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Abstract. Stereographic projection of Hopf field on the 3-sphere into Euclidean 3-space is used
as a model of 3D steady flow of ideal compressible fluid in MHD. In such case, flow lines are
Villarceau circles lying on tori corresponding to the levels of Bernoulli function. Existence of
an optimal torus with minimal relative surface free energy is shown. Beat of oscillations with
wave numbers corresponding to structural radii of optimal torus leads to scaling of optimal tori.
Spatial intersection of homothetic tori within one torus result in formation of cluster with the
size depending on scaling factor. Optimal tori are considered as precursors of planetary orbits.
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1. Introduction
Solution of the equations of ideal magnetohydrodynamics describes a localized topo-

logical soliton with use of Hopf mapping shown by Kamchatnov (1982). Example of
introducing the Euler’s potential into a topological MHD soliton which has non-trivial
helicity called MHD Kamchatnov-Hopf soliton was described by Semenov et al. (2001).
Hopf field on S3 has minimal energy among all the fields diffeomorphic to it (Arnold &
Khesin 1998). Stability of Hopf field on S3 has been proved (Gil-Merdano & Llinares-
Fuster 2001, Yampolsky 2003). Hopf fibration of S3 with stereographic projection induces
the toroidal coordinates on E3 (Gibbons 2006).

2. Overview
On a torus ν = arcsinh(k)/k contravariant metrical tensor in toroidal coordinates is

gij |T = δj
i

(√
k2 + 1 − cos(kα)

)2
/R2k2 . For steady flow of ideal compressible fluid, stress

tensor is determined by metrical tensor only pij |T = −pδj
i

(√
k2 + 1 − cos(kα)

)2
/R2k2 .

Since
(√

k2 + 1 − cos(kα)
)2

/R2 = r−2 , where r-distance from of torus axis to the point
on the torus, then the pressure on the surface P ∝ r−2 . The volume of the solid torus
with main radius c = 1 is V (g) = 2π2g2 where g = a/c - form factor, and a-tube
radius. Notice that g = sin(θ) where θ - inclination of Villarceau circles to the main
plane of torus symmetry, we call this angle as “stream inclination”. The force of pres-
sure Σ(g) = 4πgA

∫ π

0 (1 − g cos(φ))−1dφ. Let’s find the form factor g when the ratio
of the solid torus volume to the force of pressure on it’s boundary has a maximum:
maximize (V (g)/Σ(g), g = 0..1, location) , g = (

√
2)−1 ≈ 0.7071 . . . . We will call the

torus meeting form factor as “optimal torus”. Physically, it corresponds to the minimal
relative surface free energy.

Torus in the principal symmetry plane perpendicular to its axis is characterized with
two structural radii rm , ro . The corresponding wave numbers are: km = 2π/c(1−g), ko =
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2π/c(1+g). Indices m-massive, and o-outer are used as mnemonic. Beat of oscillations is
calculated as: cos(km r) + cos(kor) = 2 cos (r(km + ko)/2) cos (r(km − ko)/2). If half-sum
or half-difference of wave numbers would be equal to wave numbers of structural radii of
tori homothetic to original one, we would have the following four expressions for possible
scaling factor K1 = 1 + g, K2 = 1 − g, K3 = (1 + g)/g, K4 = (1 − g)/g. If we suggest
that the orbits of at least two neighbor planets have been forming due to interactions
between two tori formed in nebula, the scaling relation should be taken into consideration
when their interactions are described. Scaling factor K would have the value similar to
the ratio of the semi-major axes of neighbor planets. We call it as an orbital scaling
factor. For any value of the form factor g, | ln(K1)| < | ln(K2)|, | ln(K1)| < | ln(K3)|, and
| ln(K1)| < | ln(K4)| if g <

√
2− 1 or g > (

√
5− 1)/2 thereby it corresponds to the larger

volume of tori intersection, and results in maximal interactions for K1 .
Arrangement of tori group results in their intersection in space, therefore, it should

affect the proximity of physical characteristics of neighbor planets in a case of planetary
system formation. Actually, we would like to know what is the maximal number C of the
planet group members able to have similar physical parameters. Let’s call the indicated
group as cluster, and determine the cluster’s size having intersection within one torus
rm K(C−1) < ro . The cluster size C = 2 − ln(1 − g)/ ln(1 + g). Since K = 1 + g, the
latter would be re-written as: C = 2 − ln(2 − K)/ ln(K). First threshold corresponding
to transition from the cluster size 3 to the size 4 at orbital scaling factor K ≈ 1.3894,
being in agreement with stream inclination θ ≈ 22.917◦.

3. Implications
Solar system. Orbital scaling factor K for solar system K = 1.6995±0.0224. Difference

between the theoretical value and the real one does not exceed the value of standard
deviation: ΔK = 1.7071 − 1.6995 = 0.0076. Cluster size C = 4. Stream inclination to
ecliptic θε = 44.4 ± 2◦.

Galilean moons. Orbital scaling factor for Galilean moons K = 1.6414±0.028. Value of
orbital scaling factor is less than theoretical one on a magnitude exceeding the standard
deviation: ΔK = 0.066. Cluster size is just as in the Solar system C = 4. Stream
inclination θ = 39.9 ± 2.3◦.

Saturn’s satellites. The distinction of the satellite system of Saturn is the lower value
of the orbital scaling factor K = 1.2949± 0.00377, and geometrical progression is clearly
recognizable up to Rhea. Further analysis is possible if for the next satellite Titan we
omit 2 orbits. The same situation is seen with Iapetus. The size of cluster C = 3. Stream
inclination θ = 17.15 ± 0.23◦.

What is the reason for decreasing the orbital scaling factor in satellite systems of
above-mentioned planets comparatively to Solar system or theoretical value? The orbital
planes lie close to the equatorial plane of the central planet, and the latter has some
axial tilt, thus stream inclination on the tori forming satellite system differs from π/4 on
a value of the axial tilt. When the axial tilt does not exceed π/4, expression for orbital
scaling factor is Kε = 1+sin(π/4−ε), where ε - axial tilt. Axial tilt of Jupiter ε = 3.08◦,
thus corrected values of orbital scaling factor for Galilean moons Kε = 1.668. Axial tilt
of Saturn ε = 26.7◦, therefore corrected values of orbital scaling factor for regular moons
of Saturn Kε = 1.314. Corrected values well agree with actual ones. Values of stream
inclination to ecliptic for Galilean moons θε = θ + ε = 43 ± 2.3◦ and Saturn’s moons -
θε = 43.88 ± 0.23◦. Deviation from the optimal π/4 does not exceed 2◦.

Neptune’s satellites. Orbital scaling factor for Neptune’s regular satellites K = 1.176±
0.002. Therefore, the size of cluster, like in the Saturn’s system, C = 3. Also, like in the
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Saturn’s system, two orbits between Larissa and Proteus are omitted. Omitting two
orbits might reflect regularization when the size of cluster C is 3. Stream inclination
to the equatorial plane θ = 10.15 ± 0.12◦. Since the Neptune’s axial tilt ε = 28.32◦,
the calculated value of orbital scaling factor is Kε = 1.287. Significant difference from
the actual value is evident. For its analyzing, suppose that stream inclination on the
torus forming Neptune’s orbit differs from the optimal value θε < π/4. Value of stream
inclination on the torus forming the Neptune’s orbit: θε = θ+ε = 38.47◦. Thereafter, ratio
of Neptune’s to Uranus’ semi-major axes should be less than 1.707: K = 1+sin θε = 1.622.
Indeed, ratio of Neptune’s to Uranus’ semi-major axes is lowest in the family of giant
planets. Taking into consideration the eccentricity of Uranus’ and Neptune’s orbits, the
actual value of ratio of semi-major axes is aN /aU = 1.57 ± 0.045. Thus, the estimation
fits well the actual value.

Uranus’ satellites. Orbital scaling factor K = 1.455± 0.0146. The cluster’s size C = 4.
Stream inclination to the Uranus’ equatorial plane θ = 27.07 ± 0.95◦. Ratio of Uranus’
to Saturn’s semi-major axes is largest not only in the group of giant planets, but in the
Solar system in general. Subject to eccentricity, aU /aS = 2.01±0.1. Orbital scaling factor
is higher than maximal value 2 allowed by the model, however, there is an area of values
K ∈ [1.91..2] due to eccentricity of Saturn’s and Uranus’ orbits allowed by the model.
The corresponding interval of the stream inclination to the ecliptic is θε ∈ [65.6◦..90◦].
Since Uranus’ axial tilt ε = 97.77◦, stream inclination on torus forming Uranus’ orbit in
relation to ecliptic is θε = ε − θ = 70.70◦ . Corresponding value of orbital scaling factor
for Uranus vs Saturn would be K = 1 + sin θε = 1.944, well fitting the actual value.

Pluto’s satellites. Significant gap exists between the Charon’s and Nix’s orbits. Pre-
sumably, this gap is caused by regularization in a cluster sized C = 3, and two orbits
are omitted. Then orbital scaling factor K = 1.351 ± 0.003. Stream inclination to equa-
torial plane is θ = 20.55 ± 0.18◦. Pluto’s orbit is characterized by significant inclination
i = 17.14175◦, and it should be taken into consideration while calculating the stream
inclination to the ecliptic plane. Since Pluto’s axial tilt ε = 119.591◦, stream inclination
in the area of Pluto’s orbit θε = π − (i + ε + θ) = 22.7◦. Thus, ratio of semi-major axes
of Pluto and Neptune K = 1.386. Actual value is aP /aN = 1.313.

Phobos and Deimos. Ratio of semi-major axes aDeimos/aP hobos = 2.50. Let’s imagine
that there is lack of two orbits as it is usual for the cluster with size C = 3. In such case,
orbital scaling factor K = (aDeimos/aP hobos)1/3 = 1.357, and the corresponding value of
stream inclination to the equatorial plane θ = 20.95◦. Taking into consideration Mars’
axial tilt ε = 25.19◦, we found flow inclination to the ecliptic plane θε = θ + ε = 46.14◦

being close to the optimal value π/4.
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