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CONCERNING cr-CONNECTEDNESS OF BAIRE 
SPACES 

A. GARCIA-MÂYNEZ 

1. I n t r o d u c t i o n . A well known theorem of Sierpinski s ta tes t h a t 
every compact connected Hausdorff space is a-connected. Hence, if X is 
locally compact and Hausdorff and X is locally connected a t x, then x 
has a cr-connected neighborhood. However, local connectedness a t x is 
not a necessary condition for x to have a o--connected neighborhood, 
because the whole space may be ^-connected wi thout being locally 
connected a t x. One of the purposes of the present paper is then to 
investigate which points of a given locally compact Hausdorff space have 
cr-connected neighborhoods. We find also sufficient conditions for a 
connected, hereditarily Baire space to be cr-connected and prove the 
impossibility of expressing a connected, Cech-complete, rim compact 
space as a countable infinite union of mutual ly disjoint compact sets. 
Finally, we introduce the concept of Z}-connected space and relate it to 
^-connectedness. We give a condition on a connected, locally compact 
Hausdorff space to be D-connected and give an example of a closed 
cr-connected subset of R 3 which is not ^ -connec ted . 

2. Def in i t ions a n d p r e l i m i n a r y r e s u l t s . Let X be an arb i t ra ry 
topological space. A sequence Ci, C2, . . . of subsets of X is a a'-partition 
(resp., a a-partition) of X if the C / s are mutual ly disjoint, their union 
is X and a t least two of them are non-empty (resp., all of them are 
non-empty) . A (/-part i t ion is closed (resp., compact) if all of its elements 
are closed (resp., compact ) . X is o-connected (resp., a-insular) if it has 
no closed cr'-partition (resp., it has no closed cr-partition). Clearly, if X is 
connected, these two last concepts coincide. We have now two easy bu t 
impor tan t results: 

2.1. A space X is a-insular if and only if it is a finite union of a-connected 
subspaces. 

Proof. We prove only the necessity, since the sufficiency is obvious. 
Proceeding by contradict ion, assume X is a-insular bu t not expressible 
as a finite union of cr-connected subsets. X has then an infinite number 
of components (otherwise, some component would have a closed 
o--partition and including the remaining components , we would obtain a 
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closed o--partition of X). Hence there exist disjoint, closed and non
empty sets Ai, B\ such that X = A\ \J Bx. Clearly, we may assume that 
B\ has infinitely many components. By the same argument, there exist 
disjoint, closed and non-empty sets A2j B2 such that B\ = A2 W B2 and 
with B2 having an infinite number of components. Continuing this 
process, we may find a sequence of disjoint, non-empty closed sets Ai, 
A2, . . . and a decreasing sequence of closed sets X = B0 D B\ 3 B2 3 
. . ., each having infinitely many components, and such that A , P B t = 0 
and Bi-i = At U Bt for each i = 1, 2, Let B* = Bx P B2 P . . . . 
Then B*, Au A2, . . . is a closed (/-partition of X and, with the possible 
exception of B*, all of them are non-empty. Hence, X has a closed 
a-partition, contradicting the fact that X is o--insular. 

2.2. If D is a a-insular subset of the connected space X and each point of 
X — D has a a-connected neighborhood, then X is a-connected. 

Proof. Assume, on the contrary, that X has a closed d-partition Klf 

K2, . . . . With no loss of generality, we may assume that D C Ki- By 
hypothesis, each point x Ç X — D has a a-connected neighborhood Hx. 
Since K2 C X — D, we must have Hx C K2 for each x £ K2 (otherwise 
Hx would have a closed a-partition). This implies that K2 is open. Since 
K2 is also closed, this contradicts the connectedness of X. 

A space X is said to be hereditarily Baire if every closed subset of X is 
a Baire space. It is a well known fact that every Gh subset of a countably 
compact regular space is hereditarily Baire. In particular, Cech-complete 
spaces (i.e., Tychonoff spaces which are Gt> in their Stone-Cech com-
pactification) are hereditarily Baire. 

The following proposition appears as an exercise in [1]. For the sake 
of completeness, we have included a proof: 

2.3. Every connected, locally connected and hereditarily Baire space is 
a-connected. 

Proof. Assume, on the contrary, that X has a closed o--partition Ki, 
K2, . . . . Let Q be the union of the sets int Kn (n = 1, 2, . . .). Since X is 
a Baire space, Q is dense in X. Therefore: 

X - Q = F r<?= U FrKn. 
n=l 

Since Fr Q is also a Baire space, there exists an open set V in X and an 
index i such that 0 ^ V Pi Fr Q C Fr Kt. If R is any component of V 
intersecting Fr Ku necessarily R C\ Kj = 0 for every j 9e i (because R 
intersects X — Kj but not Fr Kj). Therefore, R C Kt. The local con
nectedness of X implies that R is open. Hence, R C intKu a contra
diction. 
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Combining 2.2 and 2.3, we obtain: 

2.4. Let X be a connected, hereditarily Baire space and let 

Dx = {x G X | X is not locally connected at x}. 

If there exists a a-insular set L containing Dx, then X is a-connected. 

Proof. We have only to observe that L~ is also a-insular and that every 
component of X — Dx~ is a a-connected region. 

Example 3 in [4] is a connected, locally connected subset of the plane 
which admits a decomposition into a countably infinite collection of 
closed segments and which is locally compact at each point of an open 
dense set (the union of interiors of the segments). Hence 2.3 is false if 
we omit the word "hereditarily" in its statement. Examples of connected, 
locally compact Hausdorff spaces which are not a-connected are plentiful. 
See, for instance, example 4.3 in [2]. 

We will have the opportunity to use the next theorem in the example 
at the end of this paper. 

2.5. Let C\, C2, . . . be a sequence of a-connected sets in a connected, 
hereditarily Baire space X and assume Ci U C<i^J . . . is dense in X. Let 
C = lim inf Cn. If C C\ Cn 9^ 0 for every n and C C lim sup (C P\ Cn), 
then X is a-connected. 

Proof. Proceeding by contradiction, let H\, H2, . . . be a closed a-
partition of X. If some Hi contains infinitely many C/s, then C C Hi-
But since C C\ Cn 9^ 0 for every n, we would have X = Hu a contra
diction. Assume then that every Ht contains, at most, finitely many 
C/s. Consequently, C C\ H\, C C\ H2, . . . isacloseda'-partitionof Cand, 
since C is a Baire space, there exists a j such that intc(C P\ Hf) is non
empty. Let V be an open set in X such that 0 ^ C P i F C Hj. Since 

C C lim sup (C H Cn), 

V C\ C C\ d is non-empty for infinitely many indices. But each 
V C\ C C\ Ct lies in Hj. Hence, Hj contains infinitely many C/s, a 
contradiction. 

We give next a sufficient condition for a space to have a compact 
a-partition: 

2.6. Every locally compact, ^-dimensional, Lindelof, non-compact space X 
has a compact a-partition. 

Proof. For each x (z X, let Vx be a compact open neighborhood of x. 
Since X is a Lindelôf space, there exists a countable subfamily { V\, F2, 
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. . .} of { Vx\x G X) covering X . Let 

Kx = VUK2= V2 - Vu . . . , Kn = Vn - ( 7 i W . . . W 7 n_i) . 

Clearly, the sets i£i, K2, . . . are compact, mutual ly disjoint and cover X. 
Since X is non-compact, for infinitely many indices i, Kf is non-empty. 
Hence, X has a compact cr-partition. 

A space X is D-connected of order ^ 0 if X is compact and connected 
(i.e., X is a cont inuum). Inductively, if a is a positive ordinal , we say X is 
D-connected of order ^ a if for each pair of points a, & G X , there exists 
a finite sequence of ordinals a\, a2, . . . , ara less than a and a finite sequence 
Ci, C2, . . . , Cw of subspaces of X such tha t a £ d ~ , ô £ Cn~~> Cr" P\ 
C*+i~" ^ 0 for each i < n and C> is D-connected of order ^at for each 
z :g n. X is D-connected of order a if X is D-connected of order ^a and 
for each ordinal jS < a, it is false tha t X is D-connected of order fg#. In 
general, X is D-connected if there exists an ordinal number a such tha t 
X is D-connected of order a. D-connected spaces of order ^ 1 receive the 
name of semicontinua. Observe tha t if {Cj\j G / } is a family of D-connected 
sub-spaces of X of order ^a with non-empty intersection, then their 
union is also D-connected of order ^a. Using Sierpinski's theorem, it is 
not difficult to prove: 

2.7. Every Hausdorjf D-connected space is o-connected. 

The example a t the end of this paper will prove tha t the converse of 
2.7 is false, even for closed subsets of Euclidean spaces. 

In [2] it is proved tha t for every space, X , we can find an ordinal 
number a such tha t every D-connected subspace of X has order ^a. T h e 
least ordinal number for which this happens will be called the D-order 
of X . For each p G X , the D-component of p is the union of all D-con
nected subspaces of X containing p. Clearly, every D-component of X 
is closed and D-connected and any two different D-components are 
disjoint. The constituant of p is the union of all continua in X containing p. 

3. M a i n re su l t s . We s tar t this section with a modified version of a 
s tandard theorem on separation of HausdorfF spaces. 

3.1. Let N be a closed subset of a locally compact Hausdorff space X . If E 
is a component of N with compact boundary and U is any neighborhood of 
E} then there exists an open V in X such that E C V C V~ C U, 
N C\ F r V = 0 and such that V~ — int E is compact. 

Proof. Let S be an open set with compact closure such tha t Fr E C 
S C S- C U. Let K = (N n S)~ and K* = K - int E. Since K* is 
compact and no component of K* intersects both sets Fr E and K* P\ Fr S 
(a connected set in K* intersecting Fr E has to lie in E because K* lies 
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in N and £ is a component of N), we have a separation K* = A U B, 
where Fv E C. A and K* C\ Fr S C B. Since X is regular and Hausdorff 
and A is a compact subset of the open set S — B, there exists an open 
set W such that 

ACWCW'CS-B. 

LetV=WU int £ . Then 

ECVCV-CW-^JECU.FrVCFrWCS and 

i£* H Fr W = 0. 

Since 

iV H Fr F C (iV - £ ) H Fr W H 5 C X* H Fr W = 0, 

we have also 

N H Fr V = 0. 

Finally, V~~ — int £ is compact because it is closed and it is contained 
in the compact set S~. 

3.2. COROLLARY. Let H be a proper subset of a connected, locally compact 
Hausdorff space X. If E is a component of H with compact boundary, then 
E~ r\ Fr H j* 0. 

Proof. Assume, on the contrary, that E" r\ Fr H = 0. Then E = E~ 
and £ is a component of int H. Let T be an open set in X such that 
E C T C T~ C int H. By 3.1, there exists an open set V such that 
E C F C V- C r and such that r~ H Fr F = 0. Therefore, Fr V is 
empty and V is a proper open and closed subset of X, contradicting the 
connectedness of X. 

Lemma 3.3 below will be used in the proof of Theorem 3.5: 

3.3. LEMMA. Let K\, K2, . . . be a closed a'-partition of a locally compact 
Hausdorff space X. If for n sufficiently large, Kn is compact, then X is not 
connected. 

Proof. Assume, on the contrary, that X is connected. Let X* = 
X W {p} be the one-point compactification of X and suppose Kn is com
pact for every n > s. If B = {p} U ^ U K2\J . . . U Ks, then B, 
Ks+i, Ks+2, . . . is a closed (/-partition of X*, contradicting Sierpinski's 
theorem. 

Combining 3.1 and 3.3, we obtain a much better result: 

3.4. Let K\, K2, . . . be a closed o-partition of a locally compact, connected 
Hausdorff space X. Then no Kt has a component with compact boundary. 
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Proof. Proceeding by contradiction, assume, for instance, that Ki has 
a component E with compact boundary. Using 3.1, we can find an open 
set V such that E C V j* X, with KY C\ Fr V = 0 and such that 
V~ — int E is compact. Let E* be the component of V~ containing E. 
According to 3.2, we have £* H Fr V ^ 0. Therefore, E* H i ^ , E* H i£2, 
. . . is a closed o-'-partition of £* and, with the possible exception of 
E* C\ Kiy all of its elements are compact. This contradicts Lemma 3.3. 

Before going on, we need a definition: 

Let L C X. X is said to be a semicontinuum with respect to L if each 
p Ç X — L belongs to a continuum Hp £_ X intersecting L. 

We prove now our first important result: 

3.5. Let & be a family of non-empty regions (i.e., open connected sets) in 
a connected, locally compact Hausdorff space X. Let L be a component of 
X — V) ^ with compact boundary. Then there exist G\, . . . , Gn £ & and 
semicontinua Gi*, . . . , Gn*, L* with respect to Gi, . . . , Gn, L such that 
S = L* U Ul=i G* is a region in X. 

Proof. According to 3.1, there exists an open set U ^ X such that 
L C U, Fr U C W & and such that U~ — int L is compact. Since Fr U 
is compact, there exist Gi, . . . , Gm £ ^ such that 

m 

F r 6 r C U ^ = i^ and 

G,- H Fr [/ 7̂  0 for each i = 1, . . . , w. 

On the other hand, each component of [/"has compact boundary, so each 
component of U~ intersects Fr U by 3.2. We prove the component L* of 
U~ containing L is a semicontinuum with respect to L. Take x £ L* — L. 
Let 7" be the component of U~ — int L containing x. Clearly, T is 
compact. Also, T C\ Fr L 7̂  0. Assume, on the contrary, T Pi Fr L = 0. 
Hence T is a compact component of L* — L and this latter set is a 
proper open subset of L*. By 3.2, 

r n FrL* (z* - D * 0. 
Therefore, T C\ L 9e 0, a contradiction. Observe now that each com
ponent of U~ different from L* is a continuum intersecting Fr U. Con
sequently, the union G* of Gt and all components of U~ intersecting 
Gf C\ Fr U is a semicontinuum with respect to Gi and 

U~ KJ R = L* U U G**. 
2 = 1 

Since Fr U C. R, U~~ U i? is open and has at most w components, the 
component 5 of U~ ^J R containing L* is also open. Ordering the G/s in 
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such a way that for some n ^ m, Gt C S if and only if i ^ n, we obtain 
the theorem. 

3.5.1. COROLLARY. / / , besides the conditions in 3.5, L and each element 
of ^ is o-connected (resp., D-connected), then L lies in a a-connected 
(resp., D-connected) region. 

3.5.2. COROLLARY. Let Dx = ( x ^ X\X is not locally connected at x), 
where X is as in 3.5. If L is a component of Dx~ with compact boundary, 
then there exists a region S in X which is the union of a semicontinuum with 
respect to L and a finite collection of semicontinua. Hence, if L is a or 
D-connected, so is S. 

3.5.3. COROLLARY. Let X and Dx be as in 3.5.2. If all the components of 
Dx~ are a-connected and, with at most a finite number of exceptions, all of 
them have compact boundary, then X is a-connected. 

We find next two sufficient conditions for a connected Cech-complete 
space to be a semicontinuum. 

3.6. Let X be a connected Cech-complete space. Then X is a semicontinuum 
in each of the following cases: 

a) X is locally connected. 
b) X is locally compact and each component of Dx~~ is compact. 

Proof, a) Fix a, b £ X and let G\ D G2 D . . . be a decreasing sequence 
of open sets in Z = fiX such that X = G\ C\ G2 H . . . . For each x £ X, 
let R(x, 1) be an open set in Z such that 

x e R(x, 1) C C\zR(x, 1) C Gi. 

Let S(x, 1) be the component of X P\ R(x, 1) containing x. The family 
S^i = {S(x, l)\x G X) is then a covering of X with regions in X. Let 
S(xi, 1), S(x2, 1), . . . , S(xk, 1) be a simple chain from a to b and define 
Mi as the component of C\zRi containing Su where 

k k 

Ri = U R(xj, 1) and Si = U S(xj, 1). 
j=l 3=1 

Mi is then a continuum in Z such that {a, b] C M\ C G\. For each 
x Ç Su let R(x, 2) be an open set in Z such that 

x e R(x,2) C C\zR(x, 2) C G2 H Ru 

Let S(x, 2) be the component of X P\ R(x, 2) containing x. y \ = 
{S(x, 2)\x £ Si} is then a covering of Si with regions in X. Let S(^i, 2), 
S(y2, 2), . . . , S(yp, 2) be a simple chain from a tob and define M2 as the 
component of Clzi?2 containing S2, where 

i?2 = Û R(yj9 2) and S2 = U S(^„ 2). 
. 7 = 1 ; = 1 
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Clearly M2 is a continuum in Z and {a, b} C M2 C Mi H G2. Con
tinuing this process indefinitely, we can find a decreasing sequence of 
continua Mi D M2 D . . . in Z such that {a, &} C M» C Afn_i H Gn for 
every n. M — Mi C\ M2 P . . . is then a continuum in X about a and b. 

b) Let ^ be the decomposition of X into components of Dx~ and 
points of X — Dx~ and let g:X —>X/& = Q be the canonical iden
tification. The assumptions about X and Dx~ imply that g is a perfect 
mapping of X onto Q. Hence Q is also connected, Hausdorff and locally 
compact. Besides, DQ is totally disconnected. According to 2.2, p. 104 
in [6], Q is locally connected and hence Q is a semicontinuum. Fix a,b'mX 
and let H be a continuum in Q about g (a) and g(&). Then i£ = g~l(H) 
is a continuum in X about a and b and the proof is complete. 

From 3.5.2 and 3.6 b), we easily obtain: 

3.7. Let X and Dx be as in 3.5.2. Assume there exists an ordinal number 
a such that every component of Dx~ is D-connected of order ^a and has 
compact boundary. Then X is D-connected of order ^a + 1. 

Proof. If a = 0, 3.7 follows from 3.6 b). Assume then a > 0. By 3.5.2, 
every point of X has an open neighborhood which is D-connected of order 
^a + 1. This clearly implies that X is D-connected of order ^a + 1. 

We investigate now the nature of closed cr-partitions of certain Cech-
complete spaces. 

3.8. Let Ki, K2, . . . be a closed a-partition of the connected, rim compact 
and Cech-complete space X. Then, for infinitely many indices i, Kt is 
non-compact. 

Proof. Assume, on the contrary, that with at most a finite number of 
exceptions, Kt is compact. With no loss of generality, we may assume 
that Ki is compact for all i è 2. Let FX be the Freudenthal compactifica-
tion of X. (Main properties of FX can be found in [3]). If Z = Kr \J 
(FX — X), then Z is a Gs and F^ subset of FX (because FX — Z = 
UT=2 Ki is Gs and Fs in FX). Each compact subset L of Z is clearly 
contained in a compact set L* C Z which is a Gs in FX. Therefore it is 
possible to express Z as a countable union Z = U?=i Hi of compact sets, 
each of which is a Gs in FX and, with no loss of generality, we may 
assume that Kx~ C Hi C H2 C . • • . Since each space Hn+i — Hn is 
contained in FX — X, which is a 0-dimensional space, 2.6 implies that 
Hn+i — Hn is either compact or has a compact o--partition. Hence Z, as 
well as FX — Z, admits a compact a--partition. But then also FX admits 
a compact o--partition, contradicting Sierpinski's theorem. 

The following three examples exhibit limitations to improving 3.8: 
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3.9. Example. A Cech-complete and connected subset of the plane 
which admits a compact o--partition. 

Let Ln be the segment in R2 with end points (1/w, 0) and (1/n, 1) 
(n = 1, 2, . . .)• Let Cn be the set of points in the circle x2 + y2 = (1/n)2 

having at least one coordinate ^ 0 . Define: Kn = LnKJ Cn, K — US=i ^n-
Then clearly i£\, i£2, . . . is a compact ^-partition of the connected set K. 
Being a G& in the plane, K is Cech-complete. 

3.10. Example. A rim compact, connected, Baire subset of the plane 
which admits a compact c-partition. 

Simply adjoin the points (0, r) (r rational, 0 < r < 1) to the space K 
described in 3.9. The space K* obtained this way is a Baire space because 
it is locally compact at each point of an open dense subset. However, K* 
is not Cech-complete. 

3.11. Example. A Cech-complete, rim compact, connected subset of 
the plane which admits a closed o--partition with infinitely many compact 
elements. 

Adjoin the points (0, y) (y irrational, 0 < y < 1) to the space K 
described in 3.9. 

S. Mazurkiewicz describes in [5] a closed and connected subset of the 
plane which satisfies the following properties: 

i) K has a closed o--partition KQ, K\, K2, . . . ; 
ii) KQ = cé X R+ , where *$ is the Cantor discontinuum and R + is 

the set of non-negative reals. 
iii) For i > 0, Kt is a constituant of K. 
iv) For each t 6 R + and each integer i > 0, the line y = t intersects Kt. 
v) lim inf Kt = 0. 

Using K, we may construct: 

3.12. Example. A closed o--connected subset of R3 of P-order 1 which 
is not J9-connected. 

For each integer n > 0, let 

An = {i/3»\i y* 0(mod 3), i/T G cé?) 

and let Ln = An X R+ . Let Bn be a 1-dimensional continuum in the 
plane y = n such that i?w intersects Kn and each component of Ln in 
exactly one point and such that the intersection of Bn with the plane 
z = 0 lies completely in Kn \J Ln (for instance, Bn may be a finite union 
of "hooks" in y = n joining irreducibly a fixed point of Kn to each com
ponent of Ln). Then Cn = Kn\J BnU Ln is a closed semicontinuum in 
R3 and X = (Ci U C2 W . . .)~ is clearly closed, connected and contains 
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K. Since 

C = lim inf Cn = lim sup (C Pi Cn) — K0i 

2.5 implies that X is ^-connected. Observe now that a continuum in X 
cannot intersect more than one component of KQ — {L\ VJ L2 W . . .)• 
For assume, on the contrary, there is such a continuum H. Being 
bounded, H cannot intersect infinitely many JB/S, say H C~\ B t = 0 for 
i > m. On the other side, the ^-connectedness of H implies that H 
intersects uncountably many components of Ko. Let H Pi KQ = i U B 
be a separation, where B contains all the components of H P KQ lying 
in Li for each i = 1, 2, . . . , w. Since HH\ Kt = id for i > m (because 
otherwise i7 P [i^0 VJ Ci U . . . U Cm], if P 2£m+i,. . . would be a closed 
o-'-partition of H), we have 

ffCi!W(BUC1U...UCm) 

and both sets A and 5 U Ci U . . . U Cm are separated. This contradicts 
the connectedness of H. The constituants of X are then d, C2, . . . and all 
components of KQ disjoint from L\ \J L2 ^J . . . . Since each constituant 
is closed, they are precisely the D-components of X. 

REFERENCES 

1. N. Bourbaki, Topologie générale (Hermann, Paris, 1961). 
2. A. Garcia-Mâynez, On a-connected sets, Bol. Soc. Mat. Mex. 16 (1971), 46-51. 
3. J. R. Isbell, Uniform spaces, Mathematical Surveys of the Amer. Math. Soc. 12 (1964). 
4. B. Knaster, A. Lelek and J. Mycielski, Sur les decompositions d'ensembles connexes, 

Coll. Math. 6 (1958), 227-246. 
5. S. Mazurkiewicz, Sur les continus plans non bornes, Fund. Math. 5 (1924), 188-195. 
6. R. L. Wilder, Topology of manifolds, Amer. Math. Soc. Coll. Publ. 32 (New York, 

1949). 

Universidad Nacional Autonoma de Mexico, 
Mexico 

https://doi.org/10.4153/CJM-1980-113-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-113-2

