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TENSOR PRODUCTS OF POSITIVE DEFINITE
QUADRATIC FORMS, VII

YOSHIYUKI KITAOKA

In this paper we generalize results of the third paper of this series.
As a corollary we can show the following: Let L, (1 < i < n) be a posi-
tive definite quadratic form which is equivalent to one of Cartan matrices
of Lie algebras of type A, (n >2), D, (n > 4), E,, E,, E;, and assume that
®r, L, = @r, M; where M, (1 <i < m) is positive definite quadratic forms
and satisfies that rk M, > 2 and M, = K® L implies tk K or rk L = 1.
Then we have n = m and L, is equivalent to a constant multiple of M,
for some permutation s. Therefore we get the uniqueness of decompositions
with respect to tensor products in this case.

We explain notations and terminology.

By a positive lattice we mean a lattice on a positive definite quadratic
space over the rational number field. Let L be a positive lattice. We put
m(L) = meiil Q(x),

2#0

where @Q( ) is a quadratic form associated with L. Put 9%UL) = {x e L|
Q(x) = m(L)} and denote by L a submodule of L spanned by (L). If
MLOM) C {xy|xeL,ye M} holds for every positive lattice M, then
L is called of E-type and then IUL ® M) = M(L) @ M(M), m(L Q M) =
m(L)m(M) hold. Unless L is isometric to the tensor product of positive
lattices M, N with rk M > 1, vk N > 1, L is called indecomposable with
respect to tensor products.

Let A be a finite set and [, ] a mapping from A X A to {t{|0 <t <1}
satisfying

(i) [e,d] =1 if and only if ¢ = o/, and

(i) [a,a’] = [d/, a] for a, a’ € A.

Then we call (4,[,]) or simply A a weighted graph.
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Let A be a weighted graph. A is called connected unless there exist
subsets A,, A, of A such that A = A,UA,, A/NA,= ¢ and [a,, a,] = 0 for
any a; € A,.

Let A, B be weighted graphs. For (a, b), (¢/,b)c A X B we define
[(a, b), (¢/, V)] by [a,a’]-[b,b]. Then A X B becomes a weighted graph.
If there exists a bijection ¢ from A on B such that [a, a’] = [4(a), o(a’)]
(a, @’ € A), then we say that A, B are isometric and write ¢: A = B. Unless
a weighted graph A is isometric to B X C(B| > 1, |C| > 1), we say that
A is indecomposable.

Let L be a positive lattice with a bilinear form B(,) (B(x, x) = Q(x)).
Put G(L) = D(L)/+ and for a, b € G(L), put [a, b] = |B(a, b)|/m(L). Then
G(L) becomes a weighted graph.

Let L, M be positive lattices. Then it is obvious that the isometry
0:L = M induces the isometry ¢:G(L) = G(M), and that G(L ® M) =
G(L) X G(M) if either L or M is of E-type.

LEmMmA 1. Let A, A’, B, C be weighted graphs and assume that A =
{e}rs and 6: A X B= A’ X C. Take any element b e B and fix it. Define
fieA, c,eC, g,;€A, b,;€B by

oles, b) = (fi,c) and (g, byy) = (fi, cp) .
Then we have [e;, e;] = 0 if b,; # b.

LEMMA 2. Let A, A’, B, C be weighted graphs and assume that A =
{e;}_, is connected and 6: A X B= A’ X C. Take any element be B and
put ole;, b) = (f;, ¢;). Then we have

A=, bl<i<nm={fll<i<n X{c|ll<i<n}.

Lemmas 1, 2 are proved in Section 1 of [4] when A = A’. Moreover
we did not use the condition A = A’. Hence the proof in case of A = A’
is valid with trivial changes like that f, is regarded as an element not
of A but of A’.

LemmA 3. Let A, B, C be connected weighted graphs and let ¢ be an
isomeiry from A X B on A X C. If there exist bye B, c,e C such that
a(x, b)) = (f(x), ¢,) for every xc A, then f is an isometry from A on A and
there is an isometry g from B on C with o(x,y) = (f(x), 2(»)) (xe A,y e B).

This is proved in [3].
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THEOREM. Let A, (1 <i<mn), B,(1<i<m) be connected weighted
graphs and suppose that |A;| > 1, |B;| > 1 and A,, B; are indecomposable
A<i<n 1<j<m) Assume

3

a: ] A,

=1

I

1 B..

]

Then we have n = m and there exist a permutation s and isometries o, : A;
= B, and ¢ is equal to the product of ;.

Proof. Without loss of generality we may assume that [A,| > |A,],|B,|
1<i<n 1<j<m). Take any element e;c A, (i > 2) and put ¢ = e,
X---Xe, €[] A;. By interchanges of B; we may assume that the
projection of ¢(A, X e) on B, includes at least two distinct elements.
Applying Lemma 2 to A = A,, B=[[?,A;,, A’ =B, C= [[",B,, we get

6(A, X e)C B, X ¢ for some ce C,

since A, is indecomposable. By the assumption on A, we have o(A, X e)
= B, X ¢. Hence by virtue of Lemma 3 there exist isometries f: A, = B,,
g:[[i2 A, = []i. B, such that o(x X y) = (f(x), g(y)) for xe A, y € [[7-. A..
Therefore our theorem is inductively proved.

THEOREM. Let L, (1 < i < n) be a positive lattice of E-type and assume
that

(i) [Li: L] < oo,

(ii) L, is indecomposable,

(iil) L, is indecomposable with respect to tensor products, and

Gv) rkL, > 1.

Suppose that ¢: 7, L, = Q. M, where M, (1 < i< m) is a posilive
lattice satisfying the above conditions (iii), (iv) for M, instead of L,. Then
we have n = m and, interchanging M, if necessary, ¢ = &® a; where o, is
an isometry from L; on M¢ (scaling of M, by a positive constant a;).

Proof. Put L = ®?.,L,. Since L, (1 < i< n) is of E-type, L is also
of E-type and L = ®,L, and then [L: L] < . Since L, is indecomposable
and [L, :L~i] < o0, L; is also indecomposable. Hence L and L are inde-
composable [2]. Then by virtue of Theorem in [4] M, is of E-type and
satisfies the conditions (i) and (ii) for M, instead of L;. Therefore without
loss of generality we may assume that m(L) =mM,) =11 <i<n,
1 < j < m) and interchanging L, if necessary, L, satisfies
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(1) rkL,>rk L, vkM, 1<i<n 1<j<m),

(2) if vk L, = rk M;, then dL, < dM,.

Since L,, M ; are indecomposable, associated graphs G(L;), G(M,) are
connected. ¢ induces an isometry ¢: [[ G(L;) = [[ G(M;). Fix any element
e, e ML) (i >2) and e; is regarded as an element of G(L;). Then we
have

6(GI) X e, X---Xe)=1]] G, G, c GM,).

Denoting by M} a submodule of M, spanned by elements of 9M(M,) which
are projected in G,, we get

(L, Re,® - -Qe)=M®E® --QM,.

Put M, = M, N QM?, then M, is a direct summand of M, and [M,: M
< oo. Comparing direct summands, we have

(L,®Re,® --Re,)=MQQ---QM,.

By the assumption (iii) we may assume rk M; = 1 (i > 2), interchanging
M, if necessary. Then M, (i > 2) is spanned by an element f, in IM(M,).
Since we assumed m(L,) = m(M,) = 1, there is an isometry ¢, such that
(x®e,® --Qe,) =0(x)Vf,®---Qf,. By virtue of Lemma 3 the isometry
g, is independent of e, (i > 2), since the sign can be absorbed in f;. The
assumption on L, implies rk M, < vk L, = rk o,(L,) < rk M, and then dL,
< dM, < do(L;) = dL, and then o,(L,) = M,. Moreover Lemma 3 implies
that there is an isometry 6,: [is; G(L;) = [[is2 G(M,) such that 6 = 4, X &,
on [[%, G(;). Therefore for any fixed e, € M(L,) we have

(e, ® e) = a,(e) @ ayle) for ee M(® L,),

where og,(e) € M (R, M,).

Since ¢ is an isometry, o, is an isometry from ®,., L, on ®Rins Mi.
Moreover [®;..L;: ®;, Ei] < oo and e ® (&2 Ly), aie) ® (®ix: M;) are
direct summands. Hence ¢,(®;s; L;) = ®;., M, follows. For e e M(L,) we
have, similarly, o(ef ® e) = ag,(e]) ® ai(e) for e e M(Q;., L;) where ¢; is an
isometry from ®;.,L; on ®;.. M,. Since ¢ = ¢, X &,, g(e) = =+ oi(e) holds
for e € M(R;5, L;). If Ble, e) + 0, then B(e,, e}) = B(e, ® e, e, ® e) = B(a,(e,)
® ay(e), a:(e1) @ a5(e)) = Bfe,, e)B(0(e), 0i(e)) implies B(oye), oi(e)) =1 and
then o,(e) = oi(e) since m(M,) = 1 and o.(e), oi(e) € VUR),;>, M;). Thus g, = 7}
holds on M(®,-. L;) and then ¢, = g; on ®,., L;. Since G(L,) is connected,
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g, is independent of the choice of ¢,, Thus we have proved ¢ = 0, Q 0,
on ®;s; L; where o,: L, = M,, 0,: ®,5, L; = ®,5, M;. Theorem is inductively
proved.

CoroLLARY. Let L; be those in Theorem. Then the orthogonal group
of ® L, is generated by the orthogonal group of L; (1 < i < n) and inter-
changes of L, and L; if L,, L, are isometric.

This follows directly from Theorem.

ExampLEs. Let L be a positive lattice which is associated to the
Cartan matrix of one of Lie algebras of type A, (n >2), D, (n > 4), E,,
E, E,. Then L is of E-type [1] and the conditions (i), (ii), (iv) are obviously
satisfied. The condition (iii) is checked as follows: Suppose L = M ® N,
rk M, vk N > 1. Then by virtue of Theorem in [4], M, N are of E-type
and M =DM, N=N since L = L. Without loss of generality we may
assume m(M) =1, m(N) = 2. For ec MWM), f, € DVUN), Z> Be®f,
e®f,) = B(f, f,) follows. If B(f,f, is even for every f, f, € M(IN), then
N is decomposable since the scale of N is 2Z. This is a contradiction.
Hence for some f,, f, € M(N), B(f,,f) = 1 holds. Then we have Z> B(e;®f,,
e, ®f,) = Ble, e, for e, ¢ M(M) and then the scale of M is Z. Therefore
M is decomposable. This is also a contradiction.

Other examples are found in [4].
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