PINCHING THEOREMS FOR A COMPACT MINIMAL SUBMANIFOLD IN A COMPLEX PROJECTIVE SPACE

MAYUKO KON

(Received 28 May 2007)

Abstract

We give a formula for the Laplacian of the second fundamental form of an n-dimensional compact minimal submanifold M in a complex projective space $C P^{m}$. As an application of this formula, we prove that M is a geodesic minimal hypersphere in $C P^{m}$ if the sectional curvature satisfies $K \geq 1 / n$, if the normal connection is flat, and if M satisfies an additional condition which is automatically satisfied when M is a $C R$ submanifold. We also prove that M is the complex projective space $C P^{n / 2}$ if $K \geq 3 / n$, and if the normal connection of M is semi-flat.

2000 Mathematics subject classification: 53B25, 53C40, 53B35, 53C55.
Keywords and phrases: minimal submanifold, complex projective space, sectional curvature, flat normal connection, semi-flat normal connection.

1. Introduction

The theory of submanifolds in a complex projective space $C P^{m}$ is one of the most interesting objects in differential geometry. We have three typical classes of submanifolds in $C P^{m}$, complex submanifolds, totally real submanifolds and $C R$ submanifolds, according to the behavior of the tangent bundle of a submanifold with respect to the action of the almost complex structure of the ambient manifold $C P^{m}$. For these submanifolds, there are many interesting results (see [1, 6, 12]).

In the present paper, we first study general submanifolds in a complex projective space $C P^{m}$ of constant holomorphic sectional curvature 4 , and give the Laplacian of the second fundamental form of an n-dimensional minimal submanifold M in $C P^{m}$, which corresponds to a formula for the Laplacian of the second fundamental form of a minimal submanifold in a unit sphere given by Simons [9].

Moreover, we prepare some inequalities for the second fundamental form which are useful to prove pinching theorems. Based on these results we study an n-dimensional compact minimal submanifold M in $C P^{m}$ whose sectional curvature K satisfies $K \geq 1 / n$. In particular, we prove that if the sectional curvature K of an n-dimensional compact minimal $C R$ submanifold M in $C P^{m}$ with flat normal connection satisfies

[^0]$K \geq 1 / n$, then M is the geodesic minimal hypersphere in $C P^{m}$. The geodesic minimal hypersphere is given by $\pi\left(S^{1}(\sqrt{1 / 2 m}) \times S^{2 m-1}(\sqrt{(2 m-1) / 2 m})\right)$ in $C P^{m}$, where $\pi: S^{2 m+1} \longrightarrow C P^{m}$ is the Hopf fibration and $S^{k}(r)$ is a k-dimensional sphere (see [10]).

This is a generalization of the result in Kon [4] for a compact real minimal hypersurface M in $C P^{m}$.

We also prove that if the sectional curvature K of an n-dimensional compact minimal submanifold M in $C P^{m}$ satisfies $K \geq 3 / n$, then M is the complex projective space $C P^{n / 2}$ under the assumption that the normal connection of M is semi-flat.

The concept of a semi-flat normal connection of a submanifold in a complex projective space is closely related to that of a flat normal connection of a submanifold in a sphere.

2. Preliminaries

Let \tilde{M} denote a Kähler manifold of complex dimension m (real dimension $2 m$). We denote by J the almost complex structure of \tilde{M}. The Hermitian metric of \tilde{M} is denoted by g.

Let M be a real n-dimensional Riemannian manifold immersed in \tilde{M}. We denote by the same g the Riemannian metric on M induced from that of \tilde{M}. We denote by $\tilde{\nabla}$ the Levi-Civita connection in \tilde{M} and by ∇ the connection induced on M. Then the Gauss and Weingarten formulas are given respectively by

$$
\tilde{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y), \quad \tilde{\nabla}_{X} V=-A_{V} X+D_{X} V,
$$

for any vector fields X and Y tangent to M and any vector field V normal to M, where D denotes the normal connection. A normal vector field V on M is said to be parallel if $D_{X} V=0$ for any vector field X tangent to M. We call both A and B the second fundamental form of M that are related by $g(B(X, Y), V)=g\left(A_{V} X, Y\right)$.

For the second fundamental form B and A, we define ∇B and ∇A, the covariant derivative of the second fundamental form, by

$$
\begin{gathered}
\left(\nabla_{X} B\right)(Y, Z)=D_{X}(B(Y, Z))-B\left(\nabla_{X} Y, Z\right)-B\left(Y, \nabla_{X} Z\right), \\
\left(\nabla_{X} A\right)_{V} Y=\nabla_{X}\left(A_{V} Y\right)-A_{D_{X} V} Y-A_{V}\left(\nabla_{X} Y\right) .
\end{gathered}
$$

Then we have $g\left(\left(\nabla_{X} B\right)(Y, Z), V\right)=g\left(\left(\nabla_{X} A\right)_{V} Y, Z\right)$. The mean curvature vector field μ of M is defined to be $\mu=(1 / n) \operatorname{tr} B$, where $\operatorname{tr} B$ is the trace of B. If $\mu=0$, then M is said to be minimal.

For any vector field X tangent to M, we put

$$
J X=P X+F X
$$

where $P X$ is the tangential part of $J X$ and $F X$ is the normal part of $J X$. For any vector field V normal to M, we put

$$
J V=t V+f V
$$

where $t V$ is the tangential part of $J V$ and $f V$ is the normal part of $J V$. Then P and f are skew-symmetric with respect to g and $g(F X, V)=-g(X, t V)$. We also have $P^{2}=-I-t F, F P+f F=0, P t+t f=0$ and $f^{2}=-I-F t$.

Next we define the covariant derivatives of P, F, t and f by $\left(\nabla_{X} P\right) Y=\nabla_{X}(P Y)-$ $P \nabla_{X} Y,\left(\nabla_{X} F\right) Y=D_{X}(F Y)-F \nabla_{X} Y,\left(\nabla_{X} t\right) V=\nabla_{X}(t V)-t D_{X} V$ and $\left(\nabla_{X} f\right) V=$ $D_{X}(f V)-f D_{X} V$, respectively. We then have $\left(\nabla_{X} P\right) Y=A_{F Y} X+t B(X, Y)$, $\left(\nabla_{X} F\right) Y=-B(X, P Y)+f B(X, Y),\left(\nabla_{X} t\right) V=-P A_{V} X+A_{f V} X$ and $\left(\nabla_{X} f\right) V=$ $-F A_{V} X-B(X, t V)$.

We denote by $T_{x}(M)$ and $T_{x}(M)^{\perp}$ the tangent space and the normal space of M at x, respectively.

Definition 2.1. A submanifold M in a Kähler manifold \tilde{M} with almost complex structure J is called a $C R$ submanifold in \tilde{M} if there exists a differentiable distribution $\mathcal{D}: x \longrightarrow \mathcal{D}_{x} \subset T_{x}(M)$ on M satisfying the following conditions:
(i) $\quad H$ is holomorphic, that is $J \mathcal{D}_{x}=\mathcal{D}_{x}$ for each $x \in M$; and
(ii) the complementary orthogonal distribution $\mathcal{D}^{\perp}: x \longrightarrow \mathcal{D}_{x}^{\perp} \subset T_{x}(M)$ is antiinvariant, that is $J \mathcal{D}_{x}^{\perp} \subset T_{x}(M)^{\perp}$ for each $x \in M$.
In the following, we put $h=\operatorname{dim} \mathcal{D}_{x}, q=\operatorname{dim} \mathcal{D}_{x}^{\perp}$ and $\operatorname{codim} M=2 m-n=p$. If $q=0$, then a $C R$ submanifold M is a complex submanifold in \tilde{M}, and if $h=0$, then M is a totally real submanifold in \tilde{M}. If $p=q$, then a $C R$ submanifold M is called a generic submanifold. Any real hypersurface is a generic submanifold.

We use the following theorem (see [12, p. 217]).
THEOREM 2.2. In order for a submanifold M in a Kähler manifold \tilde{M} to be a $C R$ submanifold, it is necessary and sufficient that $F P=0$.

We suppose that the ambient manifold \tilde{M} is a complex projective space $C P^{m}$ of constant holomorphic sectional curvature 4 . The Riemannian curvature tensor \tilde{R} of $C P^{m}$ is given by

$$
\begin{align*}
\tilde{R}(X, Y) Z= & g(Y, Z) X-g(X, Z) Y+g(J Y, Z) J X \\
& -g(J X, Z) J Y+2 g(X, J Y) J Z, \tag{2.1}
\end{align*}
$$

for any vector fields X, Y and Z of $C P^{m}$. Thus the equation of Gauss and the equation of Codazzi are given respectively by

$$
\begin{aligned}
R(X, Y) Z= & g(Y, Z) X-g(X, Z) Y+g(P Y, Z) P X \\
& -g(P X, Z) P Y+2 g(X, P Y) P Z \\
& +A_{B(Y, Z)} X-A_{B(X, Z)} Y, \\
\left(\nabla_{X} B\right)(Y, Z)-\left(\nabla_{Y} B\right)(X, Z)= & g(P Y, Z) F X-g(P X, Z) F Y+2 g(X, P Y) F Z .
\end{aligned}
$$

We define the curvature tensor R^{\perp} of the normal bundle of M by

$$
R^{\perp}(X, Y) V=D_{X} D_{Y} V-D_{Y} D_{X} V-D_{[X, Y]} V
$$

where X and Y are vector fields tangent to M and V is a vector field normal to M. Then we have the equation of Ricci:

$$
\begin{aligned}
& g\left(R^{\perp}(X, Y) U, V\right)+g\left(\left[A_{V}, A_{U}\right] X, Y\right) \\
& \quad=g(F Y, U) g(F X, V)-g(F X, U) g(F Y, V)+2 g(X, P Y) g(f U, V)
\end{aligned}
$$

where $\left[A_{V}, A_{U}\right]=A_{V} A_{U}-A_{U} A_{V}$. If the normal curvature tensor R^{\perp} of M satisfies $R^{\perp}(X, Y) V=0$ for any vector fields X and Y tangent to M and any vector field V normal to M, then the normal connection of M is said to be flat. If R^{\perp} satisfies $R^{\perp}(X, Y) V=2 g(X, P Y) f V$, then the normal connection of M is said to be semi-flat.

In the following, we denote by A_{a} the second fundamental form in the direction of v_{a}, where $\left\{v_{1}, \ldots, v_{p}\right\}$ is an orthonormal basis for $T_{x}(M)^{\perp}, p=2 m-n$. We denote by $|\cdot|$ the length of the tensor. From the equation of Ricci, we have the following.

Lemma 2.3. Let M be an n-dimensional submanifold in $C P^{m}$. If the normal connection of M is flat, then

$$
\begin{aligned}
\sum_{a, b}\left|\left[A_{a}, A_{b}\right]\right|^{2}= & 2 \sum_{a, b}\left(g\left(t v_{a}, t v_{a}\right) g\left(t v_{b}, t v_{b}\right)-g\left(t v_{a}, t v_{b}\right)^{2}\right) \\
& -8 \sum_{a} g\left(t f v_{a}, t f v_{a}\right)+4 \sum_{i, a} g\left(P e_{i}, P e_{i}\right) g\left(f v_{a}, f v_{a}\right), \\
\sum_{i, a} g\left(\left[A_{f a}, A_{a}\right] e_{i}, P e_{i}\right)= & 2 \sum_{a} \operatorname{tr} A_{a} A_{f a} P \\
= & 2\left(\sum_{a} g\left(t f v_{a}, t f v_{a}\right)-\sum_{i, a} g\left(P e_{i}, P e_{i}\right) g\left(f v_{a}, f v_{a}\right)\right), \\
\sum_{a, b} g\left(\left[A_{a}, A_{b}\right] t v_{a}, t v_{b}\right)= & \sum_{a, b}\left(g\left(A_{a} t v_{b}, A_{b} t v_{a}\right)-g\left(A_{a} t v_{a}, A_{b} t v_{b}\right)\right) \\
= & \sum_{a, b}\left(g\left(t v_{a}, t v_{a}\right) g\left(t v_{b}, t v_{b}\right)-g\left(t v_{a}, t v_{b}\right)^{2}\right) \\
& -2 \sum_{a} g\left(t f v_{a}, t f v_{a}\right),
\end{aligned}
$$

where we have put $A_{f a}=A_{f v_{a}}$.
Lemma 2.4. Let M be an n-dimensional submanifold in $C P^{m}$. If the normal connection of M is semi-flat, then

$$
\begin{gathered}
\sum_{a, b}\left|\left[A_{a}, A_{b}\right]\right|^{2}=2 \sum_{a, b}\left(g\left(t v_{a}, t v_{a}\right) g\left(t v_{b}, t v_{b}\right)-g\left(t v_{a}, t v_{b}\right)^{2}\right) \\
\sum_{i, a} g\left(\left[A_{f a}, A_{a}\right] e_{i}, P e_{i}\right)=2 \sum_{a} g\left(t f v_{a}, t f v_{a}\right) \\
\sum_{a, b} g\left(\left[A_{a}, A_{b}\right] t v_{a}, t v_{b}\right)=\sum_{a, b}\left(g\left(t v_{a}, t v_{a}\right) g\left(t v_{b}, t v_{b}\right)-g\left(t v_{a}, t v_{b}\right)^{2}\right) .
\end{gathered}
$$

In the following we give an example of a compact $C R$ submanifold in $C P^{m}$ with semi-flat normal connection.

Example 1. Let $S^{2 m+1}$ be a $(2 m+1)$-dimensional unit sphere and N be a $(n+$ 1)-dimensional submanifold immersed in $S^{2 m+1}$. With respect to the Hopf fibration $\pi: S^{2 m+1} \longrightarrow C P^{m}$, we consider the following commutative diagram (see [5, 8, 12]):

We denote by (ϕ, ξ, η, G) the contact metric structure on $S^{2 m+1}$. The horizontal lift with respect to the connection η will be denoted by $*$. Then $(J X)^{*}=\phi X^{*}$ and $G\left(X^{*}, Y^{*}\right)=g(X, Y)^{*}$ for any vectors X and Y tangent to $C P^{m}$. A submanifold N in $S^{2 m+1}$ is tangent to the totally geodesic fibre of π and the structure vector field ξ is tangent to N.

Let α be the second fundamental form of N in $S^{2 m+1}$. Then we have the relations of the second fundamental form α of N and B of M :

$$
\begin{gathered}
\left(\nabla_{X^{*}} \alpha\right)\left(Y^{*}, Z^{*}\right)=\left[\left(\nabla_{X} B\right)(Y, Z)+g(P X, Y) F Z+g(P X, Z) F Y\right]^{*}, \\
\left(\nabla_{X^{*}} \alpha\right)\left(Y^{*}, \xi\right)=[f B(X, Y)-B(X, P Y)-B(Y, P X)]^{*}, \\
\left(\nabla_{X^{*}} \alpha\right)(\xi, \xi)=-2(F P X)^{*},
\end{gathered}
$$

for any vectors X, Y and Z tangent to M. From the third equation, we see that if the second fundamental form α of N is parallel, then $F P=0$ and M is a $C R$ submanifold of $C P^{m}$ by Theorem 2.2.

Let K^{\perp} be the curvature tensor of the normal bundle of N. Then

$$
\begin{gathered}
G\left(K^{\perp}\left(X^{*}, Y^{*}\right) V^{*}, U^{*}\right)=\left[g\left(R^{\perp}(X, Y) V, U\right)-2 g(X, P Y) g(f V, U)\right]^{*}, \\
G\left(K^{\perp}\left(X^{*}, \xi\right) V^{*}, U^{*}\right)=g\left(\left(\nabla_{X} f\right) V, U\right)^{*}
\end{gathered}
$$

for any vectors X and Y tangent to M and any vectors V and U normal to M. Therefore, the normal connection of N in $S^{2 m+1}$ is flat if and only if the normal connection of M is semi-flat and $\nabla f=0$ (see [7, 8, 12]).

We put

$$
N=S^{m_{1}}\left(r_{1}\right) \times \cdots \times S^{m_{k}}\left(r_{k}\right), \quad n+1=\sum_{i=1}^{k} m_{i}, \quad 1=\sum_{i=1}^{k} r_{i}^{2}
$$

where m_{1}, \ldots, m_{k} are odd numbers. Then $n+k$ is also odd. The second fundamental form α of N is parallel in $S^{2 m+1}$. We can see that $M=\pi(N)$ is a generic submanifold in $C P^{(n+k-1) / 2}$ with flat normal connection. $\pi\left(S^{1}\left(r_{1}\right) \times S^{n}\left(r_{2}\right)\right)$ is called a geodesic
hypersphere in $C P^{(n+1) / 2}$ (see [10]). Moreover, M is a $C R$ submanifold in $C P^{m}$ ($m>(n+k-1) / 2$) with semi-flat normal connection and $\nabla f=0$.

If $r_{i}=\left(m_{i} /(n+1)\right)^{1 / 2}(i=1, \ldots, k)$, then M is a generic minimal submanifold in $C P^{(n+k-1) / 2}$. Then we have $|A|^{2}=\sum_{a} \operatorname{tr} A_{a}^{2}=(n-1) q, q=k-1$.

If M is a complex submanifold in $C P^{m}$, the normal connection of M is semi-flat if and only if M is totally geodesic (see [3]).

3. Minimal submanifolds with flat normal connection

In this section, we give a pinching theorem for n-dimensional compact minimal submanifolds in a complex projective space $C P^{m}$ with flat normal connection. For the proof of a theorem, we first give the Simons' type integral formula for a compact minimal submanifold in $C P^{m}$ (see [9]).

We use the following lemma [2, p. 81].
Lemma 3.1. Let M be a minimal submanifold in a Riemannian manifold \bar{M}. Then

$$
\begin{aligned}
& \left(\nabla^{2} B\right)(X, Y)=\sum_{i}\left(\nabla_{e_{i}} \nabla_{e_{i}} B\right)(X, Y) \\
& \quad=\sum_{i}\left(\left(R\left(e_{i}, X\right) B\right)\left(e_{i}, Y\right)+\left(\bar{\nabla}_{X}\left(\bar{R}\left(e_{i}, Y\right) e_{i}\right)^{\perp}\right)^{\perp}+\left(\bar{\nabla}_{e_{i}}\left(\bar{R}\left(e_{i}, X\right) Y\right)^{\perp}\right)^{\perp}\right)
\end{aligned}
$$

where $\left\{e_{1}, \ldots, e_{n}\right\}$ denotes an orthonormal basis of $T_{x}(M)$, and $\bar{\nabla}$ is the Levi-Civita connection in \bar{M}.

We compute the equation in Lemma 3.1 for an n-dimensional minimal submanifold M in a complex projective space $C P^{m}$ of constant holomorphic sectional curvature 4 . Since $C P^{m}$ is locally symmetric, using (2.1),

$$
\begin{aligned}
& \sum_{i}\left(\bar{\nabla}_{X}\left(\bar{R}\left(e_{i}, Y\right) e_{i}\right)^{\perp}\right)^{\perp} \\
&= \sum_{i}\left(\bar{R}\left(B\left(X, e_{i}\right), Y\right) e_{i}+\bar{R}\left(e_{i}, B(X, Y)\right) e_{i}\right. \\
&\left.\quad+\bar{R}\left(e_{i}, Y\right) B\left(X, e_{i}\right)\right)^{\perp}-\sum_{i} B\left(X,\left(\bar{R}\left(e_{i}, Y\right) e_{i}\right)^{T}\right), \\
&= 3\left(f B(X, P Y)+F t B(X, Y)-B\left(X, P^{2} Y\right)+F A_{F Y} X\right), \\
& \sum_{i}\left(\bar{\nabla}_{e_{i}}\left(\bar{R}\left(e_{i}, X\right) Y\right)^{\perp}\right)^{\perp} \\
&= \sum_{i}\left(\bar{R}\left(B\left(e_{i}, e_{i}\right), X\right) Y\right. \\
& \quad\left.+\bar{R}\left(e_{i}, B\left(e_{i}, X\right)\right) Y+\bar{R}\left(e_{i}, X\right) B\left(e_{i}, Y\right)\right)^{\perp}-\sum_{i} B\left(e_{i},\left(\bar{R}\left(e_{i}, X\right) Y\right)^{T}\right) \\
&= F A_{F X} Y-F A_{F Y} X+f B(X, P Y)+2 f B(P X, Y) \\
& \quad-3 B(P X, P Y)-2 \sum_{i} g\left(A_{F e_{i}} e_{i}, X\right) F Y-\sum_{i} g\left(A_{F e_{i}} e_{i}, Y\right) F X .
\end{aligned}
$$

Thus we obtain

$$
\begin{aligned}
g\left(\nabla^{2} B, B\right)= & \sum_{i, j, k} g\left(\left(\nabla_{e_{i}} \nabla_{e_{i}} B\right)\left(e_{j}, e_{k}\right), B\left(e_{j}, e_{k}\right)\right) \\
= & \sum_{i, j, a} g\left(\left(R\left(e_{i}, e_{j}\right) A\right)_{a} e_{i}, A_{a} e_{j}\right)+3\left(\sum_{a} \operatorname{tr} A_{F t v_{a}} A_{a}\right. \\
& -2 \sum_{a} \operatorname{tr} A_{a} A_{f a} P-\sum_{a} \operatorname{tr} P^{2} A_{a}^{2}+\sum_{a} \operatorname{tr}\left(A_{a} P\right)^{2} \\
& +\sum_{a, b} g\left(A_{a} t v_{a}, t v_{b}\right) \operatorname{tr} A_{b} \\
& \left.+\sum_{a, b}\left(g\left(A_{a} t v_{b}, A_{b} t v_{a}\right)-g\left(A_{a} t v_{a}, A_{b} t v_{b}\right)\right)\right)
\end{aligned}
$$

On the other hand,

$$
\begin{gathered}
\sum_{a} \operatorname{tr} A_{F t v_{a}} A_{a}=-\sum_{a} \operatorname{tr} A_{a}^{2}+\sum_{a} \operatorname{tr} A_{f a}^{2} \\
-\sum_{a} \operatorname{tr} P^{2} A_{a}^{2}+\sum_{a} \operatorname{tr}\left(A_{a} P\right)^{2}=\frac{1}{2} \sum_{a}\left|\left[P, A_{a}\right]\right|^{2} .
\end{gathered}
$$

Hence we have the following lemma.
Lemma 3.2. Let M be an n-dimensional minimal submanifold in $C P^{m}$. Then

$$
\begin{aligned}
g\left(\nabla^{2} B, B\right)= & g\left(\nabla^{2} A, A\right) \\
= & \sum_{i, j, a} g\left(\left(R\left(e_{i}, e_{j}\right) A\right)_{a} e_{i}, A_{a} e_{j}\right) \\
& +3\left(-\sum_{a} \operatorname{tr} A_{a}^{2}+\sum_{a} \operatorname{tr} A_{f a}^{2}-2 \sum_{a} \operatorname{tr} A_{a} A_{f a} P+\frac{1}{2} \sum_{a}\left|\left[P, A_{a}\right]\right|^{2}\right. \\
& \left.+\sum_{a, b}\left(g\left(A_{a} t v_{b}, A_{b} t v_{a}\right)-g\left(A_{a} t v_{a}, A_{b} t v_{b}\right)\right)\right)
\end{aligned}
$$

We prepare the following lemma.
Lemma 3.3. Let M be an n-dimensional minimal submanifold in $C P^{m}$. If U is a parallel section in the normal bundle of M, then

$$
\begin{aligned}
\operatorname{div}\left(\nabla_{t U} t U\right)= & (n-1) g(t U, t U)+3 g(P t U, P t U)-\sum_{a} g\left(A_{a} t U, A_{a} t U\right) \\
& +\operatorname{tr} A_{f U}^{2}-\operatorname{tr} A_{U}^{2}-2 \operatorname{tr} A_{U} A_{f U} P+\sum_{a} g\left(A_{U} t v_{a}, A_{U} t v_{a}\right) \\
& +\frac{1}{2}\left|\left[P, A_{U}\right]\right|^{2}
\end{aligned}
$$

Proof. For any vector field X on a Riemannian manifold, we generally have the equation [11]

$$
\begin{equation*}
\operatorname{div}\left(\nabla_{X} X\right)-\operatorname{div}((\operatorname{div} X) X)=S(X, X)+\frac{1}{2}\left|L_{X} g\right|^{2}-|\nabla X|^{2}-(\operatorname{div} X)^{2} \tag{3.1}
\end{equation*}
$$

where S denotes the Ricci tensor and $\left(L_{X} g\right)(Y, Z)=g\left(\nabla_{Y} X, Z\right)+g\left(\nabla_{Z} X, Y\right)$.
Suppose that U is a parallel section of the normal bundle of M. From the equation of Gauss,

$$
S(t U, t U)=(n-1) g(t U, t U)+3 g(P t U, P t U)-\sum_{a} g\left(A_{a} t U, A_{a} t U\right)
$$

On the other hand, since $\left(\nabla_{X} t\right) V=-P A_{V} X+A_{f V} X$ for any V normal to M, we have $\nabla_{X}(t U)=-P A_{U} X+A_{f U} X$. This implies that $\operatorname{div}(t U)=\operatorname{tr} A_{f U}=0$. Also

$$
\begin{gathered}
|\nabla t U|^{2}=\operatorname{tr} A_{f U}^{2}+\operatorname{tr} A_{U}^{2}-2 \operatorname{tr} A_{U} A_{f U} P-\sum_{a} g\left(A_{U} t v_{a}, A_{U} t v_{a}\right) \\
\left|L_{t U} g\right|^{2}=\left|\left[P, A_{U}\right]\right|^{2}+4 \operatorname{tr} A_{f U}^{2}-8 \operatorname{tr} A_{U} A_{f U} P .
\end{gathered}
$$

Substituting these equations into (3.1), we have our lemma.
Lemma 3.4. Let M be an n-dimensional minimal submanifold in $C P^{m}$ with flat normal connection. Then

$$
\begin{aligned}
&-g\left(\nabla^{2} A, A\right)-2 \sum_{i, a} g\left(P e_{i}, P e_{i}\right) g\left(t v_{a}, t v_{a}\right)-2 \sum_{i} g\left(F P e_{i}, F P e_{i}\right) \\
&+\frac{1}{2}\left(\sum_{a} \operatorname{tr} A_{f a}^{2}+\sum_{a}\left|\left[P, A_{a}\right]\right|^{2}-4 \sum_{a} \operatorname{tr} A_{a} A_{f a} P\right) \\
&+\sum_{a, b}\left(g\left(t v_{a}, t v_{a}\right) g\left(t v_{b}, t v_{b}\right)-g\left(t v_{a}, t v_{b}\right)^{2}\right) \\
&= \sum_{a} \operatorname{tr} A_{a}^{2}-\sum_{i, j, a} g\left(\left(R\left(e_{i}, e_{j}\right) A\right)_{a} e_{i}, A_{a} e_{j}\right) \\
&+8 \sum_{i} g\left(F P e_{i}, F P e_{i}\right)-\frac{1}{2} \sum_{a} \operatorname{tr} A_{f a}^{2}-2 \sum_{a} \operatorname{div}\left(\nabla_{t v_{a}} t v_{a}\right)
\end{aligned}
$$

Proof. By a straightforward computation, we obtain

$$
\begin{align*}
& \sum_{a} g\left(t f v_{a}, t f v_{a}\right)=\sum_{a} g\left(P t v_{a}, P t v_{a}\right)=\sum_{i} g\left(F P e_{i}, F P e_{i}\right) \tag{3.2}\\
& \begin{array}{l}
\sum_{a, b}\left(g\left(t v_{a}, t v_{a}\right) g\left(t v_{b}, t v_{b}\right)-g\left(t v_{a}, t v_{b}\right)^{2}\right) \\
\quad=(n-1) \sum_{a} g\left(t v_{a}, t v_{a}\right)-\sum_{i, a} g\left(P e_{i}, P e_{i}\right) g\left(t v_{a}, t v_{a}\right) \\
\quad+\sum_{a} g\left(P t v_{a}, P t v_{a}\right)
\end{array}
\end{align*}
$$

Thus, using Lemmas 2.3 and 3.2,

$$
\begin{aligned}
-g\left(\nabla^{2} A, A\right)= & -\sum_{i, j, a} g\left(\left(R\left(e_{i}, e_{j}\right) A\right)_{a} e_{i}, A_{a} e_{j}\right)+3 \sum_{a} \operatorname{tr} A_{a}^{2}-3 \sum_{a} \operatorname{tr} A_{f a}^{2} \\
& +6 \sum_{a} \operatorname{tr} A_{a} A_{f a} P-\frac{3}{2} \sum_{a}\left|\left[P, A_{a}\right]\right|^{2}-2(n-1) \sum_{a} g\left(t v_{a}, t v_{a}\right) \\
& +2 \sum_{i, a} g\left(P e_{i}, P e_{i}\right) g\left(t v_{a}, t v_{a}\right)+4 \sum_{a} g\left(P t v_{a}, P t v_{a}\right) \\
& -\sum_{a, b}\left(g\left(t v_{a}, t v_{a}\right) g\left(t v_{b}, t v_{b}\right)-g\left(t v_{a}, t v_{b}\right)^{2}\right)
\end{aligned}
$$

Since the normal connection of M is flat, we can choose an orthonormal basis $\left\{v_{a}\right\}$ of $T(M)^{\perp}$ such that $D v_{a}=0$ for all a. Thus, from Lemma 3.3,

$$
\begin{aligned}
\operatorname{div}\left(\nabla_{t v_{a}} t v_{a}\right)= & (n-1) g\left(t v_{a}, t v_{a}\right)+3 g\left(P t v_{a}, P t v_{a}\right) \\
& +\operatorname{tr} A_{f a}^{2}-\operatorname{tr} A_{a}^{2}-2 \operatorname{tr} A_{a} A_{f a} P+\frac{1}{2}\left|\left[P, A_{a}\right]\right|^{2}
\end{aligned}
$$

From these equations, we have our assertion.
If M is compact, we have $\int_{M}|\nabla A|^{2}=-\int_{M} g\left(\nabla^{2} A, A\right)$ (see [9]). Therefore Lemma 3.4 implies the following.

THEOREM 3.5. Let M be an n-dimensional compact minimal submanifold in a complex projective space $C P^{m}$ with flat normal connection. Then

$$
\begin{aligned}
& \int_{M}\left(|\nabla A|^{2}-2 \sum_{i, a} g\left(P e_{i}, P e_{i}\right) g\left(t v_{a}, t v_{a}\right)-2 \sum_{i} g\left(F P e_{i}, F P e_{i}\right)\right. \\
& \quad+\frac{1}{2}\left(\sum_{a} \operatorname{tr} A_{f a}^{2}+\sum_{a}\left|\left[P, A_{a}\right]\right|^{2}-4 \sum_{a} \operatorname{tr} A_{a} A_{f a} P\right) \\
& \left.\quad+\sum_{a, b}\left(g\left(t v_{a}, t v_{a}\right) g\left(t v_{b}, t v_{b}\right)-g\left(t v_{a}, t v_{b}\right)^{2}\right)\right) \\
& = \\
& \quad \int_{M}\left(\sum_{a} \operatorname{tr} A_{a}^{2}-\sum_{i, j, a} g\left(\left(R\left(e_{i}, e_{j}\right) A\right)_{a} e_{i}, A_{a} e_{j}\right)\right. \\
& \left.\quad+8 \sum_{i} g\left(F P e_{i}, F P e_{i}\right)-\frac{1}{2} \sum_{a} \operatorname{tr} A_{f a}^{2}\right)
\end{aligned}
$$

We next consider the properties of some terms of the equation in Theorem 3.5.
Lemma 3.6. Let M be an n-dimensional submanifold in $C P^{m}$. Then

$$
|\nabla A|^{2} \geq 2 \sum_{i, a} g\left(P e_{i}, P e_{i}\right) g\left(t v_{a}, t v_{a}\right)+2 \sum_{i} g\left(F P e_{i}, F P e_{i}\right)
$$

Proof. We put

$$
T_{1}(X, Y, Z)=\left(\nabla_{X} B\right)(Y, Z)+g(P X, Y) F Z+g(P X, Z) F Y
$$

Then we obtain

$$
\begin{aligned}
\left|T_{1}\right|^{2}= & |\nabla B|^{2}+2 \sum_{i, a} g\left(P e_{i}, P e_{i}\right) g\left(t v_{a}, t v_{a}\right)+2 \sum_{i} g\left(F P e_{i}, F P e_{i}\right) \\
& +4 \sum_{i, j} g\left(\left(\nabla_{e_{i}} B\right)\left(P e_{i}, e_{j}\right), F e_{j}\right) .
\end{aligned}
$$

From the equation of Codazzi,

$$
\begin{aligned}
\sum_{i, j} g\left(\left(\nabla_{e_{i}} B\right)\left(P e_{i}, e_{j}\right), F e_{j}\right)= & \sum_{i, j} g\left(\left(\nabla_{e_{j}} B\right)\left(e_{i}, P e_{i}\right), F e_{j}\right) \\
& -\sum_{i, a} g\left(P e_{i}, P e_{i}\right) g\left(t v_{a}, t v_{a}\right)-\sum_{i} g\left(F P e_{i}, F P e_{i}\right) .
\end{aligned}
$$

Since B is symmetric and P is skew-symmetric, the first term on the right-hand side of the equation vanishes. So we have our assertion.

Lemma 3.7. Let M be an n-dimensional submanifold in $C P^{m}$ with parallel mean curvature vector field. If the equality

$$
|\nabla A|^{2}=2 \sum_{i, a} g\left(P e_{i}, P e_{i}\right) g\left(t v_{a}, t v_{a}\right)+2 \sum_{i} g\left(F P e_{i}, F P e_{i}\right)
$$

holds, then M is a CR submanifold.
Proof. By the proof of Lemma 3.6, the equation holds if and only if $T_{1}=0$. Suppose that $T_{1}=0$. Then

$$
\sum_{i} g\left(\left(\nabla_{e_{i}} B\right)\left(e_{i}, X\right), v_{a}\right)=g\left(F P X, v_{a}\right)
$$

for any X and v_{a}. On the other hand, since the mean curvature vector field is parallel, the equation of Codazzi implies that

$$
\sum_{i} g\left(\left(\nabla_{e_{i}} B\right)\left(e_{i}, X\right), v_{a}\right)=3 g\left(F P X, v_{a}\right)
$$

From these equations, we have $F P=0$. Then, from Theorem $2.2, M$ is a $C R$ submanifold.

Lemma 3.8. Let M be a n-dimensional submanifold of $C P^{m}$. Then

$$
\sum_{a} \operatorname{tr} A_{f a}^{2}+\sum_{a}\left|\left[P, A_{a}\right]\right|^{2}-4 \sum_{a} \operatorname{tr} A_{a} A_{f a} P \geq 0
$$

Proof. We put

$$
T_{2}(X, Y)=f B(X, Y)-B(X, P Y)-B(P X, Y)
$$

Then

$$
\begin{aligned}
\left|T_{2}\right|^{2} & =\sum_{i, j}\left|f B\left(e_{i}, e_{j}\right)-B\left(e_{i}, P e_{j}\right)-B\left(P e_{i}, e_{j}\right)\right|^{2} \\
& =\sum_{a} \operatorname{tr} A_{f a}^{2}+\sum_{a}\left|\left[P, A_{a}\right]\right|^{2}-4 \sum_{a} \operatorname{tr} A_{a} A_{f a} P
\end{aligned}
$$

Thus we have our inequality.
REMARK. In Example 1, when the mean curvature vector field of M in $C P^{m}$ is parallel, by Lemma 3.7, we see that the second fundamental form of a submanifold N in $S^{2 m+1}$ is parallel if and only if the second fundamental form M in $C P^{m}$ satisfies $T_{1}=0$ and $T_{2}=0$. We see that the submanifold $\pi\left(S^{m_{1}}\left(r_{1}\right) \times \cdots \times S^{m_{k}}\left(r_{k}\right)\right)$ in $C P^{m}$ satisfies $T_{1}=0$ and $T_{2}=0$.

THEOREM 3.9. Let M be an n-dimensional compact minimal submanifold in a complex projective space $C P^{m}$ with flat normal connection. If the second fundamental form A satisfies $\sum_{a} \operatorname{tr} A_{f a}^{2} \geq 16|F P|^{2}$, and if the sectional curvature K of M satisfies $K \geq 1 / n$, then M is the geodesic minimal hypersphere $\pi\left(S^{1}(\sqrt{1 / 2 m}) \times\right.$ $\left.S^{2 m-1}(\sqrt{(2 m-1) / 2 m})\right)$ in $C P^{m}$.

Proof. From Lemmas 3.6 and 3.8, we see that the left-hand side of the equation in Theorem 3.5 is non-negative. Next we prove that the right-hand side of this equation is non-positive.

Choosing an orthonormal basis $\left\{e_{i}\right\}$ of $T_{x}(M)$ such that $A_{a} e_{i}=h_{i}^{a} e_{i}, i=1, \ldots, n$,

$$
\begin{aligned}
\sum_{i, j} g\left(\left(R\left(e_{i}, e_{j}\right) A\right)_{a} e_{i}, A_{a} e_{j}\right)= & \sum_{i, j} g\left(R\left(e_{i}, e_{j}\right) A_{a} e_{i}, A_{a} e_{j}\right) \\
& -\sum_{i, j} g\left(A_{a} R\left(e_{i}, e_{j}\right) e_{i}, A_{a} e_{j}\right) \\
= & \frac{1}{2} \sum_{i, j}\left(h_{i}^{a}-h_{j}^{a}\right)^{2} K_{i j}
\end{aligned}
$$

where $K_{i j}$ denotes the sectional curvature of M with respect to the section spanned by e_{i} and e_{j}. Since $K_{i j} \geq 1 / n$, we obtain

$$
\sum_{i, j} g\left(\left(R\left(e_{i}, e_{j}\right) A\right)_{a} e_{i}, A_{a} e_{j}\right) \geq \frac{1}{2 n} \sum_{i, j}\left(h_{i}^{a}-h_{j}^{a}\right)^{2} \geq \operatorname{tr} A_{a}^{2}
$$

The left-hand side of this inequality is independent of the choice of an orthonormal basis $\left\{e_{i}\right\}$. Hence

$$
\sum_{a} \operatorname{tr} A_{a}^{2}-\sum_{i, j, a} g\left(\left(R\left(e_{i}, e_{j}\right) A\right)_{a} e_{i}, A_{a} e_{j}\right) \leq 0
$$

Consequently, Theorem 3.5 and Lemmas 3.6 and 3.8 imply that

$$
\begin{gather*}
|\nabla A|^{2}-2 \sum_{i, a} g\left(P e_{i}, P e_{i}\right) g\left(t v_{a}, t v_{a}\right)-2 \sum_{a} g\left(P t v_{a}, P t v_{a}\right)=0, \tag{3.4}\\
\sum_{a, b}\left(g\left(t v_{a}, t v_{a}\right) g\left(t v_{b}, t v_{b}\right)-g\left(t v_{a}, t v_{b}\right)^{2}\right)=0, \tag{3.5}\\
8 \sum_{a} g\left(F P e_{i}, F P e_{i}\right)-\frac{1}{2} \sum_{a} \operatorname{tr} A_{f a}^{2}=0 . \tag{3.6}
\end{gather*}
$$

By (3.4) and Lemma 3.7, M is a $C R$ submanifold. Thus, from (3.6), we have $A_{f a}=0$ for all v_{a}. On the other hand, (3.5) implies that $q=1$ or $q=0$.

Suppose that $q=1$. Using Lemma 2.3, we obtain

$$
\sum_{i, a} g\left(\left[A_{f a}, A_{a}\right] e_{i}, P e_{i}\right)=-2 h(p-1)=0 .
$$

When $p=1$, from the theorem in [4], M is a geodesic minimal hypersphere. When $h=0$, we have $n=q=1$ and $K=0$. This is a contradiction.

We next suppose that $q=0$. Then M is a complex submanifold and $n=h$. On the other hand, again using Lemma 2.3, we have $h p=0$, and hence $h=0$. This is a contradiction.

When M is a $C R$ minimal submanifold, by Theorem 2.2, we have $F P=0$. Hence the condition $\sum_{a} \operatorname{tr} A_{f a}^{2} \geq 16|F P|^{2}$ in Theorem 3.9 is automatically satisfied. So we have the following theorem.

THEOREM 3.10. Let M be an n-dimensional compact minimal $C R$ submanifold in a complex projective space $C P^{m}$ with flat normal connection. If the sectional curvature K of M satisfies $K \geq 1 / n$, then M is the geodesic minimal hypersphere $\pi\left(S^{1}(\sqrt{1 / 2 m}) \times S^{2 m-1}(\sqrt{(2 m-1) / 2 m})\right)$ in $C P^{m}$.

4. Minimal submanifolds with semi-flat normal connection

In this section we give pinching theorems for minimal submanifolds in $C P^{m}$ with semi-flat normal connection. First of all, using (3), (4) and Lemmas 2.4 and 3.2 we have the following lemma.

Lemma 4.1. Let M be an n-dimensional compact minimal submanifold in $C P^{m}$ with semi-flat normal connection. Then

$$
\begin{aligned}
& \int_{M}\left(|\nabla A|^{2}-2 \sum_{i, a} g\left(P e_{i}, P e_{i}\right) g\left(t v_{a}, t v_{a}\right)-2 \sum_{i} g\left(F P e_{i}, F P e_{i}\right)\right. \\
&+\frac{3}{2}\left(\sum_{a} \operatorname{tr} A_{f a}^{2}+\sum_{a}\left|\left[P, A_{a}\right]\right|^{2}-\sum_{a} 4 \operatorname{tr} A_{a} A_{f a} P\right) \\
&\left.+4 \sum_{i} g\left(F P e_{i}, F P e_{i}\right)\right) \\
&= \int_{M}\left(-\sum_{i, j, a} g\left(\left(R\left(e_{i}, e_{j}\right) A\right)_{a} e_{i}, A_{a} e_{j}\right)+3 \sum_{a} \operatorname{tr} A_{a}^{2}\right. \\
&-\frac{3}{2} \sum_{a} \operatorname{tr} A_{f a}^{2}-2(n-1) \sum_{a} g\left(t v_{a}, t v_{a}\right) \\
&\left.-\sum_{a, b}\left(g\left(t v_{a}, t v_{a}\right) g\left(t v_{b}, t v_{b}\right)-g\left(t v_{a}, t v_{b}\right)^{2}\right)\right)
\end{aligned}
$$

From this, we have the following theorem.
THEOREM 4.2. Let M be an n-dimensional compact minimal submanifold in a complex projective space $C P^{m}$ with semi-flat normal connection. If the sectional curvature K of M satisfies $K \geq 3 / n$, then M is the complex projective space $C P^{n / 2}$ in $C P^{m}$.

Proof. From Lemmas 3.6 and 3.8, we see that the left-hand side of the equation in Lemma 4.1 is non-negative. Next we prove that the right-hand side of this equation is non-positive.

Since $K_{i j} \geq 3 / n$, by a similar method in the proof of Theorem 3.9, we obtain

$$
-\sum_{i, j, a} g\left(\left(R\left(e_{i}, e_{j}\right) A\right)_{a} e_{i}, A_{a} e_{j}\right)+3 \sum_{a} \operatorname{tr} A_{a}^{2} \leq 0
$$

Consequently,

$$
\frac{3}{2} \sum_{a} \operatorname{tr} A_{f a}^{2}+2(n-1) \sum_{a} g\left(t v_{a}, t v_{a}\right)=0 .
$$

Thus, we obtain $A_{f a}=0$ for all v_{a} and $t=0$. Therefore M is a complex submanifold in $C P^{m}$ and $A_{a}=0$ for all v_{a}. Thus M is a real n-dimensional totally geodesic complex submanifold in $C P^{m}$, that is, $C P^{n / 2}$.

Next we give a pinching theorem for a compact minimal $C R$ submanifold in $C P^{m}$ with semi-flat normal connection.

THEOREM 4.3. Let M be a compact n-dimensional minimal $C R$ submanifold in a complex projective space $C P^{m}$ with semi-flat normal connection. If the sectional curvature K of M satisfies $K \geq(1 / n)$, then M is a totally geodesic complex projective space $C P^{n / 2}$ or a geodesic minimal hypersphere $\pi\left(S^{1}(\sqrt{1 /(n+1)}) \times\right.$ $S^{n}(\sqrt{n /(n+1)})$) of some $C P^{(n+1) / 2}$ in $C P^{m}$.

Proof. Since M is a $C R$ submanifold in $C P^{m}$, we can take an orthonormal basis $\left\{v_{a}\right\}$ of $T_{x}(M)^{\perp}$ such that $\left\{v_{1}, \ldots, v_{q}\right\}$ form an orthonormal basis of $F T_{x}(M)$ and $\left\{v_{q+1}, \ldots, v_{p}\right\}$ form an orthonormal basis of $f T_{x}(M)^{\perp}$.

If $q=0, M$ is a complex submanifold in $C P^{m}$. Then the normal connection of M is semi-flat if and only if M is a totally geodesic complex projective space $C P^{n / 2}$ by a theorem of Ishihara [3].

We next suppose that $q \geq 1$. Since the normal connection of M is semi-flat, we have $A_{f V} P X=0$ and $A_{f V} t U=\beta t U$ for any vector X tangent to M and any vectors U, V normal to M (see Chen [1, Lemmas 5.3 and 5.6]). Thus, by the minimality of M, we see that $\beta=0$ and $A_{f V}=0$.

Let V be in $F T(M)$. Then

$$
\begin{aligned}
g\left(f D_{X} V, f U\right) & =-g((\nabla f) V, f U) \\
& =g\left(F A_{V} X, f U\right)+g(B(X, t V), f U) \\
& =g\left(A_{f U} X, t V\right)=0
\end{aligned}
$$

This means that $F T(M)$ is parallel, that is, $D_{X} V$ is in $F T(M)$. Moreover, we have $R^{\perp}(X, Y) V=0$ for any $V \in F T(M)$. So we can choose an orthonormal basis $\left\{v_{\lambda}\right\}$ in such a way that $D_{X} v_{\lambda}=0, \lambda=1, \ldots, q$. We notice that $\nabla_{X} t v_{\lambda}=-P A_{\lambda} X$. Hence we have $\operatorname{div}\left(t v_{\lambda}\right)=-\operatorname{tr} P A_{\lambda}=0$ since P is skew-symmetric and A_{λ} is symmetric.

From Lemmas 2.4 and 3.2, we obtain

$$
\begin{aligned}
g\left(\nabla^{2} A, A\right)= & \sum_{i, j, \lambda} g\left(\left(R\left(e_{i}, e_{j}\right) A\right)_{\lambda} e_{i}, A_{\lambda} e_{j}\right) \\
& +3\left(-\sum_{a} \operatorname{tr} A_{\lambda}^{2}+\frac{1}{2} \sum_{a}\left|\left[P, A_{\lambda}\right]\right|^{2}\right)+3 q(q-1)
\end{aligned}
$$

On the other hand, Lemma 3.3 implies that

$$
\sum_{\lambda} \operatorname{div}\left(\nabla_{t v_{\lambda}} t v_{\lambda}\right)=(n-1) q-\sum_{\lambda} \operatorname{tr} A_{\lambda}^{2}+\frac{1}{2} \sum_{\lambda}\left|\left[P, A_{\lambda}\right]\right|^{2} .
$$

Using these equations,

$$
\begin{aligned}
- & g\left(\nabla^{2} A, A\right)-2 h q+\frac{1}{2} \sum_{\lambda}\left|\left[P, A_{\lambda}\right]\right|^{2}+q(q-1) \\
& =\sum_{\lambda} \operatorname{tr} A_{\lambda}^{2}-\sum_{i, j, \lambda} g\left(\left(R\left(e_{i}, e_{j}\right) A\right)_{\lambda} e_{i}, A_{\lambda} e_{j}\right)-2 \sum_{\lambda} \operatorname{div}\left(\nabla_{t v_{\lambda}} t v_{\lambda}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
\int_{M} & \left(|\nabla A|^{2}-2 h q+\frac{1}{2} \sum_{\lambda}\left|\left[P, A_{\lambda}\right]\right|^{2}+q(q-1)\right) \\
& =\int_{M}\left(\sum_{\lambda} \operatorname{tr} A_{\lambda}^{2}-\sum_{i, j, \lambda} g\left(\left(R\left(e_{i}, e_{j}\right) A\right)_{\lambda} e_{i}, A_{\lambda} e_{j}\right)\right)
\end{aligned}
$$

By Lemma 3.6, we see that the left-hand side of this equation is non-negative. Next we prove that the right-hand side of the equation above is non-positive. From the assumption on the sectional curvature of M, we have, by a similar method in the proof of Theorem 3.9,

$$
\sum_{\lambda} \operatorname{tr} A_{\lambda}^{2}-\sum_{i, j, \lambda} g\left(\left(R\left(e_{i}, e_{j}\right) A\right)_{\lambda} e_{i}, A_{\lambda} e_{j}\right) \leq 0
$$

Consequently, we obtain

$$
|\nabla A|^{2}=2 h q, \quad P A_{\lambda}=A_{\lambda} P, \quad q(q-1)=0
$$

Hence we have $q=1$ and M is a real hypersurface in some $C P^{(n+1) / 2}$ in $C P^{m}$ (see [10, p. 227]). Therefore, using Theorem 3.10, we have our result (see also [4]).

If $n>p+2$, we see that $\nabla f=0$ and M is a $C R$ submanifold in $C P^{m}$ with $A_{f V}=0$ for any vector V normal to M (see Okumura [7, 8]). Therefore, Theorem 4.3 implies the following result.

THEOREM 4.4. Let M be a compact n-dimensional minimal submanifold in $C P^{m}$ with semi-flat normal connection. If the sectional curvature K of M satisfies $K \geq 1 / n$, and if $n>p+2$, then M is a totally geodesic complex projective space $C P^{n / 2}$ or a geodesic minimal hypersphere $\pi\left(S^{1}(\sqrt{1 /(n+1)}) \times S^{n}(\sqrt{n /(n+1)})\right)$ of some $C P^{(n+1) / 2}$ in $C P^{m}$.

References

[1] A. Bejancu, Geometry of CR-submanifolds (D. Reidel, Dordrecht, 1986).
[2] B. Y. Chen, 'CR-submanifolds of a Kaehler manifold, II', J. Differential Geom. 16 (1981), 493509.
[3] I. Ishihara, 'Kaehler submanifolds satisfying a certain condition on normal connection', Atti Accad. Naz. Lincei LXII (1977), 30-35.
[4] M. Kon, 'Real minimal hypersurfaces in a complex projective space', Proc. Amer. Math. Soc. 79 (1980), 285-288.
[5] H. B. Lawson Jr, 'Rigidity theorems in rank-1 symmetric spaces', J. Differential Geom. 4 (1970), 349-357.
[6] K. Ogiue, 'Differential geometry of Kaehler submanifolds', Adv. Math. 18 (1974), 73-114.
[7] M. Okumura, 'Normal curvature and real submanifold of the complex projective space', Geom. Dedicata 7 (1978), 509-517.
[8] M. Okumura, 'Submanifolds with L-flat normal connection of the complex projective space', Pacific J. Math. 78(2) (1978), 447-454.
[9] J. Simons, 'Minimal varieties in riemannian manifolds', Ann. of Math. 88 (1968), 62-105.
[10] R. Takagi, 'Real hypersurfaces in a complex projective space with constant principal curvatures', J. Math. Soc. Japan 27 (1975), 43-53.
[11] K. Yano, 'On harmonic and Killing vector fields', Ann. of Math. 55 (1952), 38-45.
[12] K. Yano and M. Kon, Structures on manifolds (World Scientific, Singapore, 1984).

Department of Mathematics
Hokkaido University
Kita 10 Nishi 8, Sapporo 060-0810
Japan
e-mail: mayuko_k13@math.sci.hokudai.ac.jp

[^0]: (C) 2008 Australian Mathematical Society 0004-9727/08 \$A2.00 +0.00

