THE FIELD GENERATED BY THE DISCRIMINANT OF THE CLASS INVARIANTS OF AN IMAGINARY QUADRATIC FIELD

BY
D. S. DUMMIT*, R. GOLD, AND H. KISILEVSKY \dagger

Abstract

This note determines the quadratic field generated by the square root of the discriminant of the modular equation satisfied by the special value $j(\alpha)$ of the modular function j for α an integer in an imaginary quadratic field.

Let k be an imaginary quadratic field. Then it is known [1] that the Hilbert class field H of k is generated over k by adjoining to k any one of the algebraic integers $j\left(\mathfrak{A}_{1}\right), \ldots, j\left(\mathfrak{A}_{h}\right)$, where $\mathfrak{A}_{1}, \ldots, \mathfrak{A}_{h}$ are ideals of k representing the h classes of the class group C_{k} of k and j is the modular function. Here $j(\mathfrak{H})=j(\tau)$, where \mathfrak{U} has an ordered \mathbb{Z}-basis $1, \tau$ with $\tau \in k, \operatorname{Im}(\tau)>0$.

The minimal polynomial of the algebraic integer $j(\tau)$ has rational integer coefficients, is of degree h, and has a rational integral discriminant. This discriminant can be written as D^{2} where

$$
D=\prod_{r<s}\left[j\left(\mathfrak{U}_{r}\right)-j\left(\mathfrak{U}_{s}\right)\right] .
$$

In this paper we determine the field $\mathbb{Q}(D)$ generated over the field of rational numbers \mathbb{Q} by D and obtain in particular the sign of D^{2} [c.f. 2]. As is shown in [1], page $\mathrm{V}-12$, formula (7) and the preceding remark,

$$
j(\overline{\mathfrak{A}})=j(-\bar{\tau})=\overline{j(\tau)}=\overline{j(\mathfrak{A})} .
$$

Hence,

$$
\bar{D}=\prod_{r<s}\left[j\left(\overline{\mathfrak{M}}_{r}\right)-j\left(\overline{\mathfrak{M}}_{s}\right)\right],
$$

and since the class of $\overline{\mathfrak{A}}$ in C_{k} is the inverse of the class of \mathfrak{A} in $C_{k}, \bar{D}=D$ or $-D$ depending on the sign of the permutation representation of inversion on C_{k}. If n denotes the number of generators of the Sylow-2-subgroup of C_{k}, then

[^0]C_{k} has precisely 2^{n} classes fixed by inversion (i.e. classes of order 2) and so the number of transpositions in the cycle decompositon of inversion is $\frac{1}{2}\left(h-2^{n}\right)$. Hence
$$
\bar{D}=(-1)^{\left(h-2^{n}\right) / 2} D .
$$

This is already sufficient to determine the sign of D^{2}, since $D^{2} \in \mathbb{Q}$, so D^{2} is positive if and only if $D \in \mathbb{R}$, i.e. $\bar{D}=D$. Since 2^{n} divides h, it follows that

$$
D^{2}>0 \text { if and only if either (a) } h \equiv 1,2 \bmod 4 \text { or (b) } n>1
$$

(so $D^{2}<0$ if and only if (a) $h \equiv 3 \bmod 4$ or (b) $h \equiv 0 \bmod 4$ and $n=1$).
In the same way, we may determine when D is fixed by the automorphisms of $\operatorname{Gal}(H / k)$, the Galois group of H over k. These automorphisms may be identified by the Artin isomorphism with $\sigma_{\mathfrak{Q}}$, where \mathfrak{H} is an ideal of $k, \sigma_{\mathfrak{A}}$ depending only on the class of \mathfrak{H} in C_{k} and having action $\sigma_{\mathfrak{A}}(j(\mathfrak{B}))=j\left(\mathfrak{H}^{-1} \mathfrak{B}\right)$ for every ideal \mathfrak{B}.

It follows that $\sigma_{\mathfrak{Y}}(D)=\varepsilon_{\mathfrak{\Re}} D$, where $\varepsilon_{\mathfrak{Y}}$ is the sign of the permutation of C_{k} given by multiplication by the class of \mathfrak{M}. The determination of $\varepsilon_{\mathfrak{\Omega}}$ is a group-theoretic problem on the regular representation for finite groups:

Let G be a finite group and $g \in G$ be an element of order m. For any $x \in G$, the orbit of x under multiplication by g is $\left(x, g x, \ldots, g^{m-1} x\right)$ and there are $|G| / m$ disjoint cycles $(|G|=$ the order of $G)$, so the sign of the permutation of multiplication by g on G is $(-1)^{(m-1)|G| / m}=(-1)^{|G|-|G| / m}$. Therefore, the sign of this permutation is -1 if and only if G has even order and the cyclic subgroup generated by g has odd index in G (so any Sylow-2-subgroup would be cyclic).

As a result, there is an automorphism $\sigma_{\mathfrak{\vartheta}}$ such that $\sigma_{\mathfrak{Y}}(D)=-D$ if and only if C_{k} has a non-trivial cyclic Sylow-2-subgroup, i.e. $n=1$. In other words, D is invariant under the Galois group of H over k if and only if $n \neq 1$.

We now determine the field $\mathbb{Q}(D)$. Since D^{2} is rational, $\mathbb{Q}(D)$ is at most a quadratic extension of \mathbb{Q}.

Proposition. With notation as above,

$$
\mathbb{Q}(D)=\left\{\begin{array}{l}
\text { (i) } \mathbb{Q}, \text { if } h \equiv 1(\bmod 4) \text { or } n \geq 2 \\
\text { (ii) } k \text {, if } h \equiv 3(\bmod 4) \\
\text { (iii) the unique real quadratic subfield of } H, \\
\text { if } h \equiv 2 \bmod 4 \\
\text { (iv) the unique imaginary quadratic subfield of } \\
\begin{array}{l}
\text { H not equal to } k \text {, if } n=1 \text { and } 4 \\
\text { divides } h .
\end{array}
\end{array}\right.
$$

Proof. Suppose first that $n=0$ so that h is odd. Then D is fixed by all automorphisms of $\operatorname{Gal}(H / k)$ so that $\mathbb{Q}(D)$ is either \mathbb{Q} or k according as D^{2} is positive or negative, i.e. $h \equiv 1 \bmod 4$ or $h \equiv 3 \bmod 4$, respectively. This gives (ii) and the first statement of (i).

If $n=1, D$ is not invariant under $\operatorname{Gal}(H / k)$, hence $\mathbb{Q}(D)$ is not contained in k. When $n=1, H$ contains precisely three quadratic subfields: k, a second imaginary quadratic field, and a unique real quadratic field. Therefore, $\mathbb{Q}(D)$ is again determined by the sign of D^{2}. This gives (iii) and (iv).

Finally, if $n \geq 2, D$ is invariant under $\operatorname{Gal}(H / k)$ and under complex conjugation, so that $\mathbb{Q}(D)=\mathbb{Q}$, and this completes the proof.

References

1. K. Iwasawa, "Class Fields", in Seminar on Complex Multiplication, A. Borel, S. Chowla, C. S. Herz, K. Iwasawa, and J. P. Serre, Lecture Notes in Math., vol. 21 (1966), Springer-Verlag.
2. J. McKay, Dihedral Group D_{7} as Galois Group over Q, Abstracts of A.M.S. (1980) 80-T-A215.

Mathematics Department
Princeton University
Current Address: University of Minnesota
Minneapolis, MN 55455

Mathematics Department
Ohio State University
Columbus, Ohio 43210
Mathematics Department
Concordia University
Montreal, Quebec H3G 1M8

[^0]: Received by the editors September 11, 1981 and, in revised form, October 5, 1982.
 AMS classification number: 10D25.

 * This research was supported in part by a NSF Grant.
 \dagger This research was supported in part by a NSERC Grant.
 (C) 1983 Canadian Mathematical Society

