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Abstract

Let G and G̃ be Kleinian groups whose limit sets S and S̃, respectively, are
homeomorphic to the standard Sierpiński carpet, and such that every complementary
component of each of S and S̃ is a round disc. We assume that the groups G and
G̃ act cocompactly on triples on their respective limit sets. The main theorem of the
paper states that any quasiregular map (in a suitably defined sense) from an open
connected subset of S to S̃ is the restriction of a Möbius transformation that takes
S onto S̃, in particular it has no branching. This theorem applies to the fundamental
groups of compact hyperbolic 3-manifolds with non-empty totally geodesic boundaries.
One consequence of the main theorem is the following result. Assume that G is a
torsion-free hyperbolic group whose boundary at infinity ∂∞G is a Sierpiński carpet
that embeds quasisymmetrically into the standard 2-sphere. Then there exists a group
H that contains G as a finite index subgroup and such that any quasisymmetric map
f between open connected subsets of ∂∞G is the restriction of the induced boundary
map of an element h ∈ H.

1. Preliminaries

Let Ĉ denote the Riemann sphere. Whenever needed, we identify Ĉ with the ideal boundary of
hyperbolic 3-space H3. We also assume that Ĉ is equipped with the chordal metric and call this
metric space the standard 2-sphere.

1.1 Group actions
Recall that a Kleinian group G is any discrete group of isometries of H3. Equivalently, it is a
discrete group of Möbius transformations of the Riemann sphere Ĉ. The limit set Λ(G) ⊆ Ĉ of
a Kleinian group G is the set of accumulation points of the orbit Gp of any element p in H3.

The limit set Λ(G) of any infinite Kleinian group G is a non-empty compact subset of Ĉ and the
group G acts on Λ(G) by homeomorphisms. If the Kleinian group G is non-elementary, i.e. its
limit set has more than two points, then Λ(G) is a perfect set.

Let Y be a locally compact Hausdorff topological space. An action of a discrete group G on
Y by homeomorphisms is said to be properly discontinuous if for all compact subsets K and L
of Y the set

{g ∈ G : g(K) ∩ L 6= ∅}

is finite. Such an action is called cocompact if the quotient Y/G is compact.
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Hyperbolic groups with carpet boundaries

If X is any compact Hausdorff topological space that has at least three points, we denote
the space of distinct triples of X by Σ3(X), namely

Σ3(X) = {(o, p, q) ∈ X3 : o 6= p, o 6= q, p 6= q}.

Assume that a group G acts on X by homeomorphisms. Such an action induces a diagonal
action of G on Σ3(X). Following [Bow96], we say that a group G is a uniform convergence group
acting on a perfect, compact, Hausdorff topological space X if the action of G on Σ3(X) is
properly discontinuous and cocompact. A cocompact action of a discrete group on the space of
distinct triples is referred to as cocompact on triples.

1.2 Hyperbolic groups
A finitely generated group G is called hyperbolic if there exists a symmetric finite generating set
S for G and a positive constant δ such that the geodesic triangles of the Cayley graph of G with
respect to S are δ-thin. The latter means that any side of a geodesic triangle is contained in
the δ-neighborhood (with respect to the word metric) of the union of the other two sides. See,
e.g., [GH90], for background on hyperbolic groups. Also, see [KB02] for a survey on hyperbolic
groups. To every hyperbolic group G one can associate a boundary at infinity ∂∞G, a compact
Hausdorff topological space equipped with a natural class of visual metrics. If H is a finite index
subgroup of a group G, then G is hyperbolic if and only if H is hyperbolic. Moreover, in this
case ∂∞G = ∂∞H, see, e.g., [KB02, § 2].

Every element g of a hyperbolic group G induces a quasisymmetric self-map ĝ of the
boundary ∂∞G. This is a special case of [BS00, Theorem 6.5]; see § 1.3 below for the definition
of quasisymmetric maps. If G is non-elementary, i.e. not finite or virtually cyclic, the boundary
∂∞G is perfect, and the action of G on ∂∞G has a finite kernel, called the ineffective kernel
[GH90, ch. 8, 36.-Corollary].

An infinite Kleinian group G that contains no parabolic elements is called convex-cocompact
if it acts cocompactly on the convex hull Hull(Λ(G)) in H3 of its limit set Λ(G). Every convex-
cocompact Kleinian group is hyperbolic. Indeed, Hull(Λ(G)) is a closed convex subset of H3,
and so it is a proper Gromov hyperbolic geodesic metric space when endowed with the induced
metric from H3. For a geodesic metric space to be Gromov hyperbolic it means that geodesic
triangles are δ-thin. The space Hull(Λ(G)) is G-invariant, and G acts on it by isometries properly
discontinuously and cocompactly. By the Švarc–Milnor lemma, see, e.g., [BH99, Proposition 8.19,
ch. I.8, p. 140], the group G is finitely generated and its Cayley graph is quasi-isometric to
Hull(Λ(G)). This readily implies that G is hyperbolic.

A hyperbolic group G acts as a uniform convergence group on its boundary ∂∞G (see
[Bow96, Proposition 1.13]). Cocompactness on triples in the context of hyperbolic groups is
equivalent to the existence of ε > 0 such that if o, p, and q are arbitrary distinct points in ∂∞G,
then there exists g ∈ G so that

d(g(o), g(p)), d(g(o), g(q)), d(g(p), g(q)) > ε,

where d is a visual metric. Conversely, [Bow98, Theorem 0.1] states that if X is a perfect,
metrizable, compact, Hausdorff topological space, and a group G acts on X by homeomorphisms
as a uniform convergence group, then G is hyperbolic. Moreover, there is a G-equivariant
homeomorphism of X onto ∂∞G.

If G is a hyperbolic group, any element of infinite order in G acts as a loxodromic isometry on
the Cayley graph of G. Namely, there are exactly two points g+ and g− in ∂∞G fixed by g, that
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are given by g+ = limn→∞ g
n and g− = limn→∞ g

−n. The points g± are called poles corresponding
to the infinite cyclic group 〈g〉. The set of poles of loxodromic elements of a hyperbolic group G
is dense in ∂∞G; see, e.g., [KB02, Proposition 4.2].

1.3 Quasiregular and related maps

Recall that a non-constant orientation-preserving continuous map f : U → Ĉ defined on an open

set U ⊆ Ĉ is called quasiregular if f is in the Sobolev space W 1,2
loc and there exists a positive

constant K such that in local coordinates the formal differential matrix Df = (∂fj/∂xi) satisfies

‖Df(z)‖2 6 K det(Df)(z)

for almost every z ∈ U . Here we identify C with R2, and x1, x2 and f1, f2 denote the coordinates
of z and f , respectively. The assumption that f ∈W 1,2

loc means that the first distributional partial

derivatives of f are locally in the Lebesgue space L2. If f is assumed to be a homeomorphism,
it is called a quasiconformal map. A result of Reshetnyak states that any quasiregular map
f : U → V is a branched covering. This means that f is an open map and for each w ∈ V the
preimage is a discrete subset of U . The critical set of f , denoted crit(f ), is the set of all points
in U near which f is not a local homeomorphism. The set crit(f ) is necessarily discrete.

We say that a map f : A → B from an arbitrary set A ⊆ Ĉ to B ⊆ Ĉ is quasiregular if it is
open (in relative topology) and is the restriction to A of a quasiregular map F : U → Ĉ defined
on an open set U ⊆ Ĉ that contains A. We adopt the same terminology for quasiconformal maps.

A homeomorphism f : X → Y between metric spaces (X, dX) and (Y, dY ) is called
quasisymmetric if there exists a homeomorphism

η : [0,∞) → [0,∞)

such that for any triple of distinct points o, p, and q, we have

dY (f(p), f(o))

dY (f(q), f(o))
6 η

(
dX(p, o)

dX(q, o)

)
.

The homeomorphism η is called a distortion function of f , and if we want to emphasize it, we
say that f is η-quasisymmetric.

Every quasisymmetric map between domains in Ĉ is quasiconformal. The Egg-Yolk
Principle [Hei01, Theorem 11.14] gives a partial converse. Let B(p, r) stand for a disc in C
centered at p of radius r. If f : B(p, 2r) → C is K-quasiconformal, then the restriction f |B(p,r)

is η-quasisymmetric onto its image with η that depends only on K.

1.4 Statement of results
If X is an arbitrary metric space, in what follows we denote by B(p, r) the open ball in X
centered at p of radius r > 0. A Schottky set S is a compact subset of Ĉ whose complement is
a union of at least three open geometric discs whose closures do not intersect. The boundary
circles of the complementary discs are called peripheral circles. If a Schottky set S has empty
interior, as is typical in what follows, it is homeomorphic to the standard Sierpiński carpet.

The main result of this paper is the following theorem.

Theorem 1.1. Suppose that G and G̃ are Kleinian groups whose limit sets S and S̃, respectively,
are Schottky sets. We assume that the actions of G on S and G̃ on S̃ are cocompact on triples.
If f : A → S̃ is a quasiregular map defined on an open (in relative topology) connected subset
A of S, then f has to be the restriction of a Möbius transformation that takes S onto S̃. In
particular, f is injective.
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Hyperbolic groups with carpet boundaries

The fundamental groups of compact hyperbolic 3-manifolds with non-empty totally geodesic
boundaries satisfy the assumptions of Theorem 1.1.

Let G be a hyperbolic group whose boundary at infinity ∂∞G is a Sierpiński carpet. If ∂∞G
embeds quasisymmetrically into Ĉ, then, according to [Bon11, Corollary 1.2 combined with
Proposition 1.4], there exists a quasisymmetric map

β : ∂∞G → S,

where S is a Schottky set. The peripheral circles of the Schottky set S would necessarily occur
on all locations and scales [Bon11, Proposition 1.4]. This means that there exists a constant
C > 0 such that for every p ∈ S and every 0 < r 6 2 there exists a peripheral circle J of S that
intersects B(p, r) and such that

r

C
6 rJ 6 Cr,

where rJ is the radius of J . The constant 2 in the above definition is the diameter of the
standard 2-sphere. The property for peripheral circles to occur on all locations and scales is
invariant under quasisymmetric maps and it is stronger than local porosity stated in § 2. Thus,
[BKM09, Theorem 1.2] implies that the action of G/K on ∂∞G, where K is the ineffective kernel,
is conjugate by β to an action of a Kleinian group G′ on S. The Schottky set S is necessarily the
limit set of G′. Hence, the group G/K acts on S cocompactly on triples. We have the following
consequence of Theorem 1.1.

Theorem 1.2. Suppose that G is a hyperbolic group whose boundary at infinity ∂∞G is a
Sierpiński carpet. We assume that ∂∞G endowed with a visual metric embeds quasisymmetrically
into the standard 2-sphere. Then there exists a group H that contains G/K as a finite index
subgroup and that has the following property. Given any two open connected subsets A and B
of ∂∞G and a quasisymmetric map f : A → B, there exists h ∈ H such that ĥ|A = f .

The assumption that the visual boundary embeds quasisymmetrically into the standard
2-sphere is conjecturally true for any hyperbolic group with a Sierpiński carpet boundary [KK00].

The following two corollaries are consequences of Theorems 1.1 and 1.2.

Corollary 1.3. Assume that G is a hyperbolic group whose boundary ∂∞G is a Sierpiński
carpet, and let f be an arbitrary rational map. Then ∂∞G and the Julia set J (f) of f are not
quasisymmetrically equivalent.

Corollary 1.4. Suppose that C is a Sierpiński carpet embedded in the standard 2-sphere
with the following property. There exist an open subset A in C that is not dense in C, and
a quasisymmetric map f : Ā → C, where Ā denotes the closure of A. Then C cannot be
quasisymmetrically equivalent to the boundary at infinity of any hyperbolic group G.

The following is a family of Sierpiński carpets that satisfy the assumptions of Corollary 1.4.
Compare this with the discussion immediately preceding Theorem 1.3 in [BM13].

Example. By a self-similar carpet C we mean a Sierpiński carpet obtained in the following way.
Start with a square in the plane and consider its tiling by finitely many subsquares. Next, remove
the interiors of some of the subsquares in the tiling making sure that the following two conditions
are satisfied: the closures of any two subsquares whose interiors are removed do not intersect; the
closure of any subsquare whose interior is removed is disjoint from the boundary of the original
square. Further, perform the same operations on the subsquares that remain, i.e. consider the
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same tiling of each of these subsquares and remove the interiors of the squares of each such tiling
so that the combinatorics is the same as in the previous step. Continue the process indefinitely.
The standard Sierpiński carpet is an example of a self-similar carpet.

For a quasisymmetric map f in Corollary 1.4 we can choose the affine rescaling map from
any of the non-trivial scaled copies of C onto C.

2. Relative Schottky sets and Schottky maps

A relative Schottky set S in a domain D ⊆ Ĉ is the residual set obtained by removing from D
open geometric discs whose closures are contained in D and are pairwise disjoint. More precisely,
we assume that there exists an index set I that consists of at least three elements, and such that

S = D

∖⋃
i∈I

Bi,

where Bi, i ∈ I, are open geometric discs with closures B̄i, i ∈ I, contained in D, and B̄i∩B̄j = ∅,

i 6= j. If D = Ĉ, we recover Schottky sets.

Lemma 2.1. Let S be a Schottky set and p be a point in S that does not belong to any of the
peripheral circles of S. Then for every open set U ⊆ Ĉ that contains p, there exists a Jordan
curve C with the following properties. The curve C is contained in S, it does not intersect any of
the peripheral circles of S, the Jordan domain D ⊆ C bounded by C contains p and its closure
D̄ is contained in U . In particular, S′ = S ∩D is a relative Schottky set.

Proof. This is a simple application of Moore’s theorem [Moo25]. The elements of the
decomposition space are points as well as the closures of all of the complementary discs of
the Schottky set S. The decomposition space, i.e. the projection of Ĉ under the map that
identifies points that belong to the same complementary component of S, is homeomorphic to
the sphere. So we can identify it with the standard 2-sphere.

If p̃ is the point of the decomposition space that corresponds to p, let small r > 0 be chosen so
that the circle centered at p̃ of radius r does not contain any of the points of the decomposition
space that correspond to the complementary components. This is possible because the number
of such components is countable. Moreover, since p does not belong to any of the peripheral
circles of S, we can choose r so small that the closure of the disc B(p̃, r) is contained in the
projection of U . Now, the Jordan curve C is the preimage of the boundary circle of B(p̃, r)
under the projection. The stated properties of C are immediate. 2

Let S and S̃ be relative Schottky sets and f : A → S̃ be a local homeomorphism defined on
an open subset A of S. Then f is called a Schottky map if it is conformal [Mer13]. This means
that for every p ∈ A, the derivative of f defined as

f ′(p) = lim
q∈A, q→p

f(q)− f(p)

q − p
,

exists, is non-zero, and continuous. The following lemma, as well as Lemma 4.2 below, are
consequences of Lemma 2.1.

Lemma 2.2. Suppose that S and S̃ are Schottky sets of measure zero, and let f : A → S̃ be a
quasiregular map defined on an open set A ⊆ S. Then there exists a discrete (possibly empty)
subset B of A such that f restricted to A\B is a Schottky map.
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Hyperbolic groups with carpet boundaries

Proof. By definition, the map f is open in relative topology and is the restriction of a quasiregular
map F defined on an open set U ⊆ Ĉ that contains A. Let B be the intersection crit(F ) ∩ A.
Since crit(F ) is a discrete subset of U , the set B is a discrete subset of A. It is enough to show
that f restricted to some neighborhood of every point of A\B is a Schottky map.

Assume first that p ∈ A\B does not belong to any of the peripheral circles of S. Let r > 0
be chosen so small that F is defined and is quasiconformal in the disc B(p, 2r). The egg-yolk
principle implies that F is quasisymmetric in B(p, r). Lemma 2.1 gives a Jordan domain D that
contains p, whose closure is contained in B(p, r), and whose boundary ∂D is contained in S and
does not intersect any of the peripheral circles of S.

Let S′ = S∩D, a relative Schottky set in the Jordan domain D. The set S′ has measure zero
since S does. The restriction of f to S′ is a quasisymmetric map fD from S′ onto the relative
Schottky set S̃′ = S̃ ∩ F (D) in the Jordan domain F (D). Now, [Mer12, Theorem 1.2] implies
that fD is a Schottky map.

The case when p ∈ A\B does belong to a peripheral circle of S can be reduced to the
previous case as follows. Since f is open, it sends every peripheral circle of S intersected with
A to a peripheral circle of S̃. Thus, if p belongs to a peripheral circle J of S, we can use
the Schwarz reflection principle to extend f across J . We denote the peripheral circle of S̃
that contains f(p) by J̃ . Let us denote the reflection in J by r and the reflection in J̃ by r̃.
The doubles Sd = S ∪ r(S) and S̃ ∪ r̃(S̃) of S and S̃, respectively, are clearly Schottky sets. The
extension of f to A∪r(A), defined on r(A) as r̃ ◦f ◦r, is still quasiregular since geometric circles
are removable for quasiconformal maps. But p does not belong to any of the peripheral
circles of Sd, and so we are in the previous case. 2

A relative Schottky set S = D\
⋃
i∈I Bi is said to be locally porous at a point p ∈ S if there

exist a neighborhood U of p, a positive constant r0 and a constant C > 1, such that for every
q ∈ S ∩ U and each r with 0 < r 6 r0, there exists i ∈ I with B(q, r) ∩Bi 6= ∅ and

r/C 6 ri 6 Cr,

where ri the radius of Bi. A relative Schottky set S is called locally porous if it is locally porous
at every point. Local porosity is implied by the property of peripheral circles to occur on all
locations and scales.

The following two theorems are proved in [Mer13] and will be used in what follows.

Theorem 2.3 [Mer13, Corollary 4.2]. Let S be a locally porous relative Schottky set in D ⊆ C,
and suppose that A is an open connected subset of S. Let f, g : A → S̃ be Schottky maps into
a relative Schottky set S̃ in a domain D̃, and consider the set

E = {p ∈ S ∩ U : f(p) = g(p)}.

Then E = A, provided E has an accumulation point in A.

Theorem 2.4 [Mer13, Theorem 5.2]. Let S be a locally porous relative Schottky set in a domain
D ⊆ C, and p ∈ S be an arbitrary point. Suppose that U ⊆ D is an open neighborhood of p
such that S ∩U is connected, and assume that there exists a Schottky map f : S ∩U → S with
f(p) = p and f ′(p) 6= 1. Let S̃ be a relative Schottky set in a domain D̃, and let (hk)k∈N be
a sequence of Schottky maps hk : S ∩ U → S̃. We assume that for each k ∈ N, there exists an
open set Ũk so that the map hk : S ∩ U → S̃ ∩ Ũk is a homeomorphism, and the sequence (hk)
converges locally uniformly to a homeomorphism h : S ∩ U → S̃ ∩ Ũ, where Ũ is an open set.
Then there exists N ∈ N such that hk = h in S ∩ U for all k > N .
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3. Proof of Theorem 1.1

As mentioned in § 1.2, according to [Bow98, Theorem 0.1], the groups G and G̃ are hyperbolic.
Moreover, the limit sets S and S̃ can be identified with the boundaries at infinity ∂∞G and ∂∞G̃,
respectively. In particular, [Bon11, Proposition 1.4] gives that the peripheral circles of S and S̃
appear on all locations and scales, and thus S and S̃ have measure zero. Lemma 2.2 therefore
gives that f restricted to A\B is a Schottky map for some discrete subset B of A.

We will first show that there exists an open set U ⊆ Ĉ and a Möbius transformation m that
takes S onto S̃, such that S ∩ U ⊆ A, and the restrictions of f and m to S ∩ U coincide.

Let p ∈ A\B be an arbitrary point that does not belong to any of the peripheral circles of S.
As in the proof of Lemma 2.2, let r > 0 be chosen so that f extends to a quasiconformal map in
B(p, 2r) and also S ∩ B(p, 2r) ⊆ A. Lemma 2.1 gives a Jordan domain D such that p ∈ D, the
boundary ∂D is contained in S and does not intersect any of the peripheral circles of S, and
the closure D̄ is contained in B(p, r). Let S′ = S ∩D, a relative Schottky set in D.

As discussed in § 1.2, the set of poles of loxodromic elements of G is dense in S. Therefore, we
may choose a loxodromic element g in G with the pole g+ in S′. By choosing the radius r above
sufficiently small and by possibly passing to an appropriate power of g, we may assume that
g(D) ⊆ D. Let p1, p2, p3 be three distinct points in S′. For each n ∈ N, we can use cocompactness
of the action of G̃ on triples to find g̃n ∈ G̃ such that g̃n ◦ f ◦ gn(p1), g̃n ◦ f ◦ gn(p2), and
g̃n ◦ f ◦ gn(p3) are ε-separated for some ε > 0 independent of n. Note that each map g̃n ◦ f ◦ gn
is a Schottky map defined on S′ and that has a K-quasiconformal extension Fn to D, where
K does not depend on n. Standard compactness arguments, see, e.g., [AIM09, Theorem 3.1.3,
p. 49], imply that the sequence (Fn) subconverges, i.e. some subsequence (Fnk

) converges locally
uniformly in D to a K-quasiconformal homeomorphism H : D → S̃ ∩ D̃ for some open set D̃.

Theorem 2.4 now gives that the sequence (g̃nk
◦ f ◦ gnk) stabilizes, i.e. there exists N ∈ N

such that

g̃nk
◦ f ◦ gnk = g̃nk+1

◦ f ◦ gnk+1

on S′ for all k > N . This implies

f = g̃ ◦ f ◦ gn (1)

holds on S′′ = gm(S′) ⊆ S′ for some g̃ ∈ G̃ and m,n ∈ N. (Here m = nk and
n = nk+1 − nk.)

Equation (1) allows us to extend f to a homeomorphism of S onto S̃ satisfying (1) everywhere
on S. Indeed, {g−nk(gm(D))}k∈N forms an increasing sequence of domains whose union is
Ĉ\{g−}. Moreover,

gnk(S′′) ⊆ gn(k−1)(S′′) ⊆ · · · ⊆ S′′ and
⋃
k∈N

g−nk(S′′) = S\{g−}.

Thus, inductively using (1) we can extend f to S\{g−}. Since f is continuous on S′′, this
extension, also denoted by f , is a continuous map of S\{g−} into S̃. By definition, the extended
map f satisfies (1) everywhere on S\{g−}. Iterating (1), we obtain that the extended map f
satisfies

f = g̃k ◦ f ◦ gnk (2)

on S\{g−} for all k ∈ N. This implies that f is injective on S\{g−}. Otherwise there exist
two distinct points q1 and q2 in S\{g−} such that f(q1) = f(q2). For a large enough k we get
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that gnk(q1) and gnk(q2) are two distinct points that belong to S′. This is impossible because
g̃k ◦ f is injective on S′. A similar argument also shows that the extension f is open in relative
topology. Equation (2) thus gives that g̃ is a loxodromic element of G̃ with g̃− = f(g+). This
combined with (2) in turn implies that f is a homeomorphism of S\{g−} onto S̃\{g̃+}. Extending
it by f(g−) = g̃+ gives a homeomorphism, also denoted by f , of S onto S̃ that satisfies (1).

By conjugating G and G̃ by appropriate Möbius transformations if necessary, we may assume
that g+ = g̃− = 0 and g− = g̃+ =∞. Therefore, identifying each one of Ĉ\{g−} and Ĉ\{g̃+} with
the complex plane, we conclude that there exist λ, λ̃ ∈ C with |λ|, |λ̃| > 1, such that g(z) = λ−1z
and g̃(z) = λ̃z. Equation (2) can now be written as

f(z) = λ̃kf(λ−nkz) (3)

for all z ∈ S and all k ∈ N. Recall that f has a quasiconformal extension in an open set that
contains 0. Thus, the egg-yolk principle gives that f is quasisymmetric in a neighborhood V of 0
with respect to the Euclidean metric with some distortion function η. By choosing k in (3) large
enough, this equation readily implies that f is quasisymmetric on S\{∞} with respect to the
Euclidean metric with the same distortion function η. Indeed, if p1, p2, and p3 are distinct points
in S\{∞}, there exists k ∈ N such that λ−nkpj is in V for each j = 1, 2, 3. Therefore, by (3),

|f(p1)− f(p2)|
|f(p1)− f(p3)|

=
|λ̃kf(λ−nkp1)− λ̃kf(λ−nkp2)|
|λ̃kf(λ−nkp1)− λ̃kf(λ−nkp3)|

6 η

(
|p1 − p2|
|p1 − p3|

)
.

Such a map f has a quasiconformal extension F to the whole complex plane [Mer12,
Lemma 9.1]. The property of being quasiconformal is invariant under the stereographic
projection. Moreover, since a single point is removable for quasiconformal maps, we conclude
that f has a quasiconformal extension to Ĉ, also denoted by F . Every quasiconformal map
of the sphere is quasisymmetric [Väi85]. Hence, f is also quasisymmetric with respect to the
spherical metric as the restriction of a quasisymmetric map. But S has measure zero, and
therefore [BKM09, Theorem 1.2] gives that f is the restriction of a Möbius transformation
m that takes S onto S̃. The extension f to S coincides with the original map f on S′′ by (1),
and so f = m on S ∩ U , where U = gm(D).

The desired conclusion of Theorem 1.1 is now a consequence of Theorem 2.3. Indeed, as
mentioned above, by Lemma 2.2, the map f : A\B → S̃ is a Schottky map. Clearly,m : A\B → S̃
is also a Schottky map. Since B is a discrete subset of A, the set A\B is still open and connected.
From the above we know that the set

E = {p ∈ A : f(p) = m(p)}

contains an open set. Thus, Theorem 2.3 implies that

E\B = A\B.

The continuity of f and m gives that E = A. 2

4. Proof of Theorem 1.2

We start by proving the following elementary lemma.

Lemma 4.1. Suppose that G is a group of Möbius transformations that acts on a Schottky set S
cocompactly on triples. Then there exists a group H of Möbius transformations that contains G
as a finite index subgroup, and such that if h is a Möbius transformation that leaves S invariant,
then h ∈ H.
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Proof. Assume for contradiction that there exists an infinite sequence (hn)n∈N of Möbius
transformations that leave S invariant and such that Gh1, Gh2, . . . , are distinct right cosets. Let
o, p, and q be three distinct points in S. Since G is cocompact on triples, for each n ∈ N, there
exist an element gn ∈ G such that gn ◦ hn(o), gn ◦ hn(p), and gn ◦ hn(q) are ε-separated for some
ε > 0. Thus, there exists a subsequence (gnk

◦hnk
) that converges to a Möbius transformation f .

Since the group of all Möbius transformations that preserve a Schottky set is discrete (such
Möbius maps have to map peripheral circles to peripheral circles), then

gnk
◦ hnk

= gnk+1
◦ hnk+1

for all k large enough. This is a contradiction since Ghnk
and Ghnk+1

are distinct. 2

Next, we need the following lemma, also a consequence of Lemma 2.1.

Lemma 4.2. Assume that S and S̃ are Schottky sets and f : A → Ã is a quasisymmetric
map between open subsets A ⊆ S and Ã ⊆ S̃. Then f is quasiconformal, i.e. there exists a
quasiconformal map F defined on an open set U ⊆ Ĉ that contains A and such that F |A = f .

Proof. Assume that p ∈ A is an arbitrary point that does not belong to any of the peripheral
circles of S. Since A is open in S, there is an open set V ∈ Ĉ such that A = S ∩ V . Applying
Lemma 2.1, we get a Jordan domain D with the following properties. It contains p, its closure
is contained in V , and its boundary ∂D is contained in S and does not intersect any of the
peripheral circles of S.

Let S′ = S ∩ D, a relative Schottky set in D. The map f takes it to the relative Schottky
set S̃ ∩ D̃, where D̃ is the Jordan domain bounded by f(∂D) and that contains f(p). Thus,
[Mer12, Lemma 9.1] implies that f has a quasiconformal extension to D. We recall that
this extension is obtained by using the Ahlfors–Beurling extension into every complementary
component of S′ in D.

Assume now that p ∈ A is a point on a peripheral circle C of S, and let C̃ denote the
peripheral circle of S̃ that contains f(p). Let r and r̃ denote reflections in C and C̃, respectively,
as in Lemma 2.2. As in that lemma, we can extend f to a quasisymmetric map on A ∪ r(A)
using the formula r̃ ◦ f ◦ r on r(A). Since p does not belong to any of the peripheral circles of
the Schottky set Sd = S ∪ r(S), the above argument allows us to extend f to a quasiconformal
map in a neighborhood of p.

We conclude that it is possible to extend f to a quasiconfomal map in a neighborhood of every
point p ∈ A. Moreover, if a peripheral circle C of S belongs to any two such neighborhoods, we can
always make sure that the two extensions of f inside this peripheral circle are the same. Indeed,
the Ahlfors–Beurling extension inside C can always be normalized by three points that only
depend on C and not a neighborhood. Therefore, all of the extensions agree on the intersections,
and thus they produce a quasiconformal extension of f on an open set U ⊆ Ĉ that contains A. 2

Proof of Theorem 1.2. As discussed in § 1.4, we may assume that S = ∂∞G is a Schottky set, and
G/K is a Kleinian group that acts on its limit set S cocompactly on triples. Lemma 4.1 then
implies that there is a group H of Möbius transformations that contains G/K as a finite index
subgroup, and such that if h is a Möbius transformation that leaves S invariant, then h ∈ H.

According to Lemma 4.2, every quasisymmetric map f : A → B between two open subsets
A and B of S is quasiconformal, and hence quasiregular. We can therefore apply Theorem 1.1
to conclude that f is the restriction to A of a Möbius transformation h that preserves S. Hence,
h ∈ H and the proof of Theorem 1.2 is complete. 2
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5. Proof of Corollaries 1.3 and 1.4

Proof of Corollary 1.3. We assume for contradiction that ∂∞G (endowed with a visual metric) and

J (f) are quasisymmetrically equivalent, i.e. there exists a quasisymmetric map α : J (f) → ∂∞G.

This implies, in particular, that ∂∞G can be quasisymmetrically embedded into the standard

2-sphere, and J (f) is a Sierpiński carpet. Also, the degree deg(f) of f must be at least 2.

As in § 1.4, there exist a Schottky set S and a quasisymmetric map β : ∂∞G → S. Since

β ◦α is a quasisymmetric map and S is a Schottky set, the peripheral circles of J (f) are uniform

quasicircles. Thus, [Bon11, Proposition 5.1] gives that the map β ◦ α has a quasiconformal

extension to the whole Riemann sphere. We denote this extension by φ. The conjugate map

g = φ ◦ f ◦ φ−1 is a quasiregular map that preserves S.

If K is the ineffective kernel of G, the action of the group G/K on S is by Möbius

transformations and is cocompact on triples. Thus, we can apply Theorem 1.1 to arrive at a

contradiction. Indeed, according to this theorem the map g must be the restriction of a Möbius

transformation. Because f and g are conjugate by a homeomorphism, f is a homeomorphism of

J (f). This is impossible: the Julia set J (f) is backward invariant under f and every point p

of J (f), outside a finite set, has deg(f) > 2 preimages in J (f). 2

Proof of Corollary 1.4. Assume for contradiction that there exist a carpet C satisfying

the assumptions of the corollary and a hyperbolic group G such that C and ∂∞G are

quasisymmetrically equivalent. Thus, ∂∞G embeds quasisymmetrically into the standard 2-

sphere and let α : C → ∂∞G be a quasisymmetric map. Furthermore, let f : Ā → C be a

quasisymmetric map guaranteed by the assumptions, where A is an open subset of C that is not

dense in C.

The conjugate map g = α◦f ◦α−1 is a quasisymmetric map of α(Ā) onto ∂∞G. But α(A), and

thus g(α(A)), are open subsets of ∂∞G. Since the restriction of g to α(A) is still a quasisymmetry,

Theorem 1.2 gives that there exists a quasisymmetry ĥ of ∂∞G such that ĥ|α(A) = g|α(A). This

leads to a contradiction as follows. Since g and ĥ are continuous on α(Ā), we get ĥ|α(Ā) = g|α(Ā).

However,

g(α(Ā)) = α(f(Ā)) = α(C) = ∂∞G,

but ĥ(α(Ā)) 6= ∂∞G, because α(Ā) 6= ∂∞G. This last assertion follows from the fact that α is a

homeomorphism and the assumption that A is not dense in C. 2
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Norm. Supér. (4) 33 (2000), 647–669.

Mer12 S. Merenkov, Planar relative Schottky sets and quasisymmetric maps, Proc. Lond. Math. Soc.
(3) 104 (2012), 455–485.

Mer13 S. Merenkov, Local rigidity of Schottky maps, Proc. Amer. Math. Soc., to appear.
arXiv:1305.4683.

Moo25 R. L. Moore, Concerning upper semi-continuous collections of continua, Trans. Amer. Math.
Soc. 27 (1925), 416–428.
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