x R n ;R) as
in Remark 2.8, the compatibility conditions for the Picard, Neumann, and periodic
boundary conditions become

(2.8) A e H(o), B e
(2.9) r(0, C) = 0 =4- r ' (0, C, A) < 0, r ( l , D) = 0 =^ r ' ( l , D, 5 ) ^ 0,
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and

(2.10) ry(0,C) = t(C)ry(l,C),

rx(0,C)>t(C)rx(l,C), t(C) > 0, C

respectively.

We prove this in the case of periodic boundary conditions. First we need the
following lemma.

LEMMA 2 . 9 . Let

J(C, D) = (C- D, J(C, D)) for all (C, D) € A,

where J e C(A; R n ) . If Q = O(0) n fi(l) and j e C(Q; R") is defined by j(P) =
J(P, P) for all PeQ, then d(J, A, 0) = d(j, Q, 0).

PROOF: Let K = {U(0) \ Q} x {U(l) \ Q}. Then K is closed and J ^ 0 for all
(C, D) G K. Since Qx<3 = A\.ftT,by the excision property of degree

d(J, A, 0) = d(J,QxQ,0).

Setting (H/, Z) = T(C, D) = (C - £>, C + D),

J o r-^W, Z) = (W,j((W + Z)/2, (Z - WO/2)),

then
, Q x Q, 0) = d( J o r - 1 , r(Q x Q), 0)

and the result follows by the reduction property of degree. D

LEMMA 2 . 1 0 . Let fl be an admissible bounding set given by r € C1 ([0,1] x R";
R) as in Remark 2.8. Then periodic boundary conditions are (strongly) compatible if
and only if (2.10) holds.

PROOF: Let \P be a strongly inwardly pointing vector field on A.

Assume that (2.10) is satisfied, let g = (<7°, 51) be given by (1.5) and (C, D) S dA.
If G(C,D) = 0 then C = D € dfl(0) = dil(l) and ip°{C,D) = ^{C.D) so that
0 > r'(0,C,i>°(C,D)) ^ t{C)r'(^D^^iCD)) > 0, a contradiction. Thus 5 / 0
on dA. Now H(C,D,6) = (1 - 26)G(C,D) + 20(g°(C,D),D), for 0 e [0,1/2] and
H{C,D,9) = (2-26)(g°(C,D),D) + (26-l)(C,D), for 0 e [1/2,1]. Since U is a
homotopy for Brouwer degree d{G{-), A,0) = d(ft(-,0), A, 0) = d(^(-, 1), A,0) = 1 /
0 • Thus G is strongly compatible and hence compatible.
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Assume now that g is given by (1.5) and that g is strongly compatible with $7.

We show that (2.10) is satisfied. First we show tha t $7(0) = $7(1). Assume that

$7(0) ^ $7(1). Let * be a strongly inwardly pointing vector field on A . Thus

G(C, D)=(C- D, iP°{C, D) - tp\C, D)) ? 0 for all (C, D) <= dA.

Setting Q = $7(0) n $7(1) and j(P) = i>°(P,P) - i>l{P,P) for all P <= Q, by Lemma
2.9 we have d(Q, A, 0) = d(j, Q, 0) ̂  0. Without loss of generality we may assume that
O(0) 7̂  Q- We construct a strongly compatible vector field ty with d(j,Q,0) = 0, a
contradiction, and then $7(0) = $7(1). Without loss of generality we may assume that
ei = (1,0,.. .,0) £ $7(0) DdQ, where dQ is the boundary of Q. Since $7(0) is an open
set we may choose 50 G (0, <50/2) such that B(ei,6Q) C $7(0). Set A = 1 - So/2. By
Remark 2.8 we may choose k > 0 such that (—fcC, fcD) is strongly inwardly pointing
on A. Let 9(P) be the angle between P and e\ and /Cj be the cone

ICS = {P eRn: 0{P) < sin"1 (6)}.

Let Sj = ^ n { P e R " : |P| > A} n Q where 6 > 0 is chosen sufficiently small that
\P\ > (4 + A)/5 for all P edQr\S5. Thus CA = (1 + A)ex/2 G 5^. Set

r 1, if | C - e i | O o / 2

7t(C) = | 0, if | C - e i | ^ <50

I 1 - 2(|C - ei| - 6o/2)/6o, otherwise,

and T)t(C) = 7t(C)[(C - CA) - C(C - CX).C/ \C\2). Let r?r(C) = lr{C)C where 7r is
continuous and satisfies

3 - sin (8(C))/6, if 6 ̂  sin"1 (5), |C| ̂  (3 + A)/4

0, if 0 ̂  sin"1 (35) or |C| ̂  (1 + A)/2.

Set *(C,£)) = f-fcC + {-l)n+1er]t(C) + r}r(C),kD\ where e > 0 is chosen sufficiently
small that ^ is strongly inwardly pointing on A.

It follows from the additivity and excision properties of degree that

dU,Q,0) = d(j,Q\Ss,0)+d(j,Ss,0).

Also d(j,Q\Sg,0) = (-1)" since 0 € Q\S$ and j is homotopic to - / there.
Also d{j,Sg,0) = ( - l ) n + 1 since (2 + A)ei/3 G Ss, and j(P) is homotopic to
I~ - (2 + A)e!/3 if n is even while j(P) is homotopic to I - (2 + A)ej/3 if n is odd.
Thus d(j,Q,0) = 0, a contradiction, and $7(0) = $7(1). Thus ry(0, C) = t(C)ry(l,C)
for C G <9$7(0) = 9$7(1), where t = t(C) > 0 is continuous.

https://doi.org/10.1017/S0004972700030926 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700030926
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We show tha t r x ( 0 , C ) ^ t(C)rx(l,C), t(C) > 0, for all C £ 0 0 ( 0 ) = 0O(1) .

Assume the result is false. Without loss of generality we may assume that e\ £ 0 0 ( 0 ) =

0O(1) and rx(0,ex) < t(ei)rx(l,ei). Again we set Q = 0(0)0 0(1) = 0(0) = O(l).
The result follows by an argument similar to the previous one in view of the following.

The key to the previous argument was constructing *£ on dQ such that j(C) =
K(C)C + ( —l)n+ ET)t(C), where e > 0 is sufficiently small and n(C) is continuous and
satisfies

K(C) < 0, if 0(C) > sin"1 (6) and

K(C)>0, if 8(C) < sin"1 (6).

Since rx(0, ei) < t(ei)rx(l,e±) and t and rx are continuous we may choose 60 > 0 and
I such that for all C £ dQ D B(ei,60),

rx(0, C) + ry(0, C)(l + 60)C < 0, and

rx(l,C) + ry{l,C)(l - 80)C> 0.

As in Remark 2.8 we may choose k > 0 such that

rx(0,C) - ry(0,C)W < 0, and

rx(l,C) + ry(l,C)kC>0,

for all C edQ.

Set i>l(C,D) = ujhS(D)D, where w M is defined by

{ Z - J + sin0(£>), if 0 ^ 6 ^ s i n " 1 {6)

l{25 - sin (9(D))/(J + fc(sin 6{D) - 5)/S, if s in" 1 (6)^6^ s i n" 1 (25)

k, otherwise,

Set V°(CM>) = wo,«(C7)C + (-l)"+1e%(C), where wo,a is defined by

{ /, i f O ^ S ^ s i n " 1 ^ )

1(26 - s i n 8 ( C ) ) / 6 - k ( s m 6 ( C ) - 6)/5, if s i n " 1 ( 6 ) ^ 0 ^ s i n " 1 (26)

—k, otherwise.

Set *S(C,D) = (4>°s(C,D),i)l(C,D)) for all (C,D) £ 8A. It follows that * is the
restriction to d A of a strongly inwardly pointing vector field on A for e > 0 sufficiently
small and 5 £ (0,60/2).

By choosing 6 > 0 small enough we may extend f j to A as in the previous
argument, to obtain the contradiction that d(j, Q,0) = 0. Thus rx(0, C) ^ t(C)rx(\, C)
for all C £ 5O(0). Thus r satisfies (2.10) as required. D

The proof that the Picard, respectively Neumann, boundary conditions are com-
patible if and only if (2.8), respectively (2.9), is satisfied is simpler, follows similar lines
and hence is omitted.
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REMARK 2.12. Let n = 1 and suppose there exist lower and upper solutions a and
/3, a(x) < P(x) for all x in [0,1]. Set H = {(x,y): a{x) < y < (3(x),x € [0,1]}, then
fi is an admissible bounding set for (1.1) since we may set

r(x, y) = {y- a(x))(y - j3(x)).

Then conditions (2.8), (2.9), and (2.10) become

(2.11) a(0) «S A </3(0), a(l) ^ B

(2.12) a'(0) > A

and

(2.13) a(0) = a(
(2.14) a ' (0)>a ' (

respectively.

REMARK 2.13. It is not difficult to construct examples to show that some compati-
blity assumptions of this kind are necessary to guarantee existence. In the following
two examples g is not strongly compatible since condition (2.4) fails. In the first
there is a solution y of (1.1) and (1.2) satisfying (x,y(x)) e fi = {{x,y) € R2: x e
[0,1], a(x) ^ y(x) ^ P(x)} where a and f3 are upper and lower solutions for (1.1)
given below (see [10]). In the second example there are no such solutions. We choose
R > 0 and g e C([-R, R}2 x R2; R2) such that G((C, D); (P, Q)) = G((C, D); (S, T))
for all ((C,£>);(P,Q)),((C,£));(S,T)) £ [~R,R]2 x R 2 , 0 ^ 0 on d(-R,R)2 and
d ( ^ , ( - f l , / ? ) 2 ,0 j = 0; Q is independent of the choice of strongly inwardly pointing
vector field ^ . Let / be identically zero and —a = R = f3. For this choice of / , a,

and (3 it is easy to see that fi is an admissible bounding set for (1.1).

For the first example we choose G so that g((C, D); (P, Q)) = 0, for some (C, D) €
{—R,R) . For the second example we choose G so that g ^ 0 for any (C, D) G

3. THE MAIN RESULT

THEOREM 3 . 1 . Let f be admissible, tt be an admissible bounding set for (1.1)
and let g € C(A x R2n;R2") be compatible with €1. Then problem (1.1) and (1.2)
has a solution y with (x,y) G ft, for all x € [0,1].

PROOF: We assume first that r"/ > 0 when r = 0 = r'. We use Schauder
degree theory and need the following family of functions to construct a homotopy.

https://doi.org/10.1017/S0004972700030926 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700030926
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Choose R > 0 and e <E (0,1) such that B2e C ft(x) C BR for all x <E [0,1]. Let
/ ieC(R n ; [0 ,1]) satisfy

\ 1, if \y\ > 2e,

(3.1) fx(x,y,p) = Xf(x,y,p) + (1 - X)h(y)\f\n(x,y) and

(3.2) gx(x,y,p) = L(x,y)fx(x,y/L(x,y),p/L(x,y))

where 1/ is given in (1.6). Thus gx is continuous, fx=gx in fi x R n and it suffices
to find a solution y of (3.2) and (1.2) with A = 1 and (x,y) € fi. Let II = {y £

C^fO, l ] ;R n ) : \y\ < R and \y'\ < M}, where M is chosen below. Let S = II x A .
For i / e C ' d O , l ] ;R n ) , we set

T(gx(y))(x) = - f G(x,t)gx(t,y(t),y'(t))dt.
Jo

If (?/, C , D ) e E is a solution of

(3.3) (y(x) - T(9l(y))) - w(x, C, D), g((C, D); (y'(Q), y'(l))) = 0,

we show that (x, y) € ft- Thus, by the definition of T and gx, problem (1.1) and (1.2)
has a solution y with (x, y) € fi if and only if (y, C, D) is a solution of (3.3) in £ . We
choose M as follows. By continuity, L ^ I on [0,1] x BR, for some / ^ 1. Set

c = sup{|n(z, j/)| : (a;, y) € fi}.

Thus |5A| *C c<t>{\p\) and |flA| ̂  2(C + c/e){yTf + \p\2) + Kl2, for all (x,y) € fi. By

Hartman [9, Lemma 5.2, p.429] there is M such that solutions y of

y" = gx(x,y,y')e [0,1]

and (1.2) with (a;, y) € fi satisfy |?/'| < M. To show that (3.3) has a solution we use
Schauder degree theory. Define Hi: [0,1] x S ->• (^([0,1]; R") x R" for i = 1, 2, 3, by

(a;) = {y(x)-T(9l(y))(x) - w(x,C,D), S(y,C,D,X))

H2(X, (y, C, D))(x) = {y(x) - T(gx(y))(x) - w(x, C, D), g(C, £>)) and

H3(X, (y, C, D))(x) = (y(x) - X(T(go(y))(x) - w(x, C, D)), G(C, £>)).

where S(y, C, D, A) = g((C, D); X(y'(0),»'(!)) + (1 - A)*(C, D)) .

https://doi.org/10.1017/S0004972700030926 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700030926


[11] ODE systems with nonlinear boundary conditions 207

We show that either there is a solution to our problem or the above functions Hi
define homotopies.

Suppose Hi(X,{y,C,D)) = 0 has a solution (y,C,D) £ 9 S . By the choice of
M, \y'\ < M. Suppose y € 911. By the choice of R there is t e (0,1) such that
\y{t)\ = R and L(t) > 1. As L(0) = 1 = L(l) and L is continuous, there is t0 e
(0,1) such that L has a maximum IQ ^ / say, at io- Let z(x) = y(x)/lo. Thus
(x,z) E n for all x e [0,1] and (to,y(to)) € Oil. Thus r(to,z) = 0, r'(to,z,z') = 0
and r"f(to,z,z') > 0, a contradiction, and y ^ 911. Since y(0) = C, y(l) = D and
(C,D) € A it follows that (x,y) £ U for all x e [0,1]. Suppose 2/(0) = C 6 90(0).
If A = 1, then (y,C,D) is a solution to our problem, as required. If 0 ^ A < 1, then
r(0,C) = 0 and r'(0,C,y') ^ 0 so r'(0,C, Ajy'(O) + (I - X)ip°(C,D)) < 0, and thus
g((C, D); A(j/'(0), j/'(l)) + (1 - A)*(C,D)) ^ 0, a contradiction. A similar argument
shows that j/(l) = D $ 9fi(l). Thus HX(X, (y, C, D)) ^ 0 for any (y, C, D) € 9E.

Suppose H2{X,(y,C,D)) = 0 has a solution (y,C,D) e 9S . Suppose y e 911.
Since |j/ ' | < M, |j/(t)| = i? for some t € (0,1). As above L has a maximum l0 > 1 at
io 6 (0,1) and by setting z(x) = y(x)/lo we again get a contradiction, r(to,z) =
0, r'(to,z,z') = 0 and r"gx{t0, z, z') > 0, since ry(0,z)(n(to,z)h(z)\f(tQ,z,z')\-
f(to,z,z')) > 0, by condition (5) of the definition of admissibility of Ct. Now
Q{C,D) / 0 o n 9 A s o f f 2 / 0 on 9S .

Suppose i/3(A, (y,C,D)) — 0 has a solution (y,C,D) e 9S . By the above argu-
ments it suffices to show that there is no t € (0,1) such that \y(t)\ — R. If such a t
exists then A > 0, y(tfy'(t) = 0 and y'(*)2 + y"{tfy(t) > y'{tf + XI \f\ \y(t)\ > 0,
since. n(t,y/l)Ty ^ \y\, where I = L(t,y(t)) > 1. This is a contradiction, so H3 / 0 on
9E.

By the homotopy invariance of Schauder degree

d(Hi(X, •), S , 0) = constant

for all A € [0,1] and i = 1, 2,3. In particular,

Thus there is solution in E of Hi(l, (y,C,D)) = 0, and by the above arguments y is
the required solution of (1.1) and (1.2).

If r"f ^ 0 when r = 0 = r', consider the sequence of problems where / is replaced
by / + y/n • By the above argument there exists a sequence of solutions yn of these
which will have a subsequence, convergent to the required solution. U

Theorem 3.1 includes some well known results for the Picard, the periodic and
the Neumann boundary conditions as special cases; see for example, Bebernes [2], Be-
bernes and Schmitt [1], Habets and Schmitt [5], Gaines and Mawhin [3], Knobloch [6],
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Knobloch and Schmitt [7], Lan [8] and Mawhin [9]. In particular [11, Theorems 3.2,
3.4 and 3.6] follow immediately from Theorem 3.1; see [11] for more detailed comments.
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