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Using the ACT-R architecture to specify 39 quantitative process
models of decision making

Julian N. Marewski∗ Katja Mehlhorn†

Abstract

Hypotheses about decision processes are often formulated qualitatively and remain silent about the interplay of de-
cision, memorial, and other cognitive processes. At the same time, existing decision models are specified at varying
levels of detail, making it difficult to compare them. We provide a methodological primer on how detailed cognitive
architectures such as ACT-R allow remedying these problems. To make our point, we address a controversy, namely,
whether noncompensatory or compensatory processes better describe how people make decisions from the accessibility
of memories. We specify 39 models of accessibility-based decision processes in ACT-R, including the noncompensatory
recognition heuristic and various other popular noncompensatory and compensatory decision models. Additionally, to
illustrate how such models can be tested, we conduct a model comparison, fitting the models to one experiment and
letting them generalize to another. Behavioral data are best accounted for by race models. These race models embody
the noncompensatory recognition heuristic and compensatory models as a race between competing processes, dissolving
the dichotomy between existing decision models.

Keywords: ACT-R, noncompensatory and compensatory models, recognition heuristic, race models, cognitive architec-
tures.

1 Introduction
Even if the mind has parts, modules, compo-
nents, or whatever, they all mesh together to
produce behavior. ... If a theory covers only
one part or component, it flirts with trouble
from the start. (A. Newell, 1990, p. 17)

One way to increase the precision of theories of
decision making is to specify the cognitive processes
decision-making mechanisms are assumed to draw on.
Corresponding process models predict not only what de-
cision a person will make, but also how the informa-
tion used to make the decision will be processed. The
past decades have seen repeated calls to develop pro-
cess models, and in fact, such models have become in-
creasingly popular (e.g., Brandstätter, Gigerenzer, & Her-
twig, 2006; Einhorn, Kleinmutz, & Kleinmutz, 1979;
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Ford, Schmitt, Schechtman, Hults, & Doherty, 1989;
Gigerenzer & Goldstein, 1996; Gigerenzer, Hoffrage,
& Kleinbölting, 1991; Marewski, Gaissmaier, Gigeren-
zer, 2010a, 2010b; Payne, Bettman, & Johnson, 1988,
1993; Schulte-Mecklenbeck, Kühberger, & Ranyard,
2010). The predictions made by these models have mo-
tivated a number of debates; for example, whether peo-
ple rely on noncompensatory, lexicographic as opposed
to compensatory, weighted-additive processes in infer-
ence, choice, and estimation (e.g., Bergert & Nosof-
sky, 2007; Bröder & Schiffer, 2003, 2006; Cokely &
Kelley, 2009; von Helversen & Rieskamp, 2008; John-
son, Schulte-Mecklenbeck, & Willemsen, 2008; Lee &
Cummins, 2004; Marewski, 2010; Mata, Schooler, &
Rieskamp, 2007; B.R. Newell, Weston, & Shanks, 2003;
Nosofsky & Bergert, 2007; Rieskamp & Hoffrage, 1999,
2008; Rieskamp & Otto, 2006).

Yet, often such process models are underspecified rel-
ative to the process data against which they can be tested.
In this article, we show how precision can be lent to pro-
cess models by implementing them in a cognitive archi-
tecture. We will make our point by focusing on a class of
models that assume people to make decisions by exploit-
ing the accessibility (e.g., Bruner, 1957; Higgins, 1996;
Kahneman, 2003) of memory contents. These models
have been at the focus of a debate about what processes
describe people’s decisions best when they make infer-
ences about unknown states of the world; such as when
predicting which sports teams are likely to win a competi-

439

https://doi.org/10.1017/S1930297500002473 Published online by Cambridge University Press

https://doi.org/10.1017/S1930297500002473


Judgment and Decision Making, Vol. 6, No. 6, August 2011 Quantitative process models 440

tion, which politician will win an election, or which cities
are likely to grow fastest in the number of inhabitants.

1.1 A case study of underspecified process
hypotheses

Numerous accessibility-based decision models have been
proposed, featuring concepts such as familiarity, fluency,
availability, or recognition (e.g., Dougherty, Gettys, &
Ogden, 1999; Jacoby & Dallas, 1981; Koriat, 1993;
Pleskac, 2007; Tversky & Kahneman, 1973). One such
model is the recognition heuristic (Goldstein & Gigeren-
zer, 2002). As suggested by its name, this simple decision
strategy operates on our ability to discriminate between
recognized alternatives that we have encountered in our
environment before, and unrecognized ones that we do
not remember to have seen or heard of before. In doing
so, the heuristic can help us to infer which of two alter-
natives (e.g., two cities, York and Stockport), one recog-
nized and the other not, has the larger value on an un-
known criterion (e.g., city size). The heuristic reads as
follows: If only one of two alternatives is recognized, in-
fer the recognized one to be larger.

The recognition heuristic is a noncompensatory model
for memory-based decisions: Even if further knowl-
edge beyond recognizing an alternative is retrieved, this
knowledge is ignored when the heuristic is used. Instead,
the decision is based solely on recognition. In contrast to
the recognition heuristic and related accessibility-based
heuristics (e.g., Schooler & Hertwig, 2005), many other
decision models posit that people evaluate alternatives by
using knowledge about their attributes as cues (Bröder &
Schiffer, 2003, Hauser & Wernerfelt, 1990; Lee & Cum-
mins, 2004; Payne et al., 1993). For instance, to infer
which of two cities is larger, a person could rely on one
of the classic compensatory unit-weight linear integra-
tion strategies (e.g., Dawes, 1979): The person could re-
call whether the cities have industry sites, airports, or fa-
mous soccer teams. For each city, the person could count
the number of positive and negative cues (e.g., having an
airport would be a positive cue and lacking one a neg-
ative cue) and then infer the city with the larger sum to
be larger (Einhorn & Hogarth, 1975; Gigerenzer & Gold-
stein, 1996; Huber, 1989). The assumption in such com-
pensatory models is that an alternative’s value on one cue
is traded off against its value on another cue.

1.2 Process hypotheses in the memory
paradigm

The recognition heuristic has triggered a debate about
what processes describe people’s decisions best when
they make inferences from the accessibility of memories:

Do people rely on this noncompensatory heuristic, ig-
noring further knowledge, or do they use compensatory
strategies instead? (Bröder & Eichler, 2006; Davis-
Stober, Dana, & Budescu, 2010; Dougherty, Franco-
Watkins, & Thomas, 2008; Erdfelder, Küpper-Tetzel, &
Mattern, 2011; Gaissmaier & Marewski, 2011; Gigeren-
zer & Brighton, 2009; Gigerenzer & Goldstein, 2011;
Gigerenzer, Hoffrage, & Goldstein, 2008; Glöckner &
Bröder, 2011; Goldstein & Gigerenzer, 2011; Hertwig,
Herzog, Schooler, & Reimer, 2008; Hilbig, Erdfelder,
& Pohl, 2010; Hilbig & Pohl, 2009; Hochman, Ayal,
& Glöckner, in 2010; Hoffrage, 2011; Marewski, Gaiss-
maier, Schooler, Goldstein, & Gigerenzer, 2009, 2010;
Marewski, Pohl, & Vitouch, 2010, 2011a, 2011b; Mc-
Cloy, Beaman, & Smith, 2008; B. R. Newell & Fernan-
dez, 2006; B. R. Newell & Shanks, 2004; Oeusoonthorn-
wattana & Shanks, 2010; Oppenheimer, 2003; Pachur,
2010, 2011; Pachur & Biele, 2007; Pachur & Hertwig,
2006; Pachur, Mata, & Schooler, 2009; Pachur, Todd,
Gigerenzer, Schooler, & Goldstein, 2011; Pohl, 2006;
2011; Reimer & Katsikopoulos, 2004; Richter & Späth,
2006; Scheibehenne & Bröder, 2007; Volz et al., 2006).

In this debate, many researchers have used the memory
paradigm shown in Figure 1. The time it takes a person
to make the decision—the decision time measured from
stimulus onset until the person presses a key—is used to
test hypotheses about the processes underlying the de-
cision (e.g., Hertwig et al., 2008; Hilbig & Pohl, 2009;
Marewski, Gaissmaier, Schooler, et al., 2010; Richter &
Späth, 2006; Volz et al., 2006). For instance, Pachur and
Hertwig (2006) hypothesized that recognition memory
would be more easily assessed than memories about cues,
enabling people to make decisions based on the recogni-
tion heuristic faster than decisions based on cues.

Importantly, although tests of such process hypothe-
ses are central to the debate about the recognition heuris-
tic, thus far the hypotheses put forward in this debate
lack precision. First, in the memory paradigm, in no
study were decision times actually quantitatively pre-
dicted. Rather, mostly qualitative (e.g., ordinal) decision
time hypotheses were tested. Second, in no study these
hypotheses took into account the interplay among per-
ceptual, memory, decision, intentional, and motor pro-
cesses governing decision times in the memory paradigm
(but see Marewski, 2008; Marewski & Schooler, 2011).
In a recent test of process hypotheses with the memory
paradigm, Hilbig and Pohl (2009), for example, derived
qualitative decision time hypotheses for the recognition
heuristic and compared them against corresponding hy-
potheses they derived from evidence accumulation pro-
cesses, as they have been outlined by B. R. Newell (2005)
and others (e.g., Lee & Cummins, 2004). Broadly speak-
ing, the assumption of such evidence accumulation pro-
cesses is that evidence (e.g., cues and other information)
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Figure 1: The memory paradigm. In a two-alternative forced-choice task, on a computer screen a person is first shown
a fixation cross, and thereafter presented with the names of two alternatives (e.g., two city names). The person’s task is
to infer which of the two has a larger value on the criterion (e.g., which of two cities is larger). To make this decision,
the person has to retrieve all information she wants to use from memory. For instance, the person may believe to
recognize a city’s name and additionally remember that the city has an industrial site, suggesting that it is a large city.
Once a person has made her decision, she presses a key to respond. Gigerenzer and Goldstein (1996) referred to such
experimental paradigms as inferences from memory.

for each of two alternatives is accumulated sequentially
until a decision threshold is reached (e.g., C cues are
retrieved) and a decision made (e.g., in favor of the al-
ternative with most accumulated evidence). In testing
their hypotheses, Hilbig and Pohl subsumed a number of
models under this broad notion of evidence accumulation,
including a connectionist parallel constraint satisfaction
model (Glöckner & Betsch, 2008), and decision field the-
ory (Busemeyer & Townsend, 1993). According to them,
their decision time data could be accounted for by com-
pensatory evidence accumulation models but were incon-
sistent with the recognition heuristic. However, Hilbig
and Pohl did not actually specify a single evidence accu-
mulation model, and correspondingly, they also did not
apply any model to their data. This is problematic, as dif-
ferent evidence accumulation models will make different
predictions, depending on the specific model and its pa-
rameter values. Moreover, the recognition heuristic on its
own does not make predictions about decision times in
the memory paradigm (see also Gigerenzer & Goldstein,
2011, for a discussion).

In the memory paradigm, decision times are subject,
at least, to the following: the time it takes to read alter-
natives’ names, the time it takes to judge alternatives as
recognized or unrecognized, the time it takes to retrieve
cues about the alternatives, the time it takes to make a de-
cision as to which alternative to pick, and the time it takes
to press a key. In addition a person’s intentions (e.g., to
respond as quickly as possible) can affect decision times.

As a result, decision time predictions warrant not only a
model of decision making, but also models of how deci-
sion processes interplay with other processes. The recog-
nition heuristic, as formulated by Goldstein and Gigeren-
zer (2002), remains silent about this interplay; and so do,
in fact, most other accessibility-based models of decision
making that have been tested in the memory paradigm, in-
cluding the evidence accumulation and parallel constraint
satisfaction models Hilbig and Pohl (2009) focused on.1

1.3 Overview

In this article, we will model the respective contributions
of perceptual, memory, decision, intentional, and motor
processes by quantitatively specifying a number of the

1The recognition heuristic has been proposed for the kind of
memory-based decisions that are the focus of this article (see Figure
1; e.g., Gigerenzer & Goldstein, 2011; Goldstein & Gigerenzer, 2002).
Using another (i.e., not memory-based) paradigm, Glöckner and Bröder
(2011) tested decision time hypotheses they derived from Glöckner and
Betsch’s (2008) parallel constraint satisfaction model against decision
time hypotheses they derived from the recognition heuristic. The testing
of these decision time hypotheses represents progress over past studies.
However, these hypotheses also fall short of the type of quantitative
decision time predictions we advocate. First, on their own, both the
recognition heuristic and the parallel constraint satisfaction model re-
main mute about the interplay of decision, memory, intentional, and
motor processes on which decision times in the memory paradigm de-
pend. Second, Glöckner and Bröder’s hypotheses concerning decision
times are not based on absolute decision times, but on contrast predic-
tions (i.e., one decision strategy will take n-times longer than the other).
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process hypotheses that have been formulated in the lit-
erature in a cognitive architecture. A cognitive archi-
tecture is a quantitative theory that applies to a broad
array of behaviors and tasks, formally integrating theo-
ries of memory, perception, action, and other aspects of
cognition (for an introduction to cognitive architectures,
see e.g., Gluck, 2010). Among the architectures devel-
oped to date (e.g., EPIC, Meyer & Kieras, 1997; Soar,
A. Newell, 1992), the ACT-R architecture (e.g., Ander-
son, et al., 2004) provides perhaps the most detailed ac-
count of the various processes that may play a role in
accessibility-based decisions. ACT-R has been success-
fully used to explain phenomena in a variety of fields,
ranging from list memory (Anderson, Bothell, Lebiere,
& Matessa, 1998), visuospatial working memory (e.g.,
Lyon, Gunzelmann, & Gluck, 2008), diagnostic reason-
ing (Mehlhorn, Taatgen, Lebiere, & Krems, in press), and
probability learning (Gaissmaier, Schooler, & Rieskamp,
2006) to flying (Gluck, Ball, & Krusmark, 2007), driving
(Salvucci, 2006), and the teaching of thousands of chil-
dren in U.S. high schools with tutoring systems (Ritter,
Anderson, Koedinger, & Corbett, 2007). Here, we will
use ACT-R to implement 39 process models. These mod-
els are the recognition heuristic, as well as various other
noncompensatory and compensatory decision strategies,
including models that incorporate central aspects of inte-
gration, connectionist, evidence accumulation, and race
models. In a model competition, we will test the 39 pro-
cess models’ ability to predict people’s decisions and de-
cision times in the memory paradigm.

Before we start, three comments are warranted. First,
the goal of this article is not so much to advocate any par-
ticular process model, but rather, using the debate about
the recognition heuristic as a case study, to provide a
methodological primer on how architectures like ACT-R
can be used to lend precision to the theorizing about deci-
sion processes. That is, while we also test process models
against each other, the model competition’s objective is to
illustrative methodological principles, and not necessar-
ily to identify the very best model. For those interested
in identifying the best model, the main contribution of
this article is, perhaps, to provide 39 precisely specified
process models, cast into the computer code of a detailed
cognitive architecture, and ready to be tested in studies
beyond the limited data we use here.

Second, there are many research programs that are
built around quantitative models (e.g., Busemeyer &
Townsend, 1993; Ratcliff & Smith, 2004; Rumelhart,
McClelland, & the PDP Research Group, 1986). Cer-
tainly, our critique of the lack of specification of pro-
cess hypotheses only applies to these models to the ex-
tent that they remain silent about the interplay of percep-
tual, memory, decision, intentional, and motor processes.
Moreover, we are not the first who discuss decision strate-

gies such as the recognition heuristic and related mod-
els in the context of ACT-R or other architectures (e.g.,
Dougherty et al., 2008; Gaissmaier, Schooler, & Mata,
2008; Hertwig et al., 2008; Marewski & Schooler, 2011;
Nellen, 2003; Schooler & Hertwig, 2005; Van Maanen &
Marewski, 2009).

Third, while it is possible to test evidence accumula-
tion, the recognition heuristic, and other models against
each other without implementing these models in a cogni-
tive architecture, such direct model comparisons are not
without problems, because these models tend to be spec-
ified at different levels of description and computational
precision, resulting in different levels of detail and pre-
cision of the models’ predictions. For instance, many
evidence accumulation models are specified mathemati-
cally and include several free parameters (e.g., Ratcliff
& Smith, 2004). The recognition heuristic, in turn, con-
sists of a verbally formulated if-then statement. (If one
alternative is recognized, then choose the recognized al-
ternative.) While the parameterized evidence accumula-
tion models can yield predictions about decision time dis-
tributions, on its own the recognition heuristic’s if-then-
statement does not predict such distributions. Much the
same can be said with respect to comparisons of other
models, including the aforementioned parallel constraint
satisfaction and classic integration models. By imple-
menting models of different levels of description and
specificity in one architectural modeling framework, we
make the models and their predictions comparable, pro-
viding a basis for future model tests beyond the ones we
will provide below.

The article is structured as follows. First, we will de-
scribe the experimental data we used to test the mod-
els. Second, we will explain the methodological prin-
ciples guiding our modeling. Third, we will provide an
overview of ACT-R as well as of the models we imple-
ment. Fourth, we will illustrate how these models’ ability
to predict people’s decisions and decision times can be
tested.

2 Experimental data
We developed models for memory-based decisions about
city size, which is the task most studies on the recogni-
tion heuristic have used (Figure 1). Specifically, we re-
analyze Pachur, Bröder, and Marewski’s (2008) Experi-
ments 1 and 2.2 These experiments are well-suited for our
purposes, because they entail good control over peoples’

2When this article was accepted for publication, a part of Pachur et
al.’s (2008) data had never been published. This was the case for the
reaction times recorded in Pachur et al’s experiments, which are mod-
eled using ACT-R below. After this article’s acceptance for publication,
the authors learned about a new (then still unpublished) manuscript by
Pachur (2011), in which an analysis of the reaction times is reported.
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Table 1: Cues taught in the learning tasks of Experiments
1 and 2.

City

Cue Aber-
deen

Bris-
tol

Notting-
ham

Shef-
field

Brigh-
ton York

Industry + + + + +/−a +/−a

Airport + + − − − −
Soccer + + + + − −

Note. + = positive cue value. − = negative cue value.
a The design of Experiment 1 and 2 differed slightly.
In Experiment 1, Pachur et al. (2008) taught partici-
pants positive values on the industry cue for Brighton
and York. In Experiment 2, Pachur et al. taught partic-
ipants negative values on the industry cue for Brighton
and York.

recognition and cue-knowledge, this way simplifying our
modelling exercise.

2.1 Summary of Pachur et al.’s (2008) pre-
studies

To create stimulus materials for their experiments, Pachur
et al. (2008) conducted pre-studies wherein they pre-
sented participants with names of British cities and had
them indicate whether they had heard or seen the names
prior to participating in the study, that is, whether they
recognized them. Six highly recognized and 10 poorly
recognized cities (R cities and U cities, respectively) were
selected as stimuli. Pachur et al. also surveyed what
people thought were useful cues for inferring the cities’
sizes to establish a stimulus set of cues. These cues were
whether a city had significant industry (industry cue), an
international airport (airport cue), or a premier league
soccer team (soccer cue).

2.2 Summary of Pachur et al.’s (2008) Ex-
periment 1

Learning task. The experiment was run with a new
group of participants (N = 40, 19 females; mean age =
24.6 years). The experiment started with a learning task
(as used by Bröder & Eichler, 2006; Bröder & Schiffer,
2003), in which participants were taught the three cues
about the six R cities. During learning, cities and cues
were presented repeatedly in a random order until par-
ticipants correctly recalled all cities’ values on the cues.
Table 1 summarizes the cues.

Decision task. After having learned the cues, partici-
pants performed the decision task. In this task, 120 pairs

of British cities were presented on a computer screen (one
city on the left side of the screen, the other on the right).
Participants were instructed to choose the one with more
inhabitants by pressing a key (Figure 1).

For each trial, a pair of cities was drawn at random
from three types of city pairs. In the main type (i), six R
cities that were mostly recognized in the pre-studies were
combined with 10 cities that were mostly unrecognized
in the pre-studies, yielding 60 RU pairs. These 60 pairs
were critical for Pachur et al.’s (2008) and our purposes,
because they were most likely to allow people to apply
the recognition heuristic. We used these pairs to test our
models. To balance the presentation frequency of the R
and U cities as much as possible, (ii) there were 30 filler
pairs consisting of two cities that were mostly unrecog-
nized in the pre-studies (UU pairs) as well as (iii) 30 filler
pairs consisting of two recognized cities (RR pairs).

Recognition task. The decision task was followed
by a recognition task. Participants were presented all
cities in a random order and had to indicate for each city
whether they had heard of it before participating in the
experiment. The purpose of this recognition task was to
make sure that the RU pairs, which were identified based
on the pre-studies, also represented RU pairs for the par-
ticipants of Experiment 1, whose recognition judgments
were likely to be similar but not identical to the recogni-
tion judgments made in the pre-studies. We used partici-
pants’ responses in this task to model their recognition of
cities.

Cue-memory task. After the recognition task, partici-
pants performed a cue-memory task in which they had to
reproduce the cue values (“yes” or “no”) they had learned
for the six R cities in the learning task. If they could not
recall the correct values, they were allowed to respond
“don’t know”. The purpose of this task was to test how
well participants remembered the cues they were taught.
We used participants’ responses in this task to model their
retrieval of cues; for instance, whether they believed a
city to have an airport.

2.3 Summary of Pachur et al.’s (2008) Ex-
periment 2

In Experiment 2 (N = 40; 25 females; mean age = 25.2
years), for two cities the positive values on the industry
cue were replaced by negative ones, such that recognition
was contradicted by three negative cues (Table 1). In all
other respects, Experiment 2 was identical to Experiment
1.
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3 Model-testing approach:
Methodological principles

To strengthen our modeling efforts, we embraced five
methodological principles.

Nested modeling. Any new model should be related to
its own precursor (e.g., including it as special cases) and
should be tested on data that the old model was able to ac-
count for (Grainger & Jacobs, 1996; Jacobs & Grainger,
1994). Our models implement the qualitative hypotheses
discussed in the literature in a stepwise, nested fashion,
and are tested on Pachur et al.’s (2008) data.

Competitive modeling. A model’s ability to account
for data should not be evaluated in isolation, but in model
comparisons (e.g., Fum, Del Missier, & Stocco, 2007;
Gigerenzer & Brighton, 2009; Marewski, Schooler, &
Gigerenzer, 2010). In such comparisons, a model’s abil-
ity to account for data can be compared to that of com-
peting models. For instance, this way it is possible to
learn that no model accounts for the data perfectly, but
some account for them better than others. This way it
is also possible to establish benchmarks in model eval-
uation; for example, a new model should be able to ac-
count for data better than previously existing models that
are already known to account well for that data. Unfor-
tunately, this competitive approach to model testing has
rarely been taken in recognition heuristic research (but
see Glöckner & Bröder, 2011; Marewski, Gaissmaier,
Schooler, et al., 2009, 2010, Pachur & Biele, 2007, for
exceptions). Here, we test all models competitively.

Constrained modeling. Models should be tested by
constraining their parameters in separate tasks (Ander-
son, 2007; Newell, 1990). We calibrated all models’ free
parameters to the tasks of Experiment 1, using a stepwise
procedure to constrain the parameter space. Specifically,
we first fitted the parameters associated with recogni-
tion and cue retrieval on data of the recognition and cue-
memory tasks of Experiment 1, creating separate ACT-R
models of recognition and cue retrieval. With these pa-
rameters fixed, we then estimated the remaining parame-
ters from participants’ decisions and decision times in the
decision task of Experiment 1 (Appendix A).

Predictive modeling. We use the term “predicting” (or
“generalization”) to refer to situations in which a model’s
free parameters are fixed such that they cannot adjust to
the data on which the model is tested. In contrast, we
reserve the term “fitting” (or “calibration”) to refer to
situations in which a model’s parameters are allowed to
adapt to the data. Predicting data well lends credence
to a model and is one standard by which models should
be evaluated (e.g., Busemeyer & Y. M. Wang, 2000;
Marewski & Olsson, 2009; Pitt, Myung, & S. Zhang,
2002; Roberts & Pashler, 2000). We used the parameters
fitted on Experiment 1 to predict behavior in Experiment

2.3

Distributional modeling. Rather than just predicting
means of behavioral data, we strive to predict the asso-
ciated distributions, which further helps evaluating our
ACT-R models’ ability to account for human data (for a
related approach, see Ratcliff & Smith, 2004). Next, we
will turn to ACT-R and these models.

4 Thirty-nine ACT-R models of in-
ference

ACT-R describes human cognition as a set of indepen-
dent modules that interact through a production system
(Figure 2). The production system consists of production
rules (i.e., if–then rules) whose conditions (i.e., the “if”
parts of the rules) are matched against the modules. If the
conditions of a production rule are met, then the produc-
tion rule can fire. In this case, the action specified by the
production rule is carried out.

Each module implements different cognitive pro-
cesses. The declarative module allows information stor-
age in and retrieval from declarative memory, the inten-
tional module keeps track of a person’s goals, and the
imaginal module holds information necessary to perform
the current task. By this token, the imaginal module is
comparable to the focus of attention in working memory
(e.g., Anderson, 2007; Borst, Taatgen, & Van Rijn, 2010;
Oberauer, 2002). A visual module for perception and a
manual module for motor actions (e.g., pressing a key on
a computer keyboard) are used to simulate interactions
with the world. While the different modules can operate
in parallel, information within each module can only be
processed in a serial manner (Byrne & Anderson, 2001).

In coordinating the modules, the production rules can
act only on information that is available in buffers, which
can be thought of as processing bottlenecks (Salvucci &
Taatgen, 2008), linking the modules’ contents to the pro-
duction rules. For instance, the production rules cannot
access all contents of the declarative module, but only
the part of information that is currently available in the
retrieval buffer.

ACT-R distinguishes a symbolic and a subsymbolic
system. The symbolic system is composed of the pro-
duction rules as well as the modules and buffers. Access
to the information stored in the modules and buffers is
determined by the subsymbolic system. This system is
cast as a set of equations and determines, for instance, the
timing of memory retrieval. Before turning to these equa-
tions, let us provide two examples of the ACT-R models
we implemented.

3The participants of Pachur et al.’s (2008) experiments were re-
cruited and tested in the same laboratories.
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Figure 2: The organization of ACT-R. Note that the modules of the architecture have been mapped onto brain regions,
enabling detailed process predictions of functional magnetic resonance imaging (fMRI) data (see e.g., Anderson,
Fincham, Qin, & Stocco, 2008). While it is beyond the scope of this article to test fMRI predictions, we would like to
point out that all models reported in this article actually allow making such predictions, inviting future model tests.
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4.1 Implementing accessibility-based deci-
sion strategies in ACT-R: Two examples

Our ACT-R models perform the same decision task as
Pachur et al.’s experimental participants: They “read” the
city names off the computer screen, process them, decide
which city is larger, and enter the response by “pressing”
a key.

Figure 3 shows the processing stream of Model 1,
which is one of our recognition heuristic implementa-
tions. As can be seen, the various processing steps as-
sumed by the model are coordinated by a set of produc-
tion rules. Specifically, the model assumes that people
first read the names of both cities. In doing so, the model
attempts to retrieve a memory trace of the cities’ names,
called a chunk. Chunks are facts like “York is a city” or
“York has industry” and model people’s recognition of
city names and their cue knowledge, respectively. If a
chunk representing the name of one city can be retrieved,
then this city is recognized.4 In Model 1, retrieving the
chunk of one city but not the chunk of the other is suffi-
cient information to enter the recognized city as the larger
city.

To compare, Figure 4 shows one of the compensatory
strategies we implemented. As can be seen, Model
4.H.PN assumes that, after assessing recognition, a per-
son will retrieve chunks about the recognized city, such
as the industry cue. The retrieved cues are stored in
the imaginal buffer. As we will explain below, from the
imaginal buffer the cues spread a memory signal called

4In modeling recognition, we follow Anderson et al. (1998) and
Schooler and Hertwig (2005) in assuming that a chunk’s retrieval im-
plies recognizing it.

activation to intuitive knowledge that large cities tend to
have airports, premier league soccer teams, and signifi-
cant industry. In the model, this knowledge is labeled big
chunk. If the big chunk receives sufficient spreading ac-
tivation from the retrieved cues, then Model 4.H.PN will
recall that the recognized city is a large city and enter this
city as response. If the big chunk’s activation is too weak,
then the big chunk will not be retrieved. Consequently,
the model has no reason to assume that the recognized
city is large and will respond with the unrecognized city.
The assumption is that such subsymbolic processes de-
scribe how people make implicit and intuitive, rather than
explicit, deliberate judgments.

As can be seen by comparing the x-axes of Figures 3
and 4, decision times are longer in Model 4.H.PN than
in Model 1, because Model 4.H.PN assumes more pro-
cessing steps than Model 1. In what follows, we give a
short overview of the subsymbolic processes that deter-
mine the timing of the processing steps in these and all
other models.

4.2 Subsymbolic memory processes as-
sumed by ACT-R

Access to chunks such as “York is a city” or “York has in-
dustry” is determined by the chunk’s activation (Lovett,
Daily, & Reder, 2000). The activation, Ai, of chunk i
(e.g., a city or a cue) reflects the likelihood that the chunk
will be needed in the future (Anderson & Schooler, 1991)
and is determined by three components—the chunk’s
base-level activation, Bi, the spreading activation the
chunk receives from the current context, Si, and a noise
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Figure 3: Processing stream for Model 1, one of our implementations of the recognition heuristic. Light grey boxes
depict processing an unrecognized city name; white boxes depict processing a recognized city name. Dark grey boxes
depict actions related to the response. Note that predicted decision times represent examples; the model’s decision
time predictions can vary across different decision trials, for instance, as a function of noisy perceptual and motor
processes (Appendix A). Production rules are stylized representations of the LISP code productions rules that have
been used to implement the models in ACT-R.
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1 If there is visual information on the screen that has not been attended before 
Then move the attention to this information 
 

2 If the information on the screen is attended 
Then read and encode it in the visual buffer 
 

3 If the name of a city has been read 
Then attempt to retrieve a chunk representing that city name 
 

4 If no chunk representing the city name (here city 1) can be retrieved 
Then encode in the imaginal buffer that this city is unrecognized 
 

5 If a chunk representing the city name (here city 2) can be retrieved 
Then encode in the imaginal buffer that this city is recognized 
 

6 If a recognized and an unrecognized city are encoded in the imaginal buffer 
And the goal is to decide which city is larger 
Then press a key to enter the recognized city as larger than the unrecognized city

component, ε:
Ai = Bi + Si + ε (1)

The first component that influences a chunk’s activa-
tion, Ai, its base-level activation, Bi, reflects the chunk’s
past usefulness:

Bi = ln

(
n∑
k=1

t−dk

)
(2)

where n is the number of presentations of chunk i, tk is the
time since the kth presentation, and d is a decay parame-
ter. Consequently, the more often a city name or a cue
was encountered (e.g., in an experimental task) and the
more recent these encounters were, the higher the city’s
or cue’s activation.5

5In modeling Pachur et al.’s (2008) experimental tasks, we assume
the base level activations (i.e., of the cities, cues, and the big chunk) to
vary only across the time it takes to make a decision in a trial in the

The second component that influences a chunk’s acti-
vation, Ai, spreading activation, Si, reflects the chunk’s
usefulness in the current context. The amount of spread-
ing activation is determined by the chunk’s association to
other chunks that are currently stored in the buffers (An-
derson & Lebiere, 1998). In our models, reading a city
name and encoding it in the imaginal buffer would, for
example, increase the likelihood of a cue associated with
this city being needed. The city would spread activation

decision task, as well as across the times it takes to make a judgment
in a trial of the recognition and cue memory tasks, respectively. For
instance, decisions that take a long time are more likely to allow for
the base level activations to decay away than decisions that are made
quickly. For simplicity, we re-set the base level activations to their ini-
tial values (see Appendix A) each time a new trial was presented. For
example, upon presentation of a trial consisting of the cities of York and
Stockport, the base level activations would be allowed to vary until a de-
cision is made for that trial. For the next trial, say the cities of Bristol
and Poole, the base level activations would first be re-set to their initial
values, and then be allowed to vary until a decision is made in that trial.
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Figure 4: Processing stream for Model 4.H.PN. Light grey boxes depict processing an unrecognized city name; white
boxes depict processing a recognized city name. Striped boxes depict actions related to the retrieval of cues. Dark
grey boxes depict actions related to the response. Note that predicted decision times represent examples; the model’s
decision time predictions can vary across different decision trials, for instance, as a function of noisy perceptual and
noisy motor processes, or as a function of whether to-be-retrieved cues are positive, negative, or unknown (Appendix
A). As we explain in detail below, also the order in which cues are processed (i.e., productions 6–11) will vary across
trials (see also Footnote 7). Production rules are stylized representations of the LISP code productions rules that have
been used to implement the models in ACT-R.
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Production rules 
 

1–5 Identical to in Model 1 
 

6 If a recognized and an unrecognized city are encoded in the imaginal buffer 
And it has not yet been probed whether the recognized city has significant industry 
Then try to retrieve information indicating whether the city has such industry 
 

7 If information that the recognized city has significant industry has been retrieved  
Then encode in the imaginal buffer that this city has significant industry 
 

8 If a recognized and an unrecognized city are encoded in the imaginal buffer 
And it has not yet been probed whether the recognized city has a premier league soccer team 
Then try to retrieve information indicating whether it has such a team 
 

9 If information is retrieved that the recognized city has no premier league soccer team  
Then encode in the imaginal buffer that the recognized city the has no premier league soccer team 
 

10 If a recognized and an unrecognized city are encoded in the imaginal buffer 
And it has not yet been probed whether the recognized city has an international airport 
Then try to retrieve information indicating whether it has such an airport 
 

11 If information can be retrieved that the recognized city has no international airport 
Then note in the imaginal buffer that the recognized city has no international airport 
 

12 If a recognized and an unrecognized city are encoded in the imaginal buffer  
And information indicating whether the recognized city has industry, soccer and an airport 
Then try to retrieve the big chunk 
 

13 If the big chunk can be retrieved 
Then press a key to enter the recognized city as larger than the unrecognized city  

https://doi.org/10.1017/S1930297500002473 Published online by Cambridge University Press

https://doi.org/10.1017/S1930297500002473


Judgment and Decision Making, Vol. 6, No. 6, August 2011 Quantitative process models 448

to the cue as described by Equation 3:

Si =
∑
j

WjSji, (3)

where cue i receives spreading activation, Si, from city
j. The amount of spreading activation Si is determined
by the associative strength, Sji, between i and j, which is
weighted by the source activation, W j, of j in the imaginal
buffer. The associative strengths, Sji, between chunks is
approximated with

Sji = S − ln(fanji), (4)

where S is a parameter for the maximum associative
strength between chunks and fan is the number of chunks
i that are associated with a chunk j. Consequently, the
more cues are associated with a city in memory, the lower
the associative strength between the city and each of the
cues.

The third component that influences a chunk’s activa-
tion, Ai, is the retrieval noise, ε. It is added to the acti-
vation of a chunk when a retrieval request is made. With
s being a free parameter, ε is generated from a logistic
distribution with a mean of zero and a variance of

σ2 =
π2

3
s2. (5)

Only chunks that exceed a certain amount of activa-
tion, Ai, as defined by the retrieval threshold, τ , can be
retrieved. For instance, only cues with activations falling
above τ would be retrieved. The retrieval probability, p,
is:

p =
1

1 + e
τ−Ai
s

. (6)

If a chunk i can be retrieved, the time required for the
retrieval is determined by the latency factor, F, and the
activation of the chunk, Ai:

retrieval time = Fe−Ai . (7)

Thus, the more strongly city names and cues are activated
in memory the faster they can be retrieved.

If no chunk matches a retrieval request or if the match-
ing chunk with the highest activation is below the re-
trieval threshold, a retrieval failure will occur. For exam-
ple, reading the name of an unknown city will result in a
retrieval failure. The time it takes to note such a failure
is:

retrieval time = Fe−τ . (8)

4.3 Detailed description of the 39 models
The above-described subsymbolic memory processes as
well as the corresponding parameter values are identical

in all models and the models also do not differ with re-
spect to the perceptual and motor processes they assume
(Appendix A).

However, the models do differ with respect to the de-
cision processes. In implementing these processes, we
had to make a series of assumptions, for instance, about
the order in which people will assess recognition as op-
posed to cues. All assumptions are grounded in the de-
cision, memory, and ACT-R literatures. Often, however,
these literatures offer more than one plausible assump-
tion. Following the principle of competitive modeling,
we dealt with such competing assumptions by creating
different models to implement them, which allowed us
to test the assumptions against each other. Following the
principle of nested modeling, we additionally combined
part of these assumptions with each other, resulting in 39
models. These models are summarized in Table 2.

As can be seen in Table 2, the labeling of the mod-
els is organized around eight main classes: the Model
1, 2, 3, 4, 5, 1&3, 1&4, and 1&5 class, with each
class embodying different sets of assumptions. Specifi-
cally, as we will discuss in more detail below, the Model
1 class implements what one may loosely6 term non-
compensatory processes; the Model 2 and 3 classes im-
plement noncompensatory and compensatory processes;
and the Model 4 and 5 classes implement only com-
pensatory processes. The Model 1&3, 1&4, and 1&5
classes were generated by partially combining the Model
1, 3, 4, and 5 classes with each other. For exam-
ple, combining Model 1 and Model 3 resulted in the
Model 1&3 class. In what follows we will describe the
models in more detail. Complete model codes can be
downloaded from http://www.ai.rug.nl/~katja/models or
http://journal.sjdm.org/vol6.6.html.

Primacy of recognition. As a first processing step,
all models read the city names (in Table 2a, column la-
beled retrieve & encode city names). If they can retrieve
a city, they encode it as recognized in the imaginal buffer.
If they cannot retrieve a city, they encode it as unrecog-
nized. Put differently, we assume that people will first as-
sess their recognition of the city names before retrieving
further cues. This assumption is grounded in our exper-
imental setup, in which participants were shown the city
names but no cues (Figure 1). Moreover, this assump-
tion is consistent with the literature, which suggest that

6Note that we use the terms “noncompensatory” and “compen-
satory” (e.g., compensatory stopping and decision rules) in a loose
sense to help readers to map the verbal descriptions of our ACT-R
models to the existing literature on the recognition heuristic. However,
there is, perhaps, no one-to-one mapping. A more adequate way of
thinking about our models might be that they represent the dimension
recognition-based versus cue-based, which in fact also reflects the di-
chotomy on which the controversy about noncompensatory versus com-
pensatory process models of decision making has focused on in the
recognition literature. We would like to point interested readers to our
model codes for precise information on what our models look like.
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Table 2a: Overview of the perception and memory processes used in the 39 models.
Retrieve and

encode city names
Retrieve

positive cues
Retrieve

negative cues
Number of

retrieved cuesa
Retrieved cues

can be forgotten
Encode cues in the

imaginal buffer

Model 1 class: Stopping and decision rules noncompensatory—simple model
Model 1 X 0

Model 2 class: Stopping rule compensatory, decision rule noncompensatory—simple models
Model 2.PN X X X 3
Model 2.P X X 3

Model 3 class: Stopping rule compensatory, decision rule noncompensatory—simple models
Model 3.PN X X X 3 X
Model 3.P X X 3 X

Model 1&3 class: Stopping rule noncompensatory and compensatory, decision rule noncompensatory—race models
Model 1&3.PN X X X 0 to 3 X
Model 1&3.P X X 0 to 3 X
Model 1&3.PN.F X X X 0 to zb X X
Model 1&3.P.F X X 0 to zb X X

Model 4 class: Stopping rule compensatory, decision rule compensatory—simple models
Model 4.H.PN X X X 3 X
Model 4.H.P X X 3 X
Model 4.L.PN X X X 3 X
Model 4.L.P X X 3 X

Model 1&4 class: Stopping rule noncompensatory and compensatory, decision rule noncompensatory and compensatory—race models
Model 1&4.H.PN X X X 0 to 3 X
Model 1&4.H.P X X 0 to 3 X
Model 1&4.H.PN.F X X X 0 to zb X X
Model 1&4.H.P.F X X 0 to zb X X
Model 1&4.L.PN X X X 0 to 3 X
Model 1&4.L.P X X 0 to 3 X
Model 1&4.L.PN.F X X X 0 to zb X X
Model 1&4.L.P.F X X 0 to zb X X

Model 5 class: Stopping rule compensatory, decision rule compensatory—simple models
Model 5.1.PN X X X 1 to 3 X
Model 5.1.P X X 1 to 3 X
Model 5.2.PN X X X 2 to 3 X
Model 5.2.P X X 2 to 3 X
Model 5.3.PN X X X 3 X
Model 5.3.P X X 3 X

Model 1&5 class: Stopping rule noncompensatory and compensatory, decision rule noncompensatory and compensatory—race models
Model 1&5.1.PN X X X 0 to 3 X
Model 1&5.1.P X X 0 to 3 X
Model 1&5.1.PN.F X X X 0 to zb X X
Model 1&5.1.P.F X X 0 to zb X X
Model 1&5.2.PN X X X 0 to 3 X
Model 1&5.2.P X X 0 to 3 X
Model 1&5.2.PN.F X X X 0 to zb X X
Model 1&5.2.P.F X X 0 to zb X X
Model 1&5.3.PN X X X 0 to 3 X
Model 1&5.3.P X X 0 to 3 X
Model 1&5.3.PN.F X X X 0 to zb X X
Model 1&5.3.P.F X X 0 to zb X X

Note. PN = Positive and negative cues. P = positive cues. F = forgetting cues. a As retrieved cues, we count all (positive, negative, and
unknown) cue values that have been probed in memory. b The maximum number of retrieved cues is variable, because cues can be retrieved
again when they are forgotten. For a description of parameter settings, see Appendix A; for a description of motor and perceptual processes,
see Appendix A and http://act-r.psy.cmu.edu/; for model codes see http://www.ai.rug.nl/~katja/models or http://journal.sjdm.org/vol6.6.html.
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Table 2b: Overview of the decision process and its outcome for the 39 models.

Information used in the decision process Outcome of the decision process

Use recognition
to choose

between cities

Use cues to
choose between

cities

Use cues via
sub-symbolic

system

Use cues via
symbolic system

Always choose
recognized city

Sometimes
choose

unrecognized
city

Decision time is
influenced by

cues

Model 1 class: Stopping and decision rules noncompensatory—simple model
Model 1 X X

Model 2 class: Stopping rule compensatory, decision rule noncompensatory—simple models
Model 2.PN X X X
Model 2.P X X X

Model 3 class: Stopping rule compensatory, decision rule noncompensatory—simple models
Model 3.PN X X X
Model 3.P X X X

Model 1&3 class: Stopping rule noncompensatory and compensatory, decision rule noncompensatory—race models
Model 1&3.PN X X X
Model 1&3.P X X X
Model 1&3.PN.F X X X
Model 1&3.P.F X X X

Model 4 class: Stopping rule compensatory, decision rule compensatory—simple models
Model 4.H.PN X X X X
Model 4.H.P X X X X
Model 4.L.PN X X X X
Model 4.L.P X X X X

Model 1&4 class: Stopping rule noncompensatory and compensatory, decision rule noncompensatory and compensatory—race models
Model 1&4.H.PN X X X X X
Model 1&4.H.P X X X X X
Model 1&4.H.PN.F X X X X X
Model 1&4.H.P.F X X X X X
Model 1&4.L.PN X X X X X
Model 1&4.L.P X X X X X
Model 1&4.L.PN.F X X X X X
Model 1&4.L.P.F X X X X X

Model 5 class: Stopping rule compensatory, decision rule compensatory—simple models
Model 5.1.PN Xa X X X X
Model 5.1.P Xa X X X X
Model 5.2.PN Xa X X X X
Model 5.2.P Xa X X X X
Model 5.3.PN Xa X X Xb Xb X
Model 5.3.P Xa X X X X

Model 1&5 class: Stopping rule noncompensatory and compensatory, decision rule noncompensatory and compensatory—race models
Model 1&5.1.PN X X X X X
Model 1&5.1.P X X X X X
Model 1&5.1.PN.F X X X X X
Model 1&5.1.P.F X X X X X
Model 1&5.2.PN X X X X X
Model 1&5.2.P X X X X X
Model 1&5.2.PN.F X X X X X
Model 1&5.2.P.F X X X X X
Model 1&5.3.PN X X X Xb Xb X
Model 1&5.3.P X X X X X
Model 1&5.3.PN.F X X X Xb Xb X
Model 1&5.3.P.F X X X X X

Note. PN = Positive and negative cues. P = positive cues. F = forgetting cues. a Models of the Model 5 class use recognition to decide between
cities if they cannot reach their decision criterion of C cues. b In Experiment 1, the PN versions of the Model 5.3 and 1&5.3 classes always
choose recognized cities, because these models require at least three negative cues to choose unrecognized cities (C = 3). In Experiment 2, the
models sometimes choose unrecognized cities, because in this experiment cases with three negative cues occurred (Table 1).
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familiarity (i.e., recognition) arrives on the mental stage
earlier than recollection (e.g., Gronlund & Ratcliff, 1989;
Hertwig et al., 2008; Hintzman & Curran, 1994; McEl-
ree, Dolan, & Jacoby, 1999; Pachur & Hertwig, 2006;
Ratcliff & McKoon, 1989; Volz et al., 2006).

The models differ in the steps that are executed after
recognition has been assessed. Whereas Model 1 bases
decisions only on recognition, the remaining 38 models
additionally retrieve cues. In all of these 38 models, the
retrieval of cues is instantiated by three sets of produc-
tion rules, which attempt to retrieve a city’s value on the
soccer, industry, and airport cues, respectively. If such a
retrieval attempt is successful, the cue value is retrieved
from memory. If the attempt is not successful (a retrieval
failure occurs), the value of this cue is unknown to the
model. (For simplicity, in both cases we speak of the re-
spective cues as having been “retrieved”, because, even
if the cue value is unknown, the cue has been probed in
memory.) Which production fires first, and correspond-
ingly, which cue is retrieved first, is determined at ran-
dom. We implemented this random cue retrieval order,
because during the learning task all cues were presented
equally often in random order until they were remem-
bered perfectly, making it equally likely for a person to
remember that a city has a premier league soccer team,
a significant industry, or an international airport, respec-
tively.

Positive and negative cues. It has been argued
that people are more likely to use positive cues rather
than negative ones (Dougherty et al., 2008; Glöckner &
Bröder, 2011). We incorporated this hypothesis in the
models. As can be seen in Table 2a, except for Model
1, which does not retrieve any cues, for all models we
created two versions, one that retrieves positive and neg-
ative cues (labeled PN version, e.g., Model 2.PN) and
one that retrieves only positive cues (labeled P version;
e.g., Model 2.P). Note that retrieving negative cues is not
necessary to decide in favor of unrecognized cities (see
descriptions of Model 4 and Model 1&4 below). Also
note that we assume positive cues to be more strongly ac-
tivated and therefore to be retrieved faster than negative
ones (Appendix A).

Model 1, 2, and 3 classes: Models with noncom-
pensatory decision rules. As mentioned above, Model
1 assesses recognition only, always inferring recognized
cities to be larger than unrecognized ones. Also Models
2.PN, 2.P, 3.PN, and 3.P always infer recognized cities to
be larger than unrecognized ones. Yet, these four models
additionally retrieve cues. Adding yet another processing
step, Models 3.PN and 3.P do not only retrieve the cues,
but also encode their values (e.g, in Model 3.PN: positive,
negative, or unknown) in the imaginal buffer. This encod-
ing is time costly (see Appendix A, imaginal-delay), but
it allows the cues to be available in working memory (i.e.,

in the imaginal buffer) for further processing steps and to
spread activation to other information in memory.

In the terminology often used to describe the recog-
nition and related heuristics, in Models 2.PN, 2.P, 3.PN,
and 3.P what one may term “compensatory processes”
govern the models’ stopping rules, that is, the models’
rules for deciding when to stop information retrieval, but
“noncompensatory processes” direct the models’ deci-
sion rules, that is, the rules on how available information
is used to make a decision. In Model 1, in contrast, both
the stopping and the decision rules are noncompensatory.

Model 1 corresponds to what we deem to be the sim-
plest recognition heuristic implementation; Models 2.PN,
2.P, 3.PN, and 3.P in turn, also implement the recog-
nition heuristic, but incorporate more recent hypotheses
about the heuristic’s stopping rule (Gigerenzer & Gold-
stein, 2011, p. 112; Pachur et al., 2008, p. 205). For ex-
ample, the compensatory stopping rule in Model 3.PN
will cause the model to stop information retrieval when
it has retrieved and encoded the information of all three
cues. The noncompensatory decision rule will then cause
the model to ignore the cues and to decide based on the
recognition of the cities.

Model 4 and 5 classes: Models with compensatory
decision rules. The Model 4 and 5 classes implement
both compensatory stopping and compensatory decision
rules. As such, these models are representatives of the
type of decision strategies that is often discussed as an-
tipode to both the recognition heuristic and related non-
compensatory heuristics (e.g., Bergert & Nosofsky, 2007;
Bröder & Eichler, 2006; Bröder & Gaissmaier, 2007;
Bröder & Schiffer, 2003; Glöckner & Hodges, 2011;
Hilbig & Pohl, 2009; Mata et al., 2007; B. R. Newell
& Fernandez, 2006; B. R. Newell & Shanks, 2004; Oeu-
soonthornwattana & Shanks, 2010; Pohl, 2006; Richter
& Späth, 2006; Rieskamp & Hoffrage, 2008). Specifi-
cally, models of the 4 and 5 classes retrieve the city names
and cues and encode them in the imaginal buffer, just as
Models 3.PN and 3.P do. However, in contrast to Mod-
els 3.PN and 3.P, the Model 4 and 5 classes actually use
the cues in the decision rules. We distinguish between
two pathways of cue usage: subsymbolic, capturing how
people make implicit, intuitive decisions, and symbolic,
modeling explicit, deliberate decisions.

Subsymbolic use of cues. In the Model 4 class, the re-
trieved and encoded cues influence the decision through
subsymbolic channels, that is, through spreading activa-
tion (Equation 3). If, for a given city, positive cues are
encoded in the imaginal buffer, then these positive cues
can spread activation to a chunk, labeled big chunk (Fig-
ure 4). If the activation is strong enough for the big chunk
to cross the retrieval threshold, the big chunk will be re-
trieved and the model will judge the recognized city as
large. If the big chunk does not receive sufficient spread-
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ing activation to cross the retrieval threshold, the model
chooses the unrecognized city. As explained above, we
assume this big chunk to reflect intuitive knowledge that
a city is large.

How easily the big chunk will be retrieved varies be-
tween the models. In Models 4.H.PN and 4.H.P, the big
chunk’s base-level activation is higher (hence H) than the
retrieval threshold (Appendix A), such that the big chunk
is likely to be retrieved. As a result these two models of-
ten (but not always) judge recognized cities to be larger
than unrecognized ones. In Models 4.L.PN and 4.L.P the
big chunk’s base-level activation is lower (hence L) than
the retrieval threshold. Therefore, the retrieval of the big
chunk will more strongly depend on how much activa-
tion is spread from positive cues to the big chunk. Im-
portantly, all variants of Model 4 can decide in favor of
unrecognized cities even if no negative cues are available,
because such decisions depend on the big chunk, which
only receives spreading activation from positive cues.

By assuming subsymbolic spreading activation and in-
tuitive knowledge to be responsible for compensatory de-
cision processes, the Model 4 class implements a cen-
tral feature of connectionist parallel constraint satisfac-
tion models (e.g., Glöckner & Betsch, 2008; Thagard,
1989, 2000), which Glöckner and Bröder (2011) and oth-
ers (e.g., Hilbig & Pohl, 2009; Hochman et al., 2010)
have argued account for behavior better than the recogni-
tion heuristic.

Symbolic use of cues. In the Model 5 class, retrieved
and encoded cues influence the decision through sym-
bolic pathways, reflecting more deliberate, explicit de-
cision processes. Specifically, production rules check
whether a required number of cues has been retrieved to
decide whether the recognized city is larger than the un-
recognized one or vice versa. As soon as C positive cues
have been encoded, the models decide for the recognized
city; as soon as C negative cues have been encoded they
decide for the unrecognized city, with C representing the
decision criterion. If the models cannot retrieve C cues,
they use recognition as their best guess, deciding in favor
of the recognized city. This also reflects the hypothesis
that it is easier to go with than against recognition when
making decisions (Pachur & Hertwig, 2006; Volz et al.,
2006). Models 5.3.PN and 5.3.P employ a decision cri-
terion of C = 3. The decision criterion of Models 5.2.PN
and 5.2.N is C = 2. Models 5.1.PN and 5.1.P have the
lowest decision criterion, with C = 1.

For example, assume Model 5.1.PN infers whether
York or Stockport is larger. After judging York as rec-
ognized and Stockport as unrecognized, the model re-
trieves cues. The first retrieved cue has a positive value.
Thus, the model decides that the York is the larger city.
If the first retrieved cue had had a negative value, then
the model would have decided that the unrecognized city,

Stockport, is larger. If the value of the first cue had been
unknown (i.e., attempting to retrieve one cue would have
resulted in a retrieval failure), then the model would have
continued to retrieve cues, until the decision criterion of
C=1 positive or negative cues would have been reached.
If all cue values had turned out to be unknown, then
the model would have used recognition and decided for
York.7

In sampling as many cues as needed to reach a deci-
sion criterion, the Model 5 class implements a feature of
sequential sampling and evidence accumulation models
that some have suggested describe behavior better than
the recognition and related noncompensatory heuristics
(e.g., Hilbig & Pohl, 2009; Lee & Cummins, 2004; B.R.
Newell, 2005; B.R. Newell & Lee, in press). By speci-
fying a decision criterion to decide in favor of unrecog-
nized cities, the Model 5 class also resembles the type of
compensatory strategies discussed by Marewski, Gaiss-
maier, Schooler, et al. (2010); which, however, assume
no sequential sampling of cues. Finally, by placing equal
importance on sampled (i.e., retrieved) cues, the Model
5 class implements a feature of classic unit-weight lin-
ear integration strategies (e.g., Dawes, 1979; Dawes &
Corrigan, 1974; Einhorn & Hogarth, 1975; Gigerenzer &
Goldstein, 1996); but also these classics assume no se-
quential cue sampling.

Model 1&3, 1&4, and 1&5 classes: Race models.
We refer to all models described above as simple models
and distinguish them from race models (Logan, 1988).8

7To clarify, the order of cue retrieval has no impact on the decisions
or decision times in models that retrieve all cues before a decision is
made (in the experiments we modeled, these are the Model 2, 3, 4, 5.3
classes). The order of cue retrieval does have an impact on the decision
and decision times in the Model 5.1, 1&5.1, 5.2, and 1&5.2 classes, be-
cause these models require fewer than three cues to be retrieved before
a decision is made (C = 1 and C = 2, respectively). In these models,
the same comparison of cities can lead to different decisions and deci-
sion times, depending on cue order. Note that decision times in these
models also depend on cue order because positive cues will be retrieved
faster than negative ones (Appendix A), resulting in shorter decision
times when positive cues are retrieved than when negative ones are re-
trieved before a decision is made. Due to the different retrieval times
for positive and negative cues, the order of cue retrieval can also impact
decision times in the Model 1&3, 1&4, and 1&5.3 classes, even though
in these models the decisions do not depend on cue order.

8In the literature, the terms “race” or “race model” are sometimes
used in similar ways as the terms “evidence accumulation” or “sequen-
tial sampling models”. For instance, Gold and Shadlen (2007) define
race models as models where “evidence supporting the various alterna-
tives is accumulated independently to fixed thresholds” (p. 541) and as
soon as one of the alternatives reaches the threshold, it is chosen. Ap-
plying the race to production rules, we implemented a simplified version
of that mechanism, where competing production rules have equal utili-
ties (Anderson et al., 2004) and are therefore chosen at random. Put in
Golden and Shadlen’s terms, the production rules have equal chances
of reaching the threshold. We choose this implementation, because we
did not want to add additional assumption about the relative speed of
the various processes involved. Note that the utilities of the production
rules did not change over the experiment (i.e., put in ACT-R’s terminol-
ogy, there was no utility learning). We decided for this implementation
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Simple models implement only one type of decision pro-
cess. Race models, in contrast, implement a race be-
tween competing processes. The outcome of this race
determines which process will ultimately be responsible
for the decision. Specifically, the Model 1&3 class im-
plements a race between Model 1, that is, the simple
noncompensatory process to respond with the recognized
city, and Model 3, that is, the compensatory process to
retrieve and encode cues. The Model 1&4 class imple-
ments a race between the noncompensatory process of
Model 1 and the subsymbolic compensatory processes
to retrieve, encode, and use cues as assumed by Model
4.9 The Model 1&5 class implements a race between the
noncompensatory process of Model 1 and the symbolic
compensatory processes to retrieve, encode, and use cues
as assumed by Model 5.

To give an example from the Model 1&3 class, Model
1&3.PN first reads and encodes the city names. After
these first steps, a race between responding directly with
the name of the recognized city (i.e., as in Model 1) and
retrieving and encoding one of the three cues (i.e., as in
Model 3.PN) takes place. If a retrieve-cue process wins,
the retrieved cue is encoded in the imaginal buffer and the
race starts again. This race is repeated either (a) until the
model responds with the recognized city before all three
cues are retrieved (as in Model 1), or (b) until all three
cues are encoded and a decision is made in favor of the
recognized city (as in Model 3.PN).

As is explained in detail in Appendix C, in all race
models, we assume that the respond-with-recognized-city
process (i.e., Model 1) competes with all other processes
of the respective simple model version (i.e., Model 3,
Model 4, or Model 5). Consequently, the more steps that
are required prior to a decision being made, the more of-
ten the respond-with-recognized-city process will com-
pete against other processes. To illustrate this, in the
Model 1&4 class, the respond-with-recognized-city pro-
cess competes not only with the retrieve-cue process, but,
once all cues are retrieved, also with the process of re-
trieving a big chunk (as in the Model 4 class).

Whereas in the Model 1&3 and 1&4 classes poten-
tially all three cues can be retrieved (i.e., if the respond-
with-recognized-city process does not win the race prior

because participants (and thus also the models) did not receive feedback
during the decision phase of the experiments.

9Note that in all representatives of the Model 4 and 1&4 classes, cue
knowledge will be used for the decision only after all cues have been
retrieved from memory. We decided for this implementation, because
constraint satisfaction models are usually concerned with the integra-
tion of information at one certain point in time (see Mehlhorn & Jahn,
2009, and H. Wang, Johnson, & J. Zhang, 2006, for attempts to extent
constraint satisfaction models to sequential reasoning). By letting the
models do the implicit evaluation of the alternatives only after all cues
have been retrieved, we try to stay as close as possible to constraint
satisfaction models as proposed in the decision making literature (e.g.,
Glöckner & Betsch, 2008).

to retrieving all three cues), in the Model 1&5 class the
number of cues that can be retrieved depends on the deci-
sion criterion C. For example, in Model 1&5.1.PN, which
has a decision criterion of C = 1 positive or negative cue,
the respond-with-recognized-city process competes with
the retrieve-cue process until one positive or one negative
cue has been retrieved. In Model 1&5.2.PN (C = 2) and
Model 1&5.3.PN (C = 3), the race continues until two and
three, respectively, positive or negative cues have been re-
trieved. If a model of the Model 1&5 class has retrieved
all cues without reaching its decision criterion C, it will
use recognition as its best guess (as in the Model 5 class).

For all race models, we additionally implemented vari-
ants that not only assume a race between noncompen-
satory recognition and compensatory cue retrieval and
usage, but additionally assume that retrieved cues will
at times be forgotten, such that these cues have to be
retrieved again. These models are marked with an F
in their name (e.g., Model 1&3.PN.F). The intuition is
that the various retrieval, encoding, and decision pro-
cesses can detract from previously retrieved cues (see
Lewandowsky, Oberauer, & Braun, 2009, for a discus-
sion of interference based forgetting in working mem-
ory). Specifically, these models start with a race between
responding with the recognized city and retrieving and
encoding more cues. As soon as at least two cues have
been encoded in the imaginal buffer, an additional race
against a forgetting process takes place.10 If this forget-
ting process wins the race, the retrieved cues are forgotten
(i.e., they are removed from the imaginal buffer). If cues
are forgotten, then the race between responding with the
recognized city and retrieving and encoding cues takes
place again. These processes continue until a decision is
made.

As can be seen in Table 2, the 1&4 and 1&5 race
Model classes consist of 8 and 12 different models, re-
spectively. The large number of models within these race
model classes is a product of our principle of nested mod-
eling: Recall that the Model 4 class exists in two versions,
L and H, representing low and high activation levels of
the big chunk. Likewise, the Model 5 class exists in 3 ver-
sions, with each one making different assumptions about
the number of cues that will be processed (i.e., C = 1, 2, or
3). To spare the reader from having to parse long lists of
model names, below we subsume the models from these
different versions of the Model 1&4 and 1&5 classes un-
der the labels Model 1&4.L and 1&4.H classes, as well
as Model 1&5.1, 1&5.2, and 1&5.3 classes, respectively.

10For simplicity, we implemented the forgetting process by means of
production rules. We determined the threshold of two cues based on ad-
hoc considerations about the positive skew in the human decision time
distribution. The possibility of forgetting cues as soon as two cues have
been retrieved and encoded results in an increased upper spread (i.e.,
visible in the 3rd quartile) of the models’ decision time distributions.

https://doi.org/10.1017/S1930297500002473 Published online by Cambridge University Press

https://doi.org/10.1017/S1930297500002473


Judgment and Decision Making, Vol. 6, No. 6, August 2011 Quantitative process models 454

5 Description of the data analyses

5.1 Individual differences

It has been pointed out that people may differ in the
strategies they use when making decisions from the ac-
cessibility of memories (e.g., Bergert & Nosofsky, 2007;
Bröder & Gaissmaier, 2007; Cokely, Parpart, & Schooler,
2009; Gigerenzer & Brighton, 2009; Hilbig, 2008;
Marewski, Gaissmaier, Schooler, et al., 2009, 2010; B.R.
Newell & Shanks, 2004). For instance, Pachur et al.
(2009) provided evidence that processing speed influ-
ences people’s reliance on recognition.

Also Pachur et al. (2008) interpreted their data as be-
ing suggestive of individual differences: While some of
their participants always chose recognized cities irrespec-
tive of the cues they had been taught, other participants’
decisions seemed to have been influenced by these cues
(see also Pachur, 2011). In reanalyzing Pachur et al.’s
data, we took possible individual differences into account
by examining the data separately for (a) those partici-
pants who always inferred recognized cities to be larger
than unrecognized ones (henceforth: recognition group;
nExperiment 1 = 25, nExperiment 2 = 19), and (b) those partic-
ipants who sometimes inferred unrecognized cities to be
larger (cue group; nExperiment 1 = 15, nExperiment 2 = 21).

Moreover, we tailored the 39 models to each individ-
ual participant in two steps. First, each participant’s re-
sponses in the recognition and cue-memory tasks were
used to model the contents of that participant’s declar-
ative memory. That is, we did not give the mod-
els perfect knowledge of the cities and cue profiles as
shown in Table 1 but rather let the models operate on
each individual participant’s recognition and knowledge,
as assessed by the recognition and cue-memory tasks,
respectively (see http://www.ai.rug.nl/~katja/models or
http://journal.sjdm.org/vol6.6.html for each participants’
knowledge as used by the models). Second, using par-
ticipants’ individual recognition and cue knowledge, all
models were run on each participant’s trials in the deci-
sion task.

5.2 Assessing the correspondence between
the models’ predictions and the human
data

For simplicity and following the principle of nested mod-
eling, we assessed the correspondence between the mod-
els’ predictions and the human data by analyzing these
data in the same way Pachur et al. (2008) analyzed the
human data. Specifically, we collapsed the human data
across participants, calculating means and standard errors
for proportions (for decisions) as well as medians and the
1st and 3rd quartiles (for decision times) separately for

each of 2x3 categories of comparisons of cities. In Ex-
periment 1, these categories were: the recognized city is
associated with (a) one positive cue, (b) two positive cues,
or (c) three positive cues, and the recognized city is asso-
ciated with (a) two negative cues, (b) one negative cue,
or (c) zero negative cues. In Experiment 2, the 2x3 cat-
egories were: the recognized city is associated with (a)
zero, (b) two, or (c) three positive cues and with (a) three,
(b) one, or (c) zero negative cues. In both experiments,
the definition of the 2x3 categories was based on the cue
profiles participants had been taught in the learning tasks
(Table 1).11

Decisions and decision times produced by the mod-
els could vary between individual runs, due to noise and,
where applicable, due to the race between different pro-
cesses. Therefore, to compute the models’ predictions,
for each participant of Experiments 1 and 2, each model
was run 40 times. For each of these 40 runs, we calcu-
lated means and standard errors as well as medians and
1st and 3rd quartiles, separately for each of the 2x3 cat-
egories of each experiment in an analogous way as for
the human data. For each category, the means, standard
errors, medians, and quartiles were then averaged across
the 40 simulation runs.

5.3 Results of the model-fitting competition
in Experiment 1

Due to the large number of models, in what follows we
will mainly discuss the best models’ fits. All models’ fits
are summarized in Table 3 and discussed in more detail
in Appendix B. Appendix B also includes a complete set
of graphs of all models’ fits.

Recognition group. Figure 5 shows the human de-
cisions and decision times in the recognition group as
well as the decisions and decision times produced by
the Model 1&3 class. Within this model class, Model
1&3.P.F produced the smallest RMSDs to the human
data. As can be seen, neither the human decisions nor
the model’s decisions vary as a function of the cues. At
the same time, the human and the model’s decision times
increase with the number of negative cues, decrease with
the number of positive cues and show overall a large
spread. Also the three remaining models of the 1&3 class,
Models 1&3.PN, 1&3.PN.F, and 1&3.P, fit the decisions

11Note that categories defined by positive cues are not necessarily
identical to categories defined by negative cues, because both partici-
pants and models may sometimes fail to recall whether a cue is positive
or negative (i.e., reflected by unknown cue values in the cue-memory
task). For instance, the category “two positive cues” does not necessar-
ily correspond to the category “one negative cue”. Yet, most of the time
the categories as defined by positive and negative cues are identical, be-
cause unknown cue values were very rare in the data (see Pachur et al.,
2008). Therefore, the results tend to be similar when plotting the data
either as a function of positive cues or as a function of negative cues.
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Table 3: Root mean square deviations (RMSDs) between the model and the human data in Experiment 1

Recognition group Cue group

Decisions (%) Decision times (ms) Decisions (%) Decision times (ms)

Model 1 class: Stopping and decision rules noncompensatory—simple model
Model 1 0 409 9.4 b 511

Model 2 class: Stopping rule compensatory, decision rule noncompensatory—simple models
Model 2.PN 0 258 9.4 b 355
Model 2.P 0 283 9.4 b 376

Model 3 class: Stopping rule compensatory, decision rule noncompensatory—simple models
Model 3.PN 0 357 9.4 b 449
Model 3.P 0 379 9.4 b 469

Model 1&3 class: Stopping rule noncompensatory and compensatory, decision rule noncompensatory—race models
Model 1&3.PN 0 110 9.4 b 219
Model 1&3.P 0 97 9.4 b 201
Model 1&3.PN.F 0 73 9.4 b 185
Model 1&3.P.F 0 67 9.4 b 169

Model 4 class: Stopping rule compensatory, decision rule compensatory—simple models
Model 4.H.PN 10.7 a 427 0.9 499
Model 4.H.P 10.7 a 477 1.5 518
Model 4.L.PN 58.6 a 461 49.4 514
Model 4.L.P 59.1 a 511 49.6 534

Model 1&4 class: Stopping rule noncompensatory and compensatory, decision rule noncompensatory and compensatory—race models
Model 1&4.H.PN 1.3 a 105 8.1 223
Model 1&4.H.P 1.3 a 100 8.1 198
Model 1&4.H.PN.F .8 a 71 8.5 177
Model 1&4.H.P.F .7 a 55 8.6 157
Model 1&4.L.PN 7.3 a 109 1.9 218
Model 1&4.L.P 7.3 a 95 2.1 197
Model 1&4.L.PN.F 4.2 a 63 5.1 176
Model 1&4.L.P.F 4.3 a 56 5.1 155

Model 5 class: Stopping rule compensatory, decision rule compensatory—simple models
Model 5.1.PN 40.7 a 259 32.4 389
Model 5.1.P 0 193 9.4 b 286
Model 5.2.PN 48.1a 304 39.5 395
Model 5.2.P 0 352 9.4 b 431
Model 5.3.PN 0 357 9.4 b 449
Model 5.3.P 0 379 9.4 b 469

Model 1&5 class: Stopping rule noncompensatory and compensatory, decision rule noncompensatory and compensatory—race models
Model 1&5.1.PN 15 a 243 8.3 372
Model 1&5.1.P 0 209 9.4 b 326
Model 1&5.1.PN.F 15.1 a 244 8.1 370
Model 1&5.1.P.F 0 205 9.4 b 324
Model 1&5.2.PN 8.1 a 133 6.8 248
Model 1&5.2.P 0 118 9.4 b 220
Model 1&5.2.PN.F 5.7 a 106 6.8 212
Model 1&5.2.P.F 0 96 9.4 b 189
Model 1&5.3.PN 0 109 9.4 b 223
Model 1&5.3.P 0 97 9.4 b 203
Model 1&5.3.PN.F 0 75 9.4 b 188
Model 1&5.3.P.F 0 70 9.4 b 167

Note. PN = Positive and negative cues. P = Positive cues. F = Forgetting cues. For decisions, RMSDs were calculated on the mean
percentage of choices for the recognized city. For models that always decide for the recognized city, RMSDs for decisions will–by
definition—always be 0 in the recognition group. For decision times, RMSDs were calculated on the median and the 1st and 3rd quartile
and then averaged. Evaluations of the models’ fit based on RMSDs should be complemented by visual inspections of the data produced by
the models (see Figures 5–8 and Appendix B: Figures B1-B18).
a These models do by definition not fit the decision of the recognition group, because they sometimes decide for the unrecognized city
whereas participants in the recognition group always decide for the recognized city.
b These models do by definition not fit the decision of the cue group, because they always decide for the recognized city whereas participants
in the cue group sometimes decide for the unrecognized city.
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Figure 5: Decisions (a) and decision times (b) for the recognition group in Experiment 1. Human data and fits of the
four models from the Model 1&3 class. Models are ordered from the top left to the bottom right in the same order as
in Tables 2, 3, and 4. In each graph, the upper grey x-axis shows the number of negative cues; the corresponding data
points (decisions in Panel A, decision times in Panel B) are plotted in grey font (triangles). In each graph, the lower
black x-axis shows the number of positive cues; the corresponding data points are plotted in black font (circles). For
instance, in Panel B the median of the human decision times is 1335 ms for two negative cues and 1332 ms for one
positive cue.
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and decision times well. These three models are identical
to Model 1&3.P.F except that they make no assumptions
about the forgetting of cues (Models 1&3.PN, 1&3.P)
and/or assume negative cues to be represented in mem-
ory (Models 1&3.PN, 1&3.PN.F).

As can be seen in Table 3 as well as by compar-
ing Figures 5 and 6, those representatives of the Model
1&5 class that assume a decision criterion of 3 cues

(Model 1&5.3.PN, Model 1&5.3.PN.F, Model 1&5.3.P,
Model 1&5.3.P.F) fit the decisions and decision times
about as well as the Model 1&3 class. For example, the
best-fitting model from the Model 1&5.3 class, Model
1&5.3.P.F, produces basically the same decision time pat-
tern as the best-fitting model from the Model 1&3 class,
Model 1&3.P.F, and virtually the same RMSDs. Also
those representatives of the Model 1&5 class that assume
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Figure 6: Decisions (a) and decision times (b) for the recognition group in Experiment 1. Human data and fits of
those six models from the Model 1&5.2 and 1&5.3 classes that always decide for the recognized city in Experiment 1.
Models are ordered from the top left to the bottom right in the same order as in Tables 2, 3, and 4. In each graph, the
upper grey x-axis shows the number of negative cues; the corresponding data points (decisions in Panel A, decision
times in Panel B) are plotted in grey font (triangles). In each graph, the lower black x-axis shows the number of
positive cues; the corresponding data points are plotted in black font (circles).
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Figure 7: Decisions (A) and decision times (B) for the cue group in Experiment 1. Human data and fits of the four
models from the Model 1&4.L class. Models are ordered from the top left to the bottom right in the same order as in
Tables 2, 3, and 4. In each graph, the upper grey x-axis shows the number of negative cues; the corresponding data
points (decisions in Panel A, decision times in Panel B) are plotted in grey font (triangles). In each graph, the lower
black x-axis shows the number of positive cues; the corresponding data points are plotted in black font (circles). For
instance, in Panel A the mean percentage of participants’ choices for the recognized city is 88 for two negative cues
and 89 for one positive cue.
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a decision criterion of 2 positive cues (Model 1&5.2.P,
1&5.2.P.F) fit the decisions and decision times well.

Importantly, while technically (i.e., by virtue of their
RMSDs) Models 1&3.P.F and 1&5.3.P.F are the best-
fitting models in Experiment 1’s recognition group, the
models of the 1&3 and 1&5.3 classes, as well as the P
versions of the Model 1&5.2 class produce relatively sim-
ilar fits. Therefore, we caution to declare any specific

model from these classes to be considered the single win-
ner. Rather, we would prefer to consider these classes the
winner. In short, in Experiment 1’s recognition group,
the best-fitting model classes implement a race between
Model 1’s recognition-based noncompensatory stopping
and decision rules and other processes; namely (i) Model
3’s compensatory stopping rule and its recognition-based
noncompensatory decision rule (i.e., as in the Model 1&3
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Figure 8: Decisions (A) and decision times (B) for the cue group in Experiment 1. Human data and fits of those two
models from the Model 1&5.2 class that sometimes decide against the recognized city in Experiment 1. Models are
ordered from left to right in the same order as in Tables 2, 3, and 4. In each graph, the upper grey x-axis shows the
number of negative cues; the corresponding data points (decisions in Panel A, decision times in Panel B) are plotted
in grey font (triangles). In each graph, the lower black x-axis shows the number of positive cues; the corresponding
data points are plotted in black font (circles).
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class) as well as (ii) Model 5’s compensatory stopping
and decision rules (i.e., as in the Model 1&5 class).

We would like to add three observations with respect to
the Model 1&5 class. First, note that Model 1&5.3.PN’s
and Model 1&5.3.PN.F’s comparatively good fit of the
recognition group’s decisions (Figure 6) can be explained
by Experiment 1’s design. These two models need to re-
trieve 3 negative cues to decide against the recognized
city (C = 3). As 3 negative cues were not taught in
Experiment 1 (Table 1), Model 1&5.3.PN and Model
1&5.3.PN.F could not reach this decision criterion in Ex-
periment 1, resulting in the models to always decide in
favor of recognized cities. Had 3 negative cues been
taught in Experiment 1, Model 1&5.3.PN and Model
1&5.3.PN.F would have produced decisions in favor of
unrecognized cities, resulting in poor fits in the recogni-
tion group.12

12To compare, the PN versions of the Model 1&5.1 and 1&5.2
classes (i.e., Model 1&5.1.PN, 1&5.1.PN.F, Model 1&5.2.PN, and
1&5.2.PN.F), do reach their decision criterion of C = 1 and C = 2 nega-
tive cues, respectively, letting these models occasionally decide for un-

Second, while one could thus argue that Model
1&5.3.PN’s and Model 1&5.3.PN.F’s good fit is an arti-
fact of Experiment 1’s design, the comparatively good fit
of Model 1&5.3.P and Model 1&5.3.P.F is no such arti-
fact: As these two models do not use negative cue knowl-
edge, they never decide against unrecognized cities, but
use recognition and positive cues to decide in favor of
recognized ones. On the other hand, one may won-
der whether compensatory, cue-based models that can
never decide against unrecognized objects are theoret-
ically plausible, or, what such models would add be-
yond models with simpler recognition-based, noncom-
pensatory decision rules (e.g., as implemented by the
Model 1&3 class).

Third, also Models 1&5.1.P and 1&5.1.P.F which as-
sume a decision criterion C of 1 positive cue exhibit rel-
atively small RMSDs (Table 3). By this token, also these
representatives of the Model 1&5 class may belong to

recognized cities. As a result, the PN versions of the Model 1&5.1 and
1&5.2 classes cannot fit the decisions in the recognition group (Table 3;
Appendix B, Figures B13 and B15).
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the winners. However, note that Models 1&5.1.P and
1&5.1.P.F produce a much smaller spread in the decision
time distribution than the spread that can be found in the
human times (Figure B13 in Appendix B).

Cue group. Figure 7 shows the human decisions and
decision times as well as the decisions and decision times
produced by the Model 1&4.L class, which is the class
that best fits the combination of decisions and decision
times in the cue group. As can be seen, the human de-
cisions and decision times as well as the models’ deci-
sions and decision times vary as a function of cues. The
decision times show a large spread. While the Model
1&4.L class emerges as the best-fitting class, it is diffi-
cult to rank order the models within that class in terms
of their RMSDs. As Table 3 shows, Model 1&4.L.P.F
fits the decision times best; however, this model does not
produce the smallest RMSDs for the decisions, which are
produced by Model 1&4.L.PN.

Let us turn to a couple of other models that may,
perhaps, be considered to belong to the winners in the
cue group. First, as can be seen in Table 3, the Model
1&4.H class, which differs from the Model 1&4.L class
only in the base level activation of the big-chunk, pro-
duces a good fit of the decision times, while not fit-
ting the decisions as well as the 1&4.L class (Figure
B8 in Appendix B). Second, Table 3 suggests that also
the PN versions of the Model 1&5.2 class (i.e., Model
1&5.2.PN, 1&5.2.PN.F) produce a relatively good fit to
the cue group’s combination of decisions and decision
times. However, as a visual inspection of Figure 8 re-
veals, these models produce an abrupt drop in decisions
for the recognized city as soon as the decision criterion
of C = 2 negative cues is reached. The human data do not
exhibit such a drop. Much the same can be said with re-
spect to the PN versions of the Model 1&5.1 class (Figure
B13 in Appendix B), which produce an even steeper drop
in the decisions, and which fit the spread of the decision
times less well than the Model 1&5.2 class.

In short, the cue group’s best-fitting models are mem-
bers of the Model 1&4.L class. This model class imple-
ments a race between Model 1’s noncompensatory stop-
ping rule and Model 4’s compensatory stopping rule as
well as a race between Model 1’s noncompensatory de-
cision rule and Model 4’s compensatory decision rule,
assuming implicit, intuitive knowledge about the cities’
sizes to be responsible for occasional decisions in favor
of unrecognized cities.

5.4 Results of the model generalization
competition in Experiment 2

To test how well these results generalize to another data
set, we let all 39 models predict the human decisions and
decision times from Experiment 2. In doing so, we popu-

lated the models’ declarative memory with each individ-
ual participant’s recognition and cue knowledge, using
participants’ responses in the recognition task and cue-
memory task of Experiment 2—just as we did in Experi-
ment 1. And as in Experiment 1, we ran the models on the
trials of each individual participant in the decision task of
Experiment 2. Following our principle of predictive mod-
eling, we kept all models’ production rules as well as the
values of all models’ parameters identical to those used
in Experiment 1.

Table 4 summarizes the results for all models. In what
follows, we will mainly discuss those models that gen-
eralized best (for all other models’ generalizability and
a complete set of graphs of all models’ predictions see
Appendix B.)

Recognition group. Figures 9 and 10 show the hu-
man decisions and decision times as well as the corre-
sponding data produced by the best-generalizing models
in the recognition group. These are representatives of the
Model 1&3 class, as well as those representatives from
the Model 1&5 class that assume a decision criterion of 2
and 3 positive cues (Models 1&5.2.P, 1&5.2.P.F, 1&5.3.P,
1&5.3.P.F). As can be seen, all winning models correctly
predict that decisions do not vary as a function of cues.
The models also predict the overall pattern and spread
of the decision times well. Importantly, as the RMSDs
in Table 4 show, the technically best-generalizing model,
Model 1&3.PN, belongs to the Model 1&3 class, which
also was one of the winning model classes in Experiment
1, lending, perhaps, further support to the 1&3 class.

Note that also Model 1&5.1.P—and to a lesser extent
Model 1&5.1.P.F—exhibit relatively small RMSD in Ta-
ble 4. However, as in Experiment 1, these models fail to
predict the spread of the human decision times (Figure
B31 in Appendix B).

In short, for the recognition group, members of the
Model 1&3 class are among the best models in both ex-
periments. Also the versions of the Model 1&5.2 and
1&5.3 class that use only positive cues perform well in
both experiments. The versions of the Model 1&5.3 class
that use positive and negative cues fitted Experiment 1’s
recognition group well (Figure 6), but do not predict the
recognition group’s decisions in Experiment 2. Recall
that these two models need to retrieve 3 negative cues
to decide against the recognized city. As 3 negative cues
were not taught in Experiment 1 (Table 1), the models did
not reach their decision criterion, leading them to always
decide in favor of recognized cities. In Experiment 2, in
contrast, 3 negative cues were taught. Correspondingly,
the models do reach their decision criterion, leading them
to occasionally decide against the recognized city, this
way mismatching the recognition group data. However,
as we explain next, the models turn out to generalize well
to Experiment 2’s cue group.
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Table 4: Root mean square deviations (RMSDS) between the model and the human data in Experiment 2

Recognition group Cue group

Decisions (%) Decision times (ms) Decisions (%) Decision times (ms)

Model 1 class: Stopping and decision rules noncompensatory—simple model
Model 1 0 279 15.9 b 498

Model 2 class: Stopping rule compensatory, decision rule noncompensatory—simple models
Model 2.PN 0 255 15.9 b 290
Model 2.P 0 307 15.9 b 320

Model 3 class: Stopping rule compensatory, decision rule noncompensatory—simple models
Model 3.PN 0 454 15.9 b 380
Model 3.P 0 531 15.9 b 410

Model 1&3 class: Stopping rule noncompensatory and compensatory, decision rule noncompensatory—race models
Model 1&3.PN 0 101 15.9 b 170
Model 1&3.P 0 135 15.9 b 145
Model 1&3.PN.F 0 134 15.9 b 131
Model 1&3.P.F 0 179 15.9 b 109

Model 4 class: Stopping rule compensatory, decision rule compensatory—simple models
Model 4.H.PN 11.7 a 590 6.8 435
Model 4.H.P 12 a 666 6.6 474
Model 4.L.PN 57.8 a 623 45.1 456
Model 4.L.P 57.1 a 699 44.9 500

Model 1&4 class: Stopping rule noncompensatory and compensatory, decision rule noncompensatory and compensatory—race models
Model 1&4.H.PN 1.6 a 100 14.4 164
Model 1&4.H.P 1.6 a 151 14.5 140
Model 1&4.H.PN.F 0.9 a 138 15.1 124
Model 1&4.H.P.F 0.8 a 180 15.1 88
Model 1&4.L.PN 7.4 a 115 10.9 166
Model 1&4.L.P 7.2 a 150 11.2 145
Model 1&4.L.PN.F 4.2 a 147 13.1 125
Model 1&4.L.P.F 4 a 204 12.9 95

Model 5 class: Stopping rule compensatory, decision rule compensatory—simple models
Model 5.1.PN 60.1 a 193 44.8 331
Model 5.1.P 0 436 15.9 b 409
Model 5.2.PN 56.7 a 284 40.8 295
Model 5.2.P 0 472 15.9 b 373
Model 5.3.PN 44.7 a 453 28.5 380
Model 5.3.P 0 531 15.9 b 410

Model 1&5 class: Stopping rule noncompensatory and compensatory, decision rule noncompensatory and compensatory—race models
Model 1&5.1.PN 22 a 166 7.2 321
Model 1&5.1.P 0 177 15.9 b 251
Model 1&5.1.PN.F 21.8 a 163 6.9 320
Model 1&5.1.P.F 0 208 15.9 b 236
Model 1&5.2.PN 13 a 123 2.9 206
Model 1&5.2.P 0 142 15.9 b 167
Model 1&5.2.PN.F 10.5 a 106 5.6 185
Model 1&5.2.P.F 0 175 15.9 b 131
Model 1&5.3.PN 5.8 a 99 10.2 162
Model 1&5.3.P 0 146 15.9 b 146
Model 1&5.3.PN.F 3.1 a 131 12.6 135
Model 1&5.3.P.F 0 167 15.9 b 104

Note. PN = Positive and negative cues. P = Positive cues. F = Forgetting cues. For decisions, RMSDs were calculated on the mean
percentage of choices for the recognized city. For models that always decide for the recognized city, RMSDs for decisions will—by
definition—always be 0 in the recognition group. For decision times, RMSDs were calculated on the median and the 1st and 3rd quartile
and then averaged. Evaluations of the models’ fit based on RMSDs should be complemented by visual inspections of the data produced by
the models (see Figures 9–12, and Appendix B: Figures B19-B36).
a These models do by definition not fit the decision of the recognition group, because they sometimes decide for the unrecognized city
whereas participants in the recognition group always decide for the recognized city.
b These models do by definition not fit the decision of the cue group, because they always decide for the recognized city whereas participants
in the cue group sometimes decide for the unrecognized city.

https://doi.org/10.1017/S1930297500002473 Published online by Cambridge University Press

https://doi.org/10.1017/S1930297500002473


Judgment and Decision Making, Vol. 6, No. 6, August 2011 Quantitative process models 462

Figure 9: Decisions (A) and decision times (B) for the recognition group in Experiment 2. Human data and predictions
of the four models from the Model 1&3 class. Models are ordered from the top left to the bottom right in the same order
as in Tables 2, 3, and 4. In each graph, the upper grey x-axis shows the number of negative cues; the corresponding
data points (decisions in Panel A, decision times in Panel B) are plotted in grey font (triangles). In each graph, the
lower black x-axis shows the number of positive cues; the corresponding data points are plotted in black font (circles).
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Cue group. Figures 11 and 12 show the human data
and the best-generalizing models in the cue group. These
are the Model 1&4.L class as well as those representa-
tives of the Model 1&5.2 and 1&5.3 classes that use pos-
itive and negative cues.

Let us first turn to the decisions of the Model 1&4.L
class, which fitted the data best in Experiment 1. As in
Experiment 1, the human decisions, as well as the de-
cisions of the models vary as a function of cues. How-
ever, in Experiment 2, the human decisions are strongly

influenced by three negative cues (i.e., corresponding to
zero positive cues). Having been adjusted to Experiment
1, in which participants were taught a maximum of two
negative cues (Table 1), the Model 1&4.L class fits the
decisions for zero and one negative cue well, but has dif-
ficulties to predict the large effect of three negative cues
in Experiment 2 (Figure 11). Much the same can be said
with respect to the Model 1&4.H class, which, as in Ex-
periment 1, does not predict the decisions as well as the
1&4.L class (Table 4; Figure B26 in Appendix B).
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Figure 10: Decisions (A) and decision times (B) for the recognition group in Experiment 2. Human data and pre-
dictions of those four models from the Model 1&5.2 and 1&5.3 classes that always decide for the recognized city in
Experiment 2. Models are ordered from the top left to the bottom right in the same order as in Tables 2, 3, and 4.
In each graph, the upper grey x-axis shows the number of negative cues; the corresponding data points (decisions in
Panel A, decision times in Panel B) are plotted in grey font (triangles). In each graph, the lower black x-axis shows
the number of positive cues; the corresponding data points are plotted in black font (circles).
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In contrast, consider the decisions of the PN versions
of the Model 1&5.2 and 1&5.3 classes (Model 1&5.2.PN,
1&5.2.PN.F, 1&5.3.PN, 1&5.3.PN.F). As shown in Fig-
ure 12, these models do predict a large effect of nega-
tive cues on the decisions once their decision criterion
of C negative cues is reached. Models 1&5.2.PN and
1&5.2.PN.F, which decide against the recognized city as
soon as two negative cues have been retrieved, predict the
pattern in the human decisions best (Table 4, Figure 12).

Figures 11 and 12 also show the decision times. The
models from the 1&4.L class as well as the PN versions
of the 1&5.2, and 1&5.3 classes are able to approximate
the human decision time pattern and its spread. However,
Models 1&5.2.PN and 1&5.2.PN.F, which predict the de-
cisions best, do not predict the decision times as well as
the representatives of the 1&4.L class and the PN ver-
sions of the 1&5.3 class (Table 4), making it difficult to
rank the best model classes in terms of their performance.
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Figure 11: Decisions (A) and decision times (B) for the cue group in Experiment 2. Human data and predictions
from the four models from the Model 1&4.L class. Models are ordered from the top left to the bottom right in the
same order as in Tables 2, 3, and 4. In each graph, the upper grey x-axis shows the number of negative cues; the
corresponding data points (decisions in Panel A, decision times in Panel B) are plotted in grey font (triangles). In each
graph the lower black, x-axis shows the number of positive cues; the corresponding data points are plotted in black
font (circles).
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Note that, as in Experiment 1, also the PN versions
of the Model 1&5.1 class produce a drop in the deci-
sions once its decision criterion of C = 1 negative cues
is reached. However, this drop is steeper than in the hu-
man data and the model class fails to predict the spread
of the decision times (Figure B32 in Appendix B.)

In short, the winning model classes in Experiment 2’s
cue group are essentially identical to those that won in
Experiment 1’s cue group—with two relevant caveats.

First, in Experiment 2, besides the Model 1&4.L and
1&4.H classes, and the PN versions of the 1&5.2 classes,
also the PN versions of the Model 1&5.3 class may be
considered to belong to the winners. Second, in Exper-
iment 1, the Model 1&4.L class fitted the decisions and
decision times best. In Experiment 2, it is more difficult
to establish a rank order of these classes’ ability to predict
the human data, as those models that predict the decisions
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Figure 12: Decisions (A) and decision times (B) for the cue group in Experiment 2. Human data and predictions
from those four models from the Model 1&5.2 and 1&5.3 classes that sometimes decide against the recognized city
in Experiment 2. Models are ordered from the top left to the bottom right in the same order as in Tables 2, 3, and 4.
In each graph, the upper grey x-axis shows the number of negative cues; the corresponding data points (decisions in
Panel A, decision times in Panel B) are plotted in grey font (triangles). In each graph the lower black, x-axis shows
the number of positive cues; the corresponding data points are plotted in black font (circles).
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best do not predict the decision times best.13

13The results reported throughout this article are based on data that
has been collapsed across participants. To explore whether the results
hold when the data is not collapsed, we ran a second analysis. Us-
ing the very same model parameter values as the ones reported above,
we calculated the RMSD between each participant and each model and
then averaged the resulting RMSDs across participants. These averaged
RMSDs were generally higher than the RMSDs calculated for the col-
lapsed data, which is not surprising, as the models’ parameter values
were fitted to the collapsed data and not to the individual data. Impor-
tantly, overall the same model classes that won the model competition

on the collapsed data emerged as the winning model classes also in this
second, exploratory analysis. However, in several (but not all) cases
within the winning model classes, the rank order of the models’ good-
ness of fit changed. For instance, in our original analysis of the col-
lapsed data of Experiment 1’s recognition group, Model 1&3.P.F and
Model 1&5.3.P.F were technically the best models. In the second anal-
ysis, Model 1&3.PN and Model 1&5.3.PN were the best models. At
the same time, in Experiment 2’s recognition group, in both our orig-
inal analysis on the collapsed data as well as in the second analysis,
Model 1&3.PN fitted best. Importantly, the RMSD differences within
the different Model classes are small in both analyses. This further sug-
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6 General discussion
Much research has investigated how people make deci-
sions based on a sense of the accessibility of memories,
as assumed by the recognition heuristic and related mod-
els (Bruner, 1957; Jacoby & Dallas, 1981; Pachur et al.,
2011; Pohl, 2011; Tversky & Kahneman, 1973). At
the same time, in the field of accessibility-based deci-
sion making and beyond, many have criticized the lack
of specification of process hypotheses (e.g., Dougherty
et al., 1999, 2008; Gigerenzer, 1996; 1998; Keren &
Schul, 2009; A. Newell, 1973). Particularly the recogni-
tion heuristic has triggered a controversy about what pro-
cesses describe people’s decisions best when they make
inferences from the accessibility of memories: Do peo-
ple rely on this noncompensatory heuristic, ignoring fur-
ther knowledge, or do they use compensatory strategies
instead?

In this article, we provided a primer on how the pre-
cision of corresponding process hypotheses can be in-
creased. Using the ACT-R cognitive architecture, we
specified process hypotheses about accessibility-based
decisions in 39 quantitative process models. These mod-
els do not only capture decision processes, but also the
interplay of decision processes with perceptual, mem-
ory, intentional, and motor processes. Moreover, by im-
plementing a number of decision models that had origi-
nally been defined at different levels of description into
one architectural modeling framework, we made these
models comparable, providing a basis for detailed, multi-
experiment model comparisons to be conducted in fu-
ture research. Finally, we conducted a first model com-
parison ourselves, re-analyzing two previously published
data sets.

Even though the main objective of this model compar-
ison was to illustrate how such comparisons can be con-
ducted rather than to conclusively identify the best model,
in what follows we will first discuss our model compar-
ison’s results. We will close by turning to a number of
broader methodological issues.

6.1 Dissolving dichotomies by implement-
ing more than one process: Race mod-
els

Both in fitting existing data and in generalizing to new
data, representatives of the race model classes performed
best in our model competition. As such, the winners
are models that implement recognition-based noncom-

gests that the rank order within model classes should be interpreted with
caution and supports the point that it is model classes, rather than single
models that can be identified as winners in our model comparison (see,
e.g., the result section on the best fitting models in the recognition group
of Experiment 1).

pensatory processes side by side with cue-based compen-
satory ones, suggesting that in one part of the trials in
the decision task noncompensatory processes governed
information retrieval and/or decision making, while in
the other part compensatory processes were dominant.
Specifically, our results highlight the possibility that even
people who always responded with recognized cities (i.e.,
as in the recognition group) most likely retrieved and en-
coded cues in at least some of the trials. People who
sometimes responded with unrecognized cities (i.e., as
in the cue group), in turn, most likely based their de-
cisions on cues in some of the trials but ignored these
cues and relied on recognition in others. These results
let the dichotomy between cue-based compensatory and
recognition-based noncompensatory processes dissolve
that is often assumed in the literature and that has fuelled
debates about the recognition heuristic (e.g., Pohl, 2006,
2011; Richter & Späth, 2006; see above). Moreover,
these results cast, perhaps, some doubt on a simplifying
assumption that is central to this debate: By classifying a
person exclusively as either a noncompensatory or a com-
pensatory decision maker, previous studies had (at least
implicitly) assumed that a person’s decision processes do
not vary across the trials of a decision task (e.g., Glöck-
ner & Bröder, 2011; Marewski, Gaissmaier, Schooler, et
al., 2010).14

We hasten to add that our analyses entailed collapsing
the data across participants’ responses, which severely
limits the possibility to draw conclusions about individ-
ual persons’ decision processes. We suggest for future
research to tackle this question, by using more exhaus-
tive human data sets and analyses.

6.2 Models implementing one decision pro-
cess: Simple models

Models that implement merely one type of decision pro-
cess, namely noncompensatory or compensatory, did not
account as well for people’s behavior as the winning race
models. Let us first turn to the noncompensatory models,
and then to the compensatory ones.

Noncompensatory models. The strictly noncompen-
satory Model 1, which neither retrieves nor uses cues for
decisions, did not accurately predict participants’ deci-
sion times, even for participants who always chose the
recognized city (Appendix B, Figures B1, B19). As such,
our results cast doubts on recognition heuristic imple-
mentations that assume noncompensatory recognition-
based stopping and decision rules. Much the same can
be said with respect to those recognition heuristic im-

14The approach to classify a person either exclusively as a compen-
satory decision maker or as a noncompensatory one is also common in
studies on people’s use of other heuristics, such as take-the-best (Bröder,
2003; Bröder & Gaissmaier, 2007; Bröder & Schiffer, 2003, 2006).
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plementations that retrieve cues but do not use them for
decisions: Also the Model 2 and 3 classes, which im-
plement corresponding cue-based compensatory stopping
and recognition-based noncompensatory decision rules,
did not account well for people’s behavior (Appendix
B, Figures B1, B19). However, the relative success of
the 1&3 race Model class lends support to a combina-
tion of both recognition heuristic implementations: As
the Model 1&3 class includes Model 1 and Model 3 as
components, our results suggest that a combination of
these two recognition heuristic implementations may re-
flect people’s decision processes in the comparisons of
cities (Gigerenzer & Goldstein, 2011).

We would like to add two points. First, while repre-
sentatives of the Model 1&3 class are both among Ex-
periment 1’s best fitting and among Experiment 2’s best
generalizing models, also those representatives of the
1&5 Model class that rely on positive cues in addition to
recognition were able to account for behavior well. This
result leads us to stress that it may be similarly plausi-
ble for noncompensatory, recognition-based stopping and
decision rules to govern a part of the comparisons of two
cities (i.e., Model 1), while compensatory, cue-based pro-
cesses govern the other part (i.e., Model 5). On the other
hand, the Model 1&3 class provides, arguably, a simpler
explanation for the human data than the Model 1&5 class.

Second, we implemented just one strictly noncom-
pensatory variant of the recognition heuristic: Model
1, which has both a recognition-based noncompensatory
stopping and decision rule. It is to be expected that pit-
ting this single strictly noncompensatory model against a
total of 38 other models may have biased the outcome of
the model comparison against strictly noncompensatory
models.

Compensatory models. We implemented two types
of strictly compensatory models. In assuming that sub-
symbolic pathways and spreading activation give rise to
implicit, intuitive knowledge that governs compensatory
decision processes, the Model 4 class implements a cen-
tral feature of Glöckner and Betsch’s (2008) parallel con-
straint satisfaction model. The parallel constraint satis-
faction model has been argued to account for behavior
better than the recognition heuristic—at times without the
model having been applied to data (e.g., Hilbig & Pohl,
2009; Hochman, et al, 2010; see Glöckner & Bröder,
2011, for a test that does apply the model to data).

The Model 5 class assumes symbolic pathways to be
responsible for compensatory processes, and as such, de-
cisions to be based on explicit, deliberate knowledge.
Also models from this class have been discussed as an-
tipodes to the recognition heuristic; almost always with
such models not being applied to data (e.g., Hilbig &
Pohl, 2009; B. R. Newell & Shanks, 2004; Oeusoon-
thornwattana & Shanks, 2010; Pohl, 2006; Richter &

Späth, 2006), or with the models having been applied to
data, but without using the models to quantitatively pre-
dict decision times (Marewski, Gaissmaier, Schooler, et
al., 2009; Pachur & Biele, 2007).

Whereas both Model 4 and Model 5 classes were able
to account for some aspect of the human data in the cue
group, neither turned out to be sufficient (Appendix B;
Figures B6, B12, B24, B30). Instead, the race models of
the Model 1& 4 class, that is, combinations of the im-
plicit, intuitive processes assumed by Model 4 and the
noncompensatory, recognition-based processes of Model
1 were able to fit participant’s data best in Experiment
1. In Experiment 2, race models of the 1&4 class were
also among the best-generalizing models; however, here
representatives of the Model 1&5 class rivaled their per-
formance. In short, with respect to strictly compensatory
models, the current data suggest that the simple Model 4
and 5 classes are insufficient.

6.3 Methodological considerations

Model specification. At the close of this article, we
would like to stress five points. First, most of the hy-
potheses about accessibility-based decisions tested here
had only been formulated verbally in the literature. As
a result, the outcomes of our model comparison also de-
pend on our choices of how to implement such verbal hy-
potheses into detailed computational models in ACT-R.
That is, we cannot rule out the possibility that different
implementations will result in different results in model
competitions. It is important to realize, however, that this
specification problem (see Lewandowsky, 1993), namely,
how to translate an underspecified hypothesis into a de-
tailed model, is not a problem specific to research on
accessibility-based decisions, but can also emerge when
using cognitive architectures to implement hypotheses
about cognitive processes in other areas of research, in-
cluding when implementing classic decision strategies
such as elimination-by-aspects (Tversky, 1972). Here
we dealt with this problem by following the principles
of competitive and nested modeling, leading us to imple-
ment a large number of variants of the accessibility-based
strategies discussed in the literature.

Architecture. Second, the lack of specification many
decision strategies exhibit is also problematic for another
reason: Often it is not clear what drives a strategy’s abil-
ity to account for process data. Is it an unspecified as-
sumption, for example about memory, perceptual, or mo-
tor processes? Or is it the decision strategy itself that car-
ries the burden of explanation? As A. Newell (1990) puts
it, a theory that deals with only one component of behav-
ior (e.g., decision making) while ignoring the rest (e.g.,
memory) “flirts with trouble from the start” (p. 17). In
our view, models of decision making should therefore be
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specified at an architectural level, spelling out not only
decision processes, but also how these processes inter-
weave with other cognitive processes.

Modeling principles. Third, we deem the two exper-
imental data sets and analyses reported here to be insuf-
ficient to conclusively identify the best process model.
For instance, as discussed above, some of our 39 mod-
els’ ability to account for the experimental data was sim-
ilar. However, we would like to point out that we were
able to obtain a more differentiated picture of the mod-
els’ performance than one might have expected, given
how large the number of tested models was. We attribute
those relatively-clear cut results of our model competi-
tion to the five methodological principles we embraced.
For instance, had we just fitted median decision times and
not additionally let the models fit and predict the deci-
sion times’ 1st and 3rd quartiles, then it would have been
more difficult to judge which models account for deci-
sion times best, because different models may be able to
produce similar median times, but different spreads for
the underlying decision time distributions. Similarly, had
we not constrained the models by estimating recognition
and retrieval parameters from separate recognition and
cue retrieval tasks and then keeping all parameters con-
stant across all models, it may have been more difficult
to tell whether a failure of a model to account for deci-
sion times should be attributed to the model’s assump-
tions about recognition and retrieval processes or to the
model’s assumptions about decision processes.

Strategy selection. Fourth, we would like to point
out that comparative tests of process models of decision
strategies such as the ones we conducted above are in-
complete if they are not informed by theories of strategy
selection. Such theories predict in what situations and
tasks a given decision strategy will be relied upon and in
what situations and tasks a strategy will not come into
play (Busemeyer & Myung, 1992; Lovett & Anderson,
1996; Marewksi & Schooler, 2011; Rieskamp & Otto,
2006). Without such a theory, rejecting a model of deci-
sion making simply because it does not predict behavior
well in a certain situation or task is problematic. There
are at least two potential reasons why a decision strat-
egy does not predict behavior. One is (a) that the strategy
per se is generally not a good model of behavior. An al-
ternative reason is (b) that the decision strategy is not re-
lied upon, because people (or the corresponding selection
mechanisms) choose not to use it in a particular situation.
For instance, in the cue group of Experiment 1, Models of
the 1&4.L class fitted decisions and decision times best,
lending support to an implicit use of cue knowledge. In
Experiment 2, results were different. Whereas also in this
experiment, Models of the 1&4.L class predicted the hu-
man decisions well for zero and one negative cues, mod-
els assuming more deliberate, explicit decision processes

(i.e., Models of the 1&5.2 class) turned out to be the bet-
ter predictors for decisions when three negative cues were
known about the recognized city. The fact that the Model
1&4.L’s class relative success did not completely general-
ize from Experiment 1 to Experiment 2 could not only be
interpreted as (a) challenging the validity of this model
class, but also as (b) the difference in the design of the
two experiments (Table 1) having resulted in a change in
the decision strategies participants employed. A model
of strategy selection that predicts when a given decision
strategy will be used (and when not) could help to estab-
lish which of these two interpretations is likely to repre-
sent the better one.

Generalizability across experimental paradigms.
Fifth, we would also like to stress that different exper-
imental paradigms can require specifying different cog-
nitive processes in the same decision model. Pachur et
al.’s (2008) Experiment 1 and 2, which we re-analyzed
here for the purpose of illustrating our 39 ACT-R mod-
els, entailed teaching participants cue knowledge about
the cities (e.g., whether a city has an airport). It is not
clear to what extend the results of our model comparison
will generalize to experiments where participants have
acquired their cue knowledge naturally, that is, is outside
of the laboratory. For instance, in teaching the cue knowl-
edge in Pachur et al.’s experiments, all to-be-learned cues
were presented with equal frequency, making it likely that
all cues exhibit similar base level activation in memory
and have similar probabilities and speeds of retrieval. In
experiments where knowledge is acquired naturally, the
activation of different pieces of information will vary as
a function of the environment, which can result in dif-
ferent probabilities and speed of retrieval for different
pieces of information (see Marewski & Schooler, 2011,
for corresponding ACT-R modeling efforts). In such ex-
periments, different decision strategies may emerge as the
winners than those we identified in our model compar-
isons. We encourage future research to tackle this ques-
tion, because experimental paradigms involving naturally
acquired information may be considered an ideal test-bed
for the recognition heuristic (Gigerenzer & Goldstein,
2011; Pachur et al., 2008).

6.4 Conclusion: Beyond qualitative hy-
potheses and simplifying dichotomies

“Psychology . . . attempts to conceptualize what it is do-
ing.. . . How do we do that? Mostly . . . by the con-
struction of oppositions—usually binary ones. We worry
about nature versus nurture, about central versus parallel,
and so on.” These lines written by A. Newell in 1973 (p.
287) still reflect much research in the decision sciences
today that centers on dichotomies such as compensatory
versus noncompensatory processes. Also much of con-
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temporary research on accessibility-based decisions and
on the recognition heuristic suffers from this state of af-
fairs (Tomlison, Marewski, & Dougherty, 2011). By de-
veloping models of accessibility-based decisions within
an architecture, we have taken a small step toward re-
placing such dichotomies and the qualitative processes
hypotheses associated with them, with detailed, quanti-
tative models (see, e.g., Anderson, 2007; Dougherty et
al., 1999; Nellen, 2003; Marewski & Schooler, 2011; A.
Newell, 1990; Schooler & Hertwig, 2005).

To conclude, we would like to highlight that often there
may exist many different models, all of which are equally
capable of reproducing and explaining data—a dilemma
that is also known as the identification problem (see An-
derson, 1976). As a result it appears unreasonable to
ask which of many process models is more “truthful”;
rather, one needs to ask which model is better than an-
other given a set of criteria, for example, the models’ de-
gree of specification or its generalizability to new tasks.
As Box (1979) puts it—and we agree—“All models are
wrong, but some are useful” (p. 202). Importantly, how-
ever, while many functionally equivalent models may ex-
ist, there are infinite numbers of underspecified models
for which nobody will ever be able to decide whether one
is better than another, given a set of criteria. Thus, even
though all models may be wrong, often there is no good
alternative to making them as precise as possible.
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Appendix A

Parameter settings
All 39 ACT-R decision models assume that memory, motor, and perceptual processes interweave with decision pro-
cesses. In modeling these processes, we had to set the values of a number of parameters (see Table A1). All parameters
were fitted by using participants’ data from Experiment 1.

Parameters determining the time for retrieval failures: τ , F

The time to decide that a chunk (representing an unknown city or cue value) cannot be retrieved is determined
by the retrieval threshold, τ , and the latency factor, F (Equation 8). Following the principle of constrained mod-
eling, we set these parameters by creating a separate ACT-R model of recognition, labeled ACT-R recognition,
which we fitted to participants’ responses in the recognition task of Experiment 1 (the model code is available at
http://www.ai.rug.nl/~katja/models or http://journal.sjdm.org/vol6.6.html). Specifically, we let the model solve the
recognition task in the same way the human participants did, by presenting each city name (one at a time) and letting
the model indicate whether the name could be retrieved. As it turns out, in this task participants judged cities about
120 ms faster as recognized (Mdn = 962 ms) than as unrecognized (Mdn = 1,081 ms; for simplicity, in computing the
medians, we collapsed the data of all participants, following our analyses of the data from the decision task, as well
as Pachur et al.’s, 2008, original analyses). We were able to fit this difference in time (after informally searching the
parameter space) by adjusting the retrieval threshold, τ , to −.3 and the latency factor, F, to .1. We then made ACT-R
recognition the recognition component of the 39 decision models.

Parameters determining the time for successful retrievals: n, tn, d, Wj, Sji, S, s

The time to successfully retrieve a chunk (representing a recognized city or its cue value) is determined by the ac-
tivation of the chunk in memory, Ai, and by the latency factor, F (see Equation 7). We fixed the latency factor, F,
on retrieval failure times (i.e., the time it takes to judge an alternative’s name as unrecognized) as described in the
preceding paragraph. The activation, Ai, of a chunk i is influenced by three components: its base-level activation, Bi,
spreading activation, Si, and a noise component, ε (see Equation 1). We estimated the parameters for the base-level
activation, Bi, and the spreading activation, Si, by using the data from the cue memory task of Experiment 1. In the
cue memory task, participants were asked to recall the cues of each of the six cities from the learning task. As it
turns out, positive cues were recalled about 80 ms faster than negative cues (positive cues: Mdn = 1,148 ms; negative
cues: Mdn = 1,234 ms; for simplicity, in computing the medians, we collapsed the data of all participants, following
our analyses of the data from the decision task, as well as Pachur et al.’s, 2008, original analyses). In ACT-R, such a
difference in retrieval time can be explained by assuming a difference in activation, Ai, between positive and negative
cues. Using Equation 7, we first calculated the difference in activation, Ai, that would be necessary to cause such a
difference in retrieval time. As described in detail below, we then estimated the values of parameters determining the
base-level activation, Bi, and spreading activation, Si, such that the previously calculated difference in activation, Ai,
would emerge.

A chunk’s base-level activation, Bi, reflects the cognitive system’s previous experience with the chunk. The rec-
ognized cities in Pachur et al.’s (2008) experiments were not only well-known British cities but these cities and their
values on the three cues (industry, soccer and airport) were also extensively practiced in the learning task. In setting the
base-level activation, Bi, we therefore assumed that the cities and their cue values would be strongly activated and, for
simplicity, that this activation would be identical for cities and positive cues. To model the difference in retrieval times
between positive and negative cues, we assumed that negative cues have a lower base-level activation, Bi, than positive
cues. The exact values of base-level activation, Bi, depend on the values of three parameters: n, tk, and d (Equation
2). Setting d at .5, a value that is typically used in the literature (e.g., Schooler & Hertwig, 2005; Anderson & Lebiere,
1998), we estimated the values of tn (the first encounter with the chunk) to −1e10 seconds and n (the frequency of
encounters) to 3,000,000 for positive cues and 60,000 for negative cues.

In addition to chunks representing cities and cue knowledge about the cities, Models of the 4 and 1&4 classes assume
a chunk representing implicit knowledge about a city’s size, labeled big chunk, b. To set the base-level activation of
the big chunk, we kept d and tn at the values described in the previous paragraph (i.e., d = .5; tn =−1e10) and estimated
n. To estimate n, we fit the Models of the 4 and 1&4 classes to the human data in the decision task. More precisely,
we first estimated n for what we now call Model 4.H by fitting this model to the cue groups’ decision data. In doing
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Table A1: Parameter settings.

Parameter Explanation Value Method by which the
parameter was set

Parameter used fora

Parameters determining the time for retrieval failures
τ Retrieval threshold −.3 Fit to data from

recognition task
Retrieval failure time
(Equation 8)

F Latency factor .1 Fit to data from
recognition task

Retrieval failure time
(Equation 8)

Parameters determining the time for successful retrievals
n Number of

presentations of a
chunk i

(I) 3,000,000; (II)
60,000
(III) 50,000; (IV)
30,000

(I and II): Fit to data
from cue memory task
(III and IV): Fit to data
from decision task

Base-level activation Bi

(Equation 2)

tn Time in seconds since
the first presentation
of a chunk i

−1e10 Fit to data from cue
memory task

Base-level activation Bi

(Equation 2)

d Decay parameter .5 Value that is typically
used (Schooler &
Hertwig. 2005;
Anderson & Lebiere,
1998)

Base-level activation Bi

(Equation 2)

W j Activation of a chunk
j in the imaginal
buffer

(number of
chunks j in the
imaginal
buffer)−1

ACT-R default Spreading activation Si

(Equation 3)

Sji Associative strength
between chunks j and
i

(I) Equation 4
determines
valuesb

(II) 0

(I) Calculated using
Equation 4
(II) Fit to data from cue
memory task

Spreading activation Si

(Equation 3)

S Maximum associative
strength

3 Fit to data from cue
memory task

Associative strength Sji

(Equation 4)
s Value determining the

amount of retrieval
noise

.2 Value that has been used
in the literature (e.g.,
Taatgen, et al., 2008)

Retrieval noise ε
(Equation 5)

Other parameters that affect timing
m Value determining the

amount of perceptual
and motor noise

3 ACT-R default, if noise
is switched on

Perceptual and motor
noise

visual-attention-
latency

Time in seconds to
shift visual attention

.035 Fit to data from decision
task

Moving attention

imaginal-delay Time in seconds to
respond to imaginal
request

.1 Fit to data from decision
task

Updating of the imaginal
buffer

Note. (I) = for cities and positive cues; (II) = for negative cues; (III) = for the big chunk in the Model 4.H and
1&4.H classes; (IV) = for the big chunk in the Model 4.L and 1&4.L classes.
a For simplicity we listed all parameters only once in the table. However, some parameters are used in more than
one equation. For instance, the latency factor, F, is used for calculating the time for retrieval failures and for
successful retrievals.
b There is no single value; Sji are calculated using Equation 4 for cities and positive cues values.
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so, we estimated n to be 50,000, resulting in a base-level activation (Bb,= −.003) slightly above the retrieval threshold
of−.3. As Model 4.H had difficulties to fit the spread of the decision time distributions, we then build the race version
of this model. After realizing that this race version (i.e., Model 1&4.H) fit the decision times, but overestimated the
proportion of choices for the recognized city in the decisions, we decided to re-fit n. Specifically, we examined how
well a race version of Model 4 (i.e., Model 1&4) would fit the cue group’s decisions, if n was set to a lower value.
After trying out various values for n, we settled on a value that yielded a good fit of the decisions, and called the race
model with the new value for n Model 1&4.L. In this model, n was set to be 30,000, resulting in a base-level activation,
Bb = −.51, slightly below the retrieval threshold of −.3. Once n was estimated for Model 1&4.L, we then—for the
sake of completeness—additionally created the non-race version of Model 1&4.L, that is, Model 4.L, which assumes
the same value for n as Model 1&4.L.

The amount of spreading activation, Si, from a chunk j in the imaginal buffer to a chunk i in memory is determined
by the strength of activation of j in the imaginal buffer, W j, and by the associative strength, Sji, between j and i
(Equation 3). For calculating the strength of activation in the imaginal buffer, W j, we used ACT-R’s default settings
(1/number of chunks in the buffer). In setting the spreading activation, Si, for positive and negative cues (see above,
beginning of this section), we varied the associative strength, Sji, between positive and negative cues: The associative
strengths, Sji, between positive cues and cities were calculated using Equation 4, where we fit the cue memory data
by setting the value of Equation 4’s free parameter S (i.e., the maximum spreading activation) to 3, after informally
searching the parameter space. The associative strengths, Sji, between negative cues and cities were set to 0, as this
setting allowed us to generate a sufficiently large difference in activation, Ai, between positive and negative cues. In the
Model 4 and 1&4 classes, also the associative strengths, S ji, between positive cues and the big chunk were calculated
using Equation 4 with the same value for Equation 4’s free parameter S ( = 3).

The amount of retrieval noise, ε, that is added to a chunk’s activation when the chunk is requested for retrieval is
determined by the parameter s (Equation 5). As ACT-R does not provide a default value for this parameter, we set it
to .2, which is a value that has been used in the literature before (e.g., Taatgen, Huss, Dickison, & Anderson, 2008).

To assess the adequacy of our parameter settings for the base-level activation, Bi, spreading activation, Si, and
retrieval noise, ε, we constructed a separate ACT-R model for the cue memory task, labeled ACT-R cue_retrieval_PN.
As the human participants, this model had to indicate for each city-cue combination, whether the cue value was
positive, negative, or unknown. Using the parameter values described above (see also Table A1), this model was able
to fit the difference in decision times between positive and negative cues. We made ACT-R cue_retrieval_PN the
cue-retrieval component of those decision models that retrieve positive and negative cue values before their decision
(i.e., all PN variants of the Model 2, 3, 4, 5, 1&3, 1&4, and 1&5 classes, respectively). Keeping the parameters fixed,
we then generated a second model, ACT-R cue_retrieval_P, which can only retrieve positive cue values. We made this
model the cue-retrieval component of those decision models that retrieve only positive cue values before their decision
(i.e., all P variants of the Model 2, 3, 4, 5, 1&3, 1&4, and 1&5 classes, respectively). The codes for both cue retrieval
models are available at http://www.ai.rug.nl/~katja/models or http://journal.sjdm.org/vol6.6.html.

Other parameters that affect timing: m, visual-attention-latency, imaginal-delay

In addition to the parameters described above, ACT-R has a number of other parameters that affect the timing of
actions. We left those parameters at their default values, with three exceptions: the setting of perceptual and motor
noise, the time required for moving attention to a stimulus on the screen, and the time required to update the imaginal
buffer.

Perceptual and motor noise, m. ACT-R comes with a mechanism for adding noise to the timing of perceptual or
motor actions. Whereas this mechanism is turned off by default, we decided to turn it on, because it seemed highly
unlikely to us that the timing of perceptual and motor actions would be free of variability (for similar assumptions, see
Trafton, Altmann, & Ratwani, 2009; Gunzelmann, Gross, Gluck, & Dinges, 2009). Once turned on, the mechanism
adds noise to the timing of the visual and manual modules. This mechanism has one free parameter, m, which we left
at its default value, 3.

Visual-attention-latency. By default, ACT-R assumes that people will move their attention to the locations on a
computer screen where they detect a change on the screen. For example, in different experimental trials a stimulus
might appear at different locations on the screen, leading people to move their attention to the stimulus’s new location
in each of the trials. In the decision task we used, the cities were always presented at the same location on the screen.
Thus, participants knew exactly where to look. To take this into account, we reduced the visual-attention-latency, that
is, the time it takes our models to move their attention, from 85 ms (default value) to 35 ms.
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Imaginal-delay. The imaginal buffer holds information that is currently in the focus of attention (e.g., a city name or
a cue). When new information becomes available (e.g., a new cue has been retrieved), the information in the imaginal
buffer needs to be updated (Borst et al., 2010). By default, this update (called the imaginal-delay) takes 200 ms, but
the duration varies among the ACT-R models reported in the literature (see e.g., Anderson & Qin, 2008, who sampled
the durations from a random distribution between 0 and 1500 ms). In the decision task we used, the update of the
imaginal buffer is relatively simple, because information does not need to be replaced (e.g., as in Borst et al.) but is
only added until a decision is made. For instance, if an additional cue has been retrieved, then this cue does not need
to replace previously retrieved cues and city names but can just be added to the imaginal buffer. To take the simplicity
of our task into account, we reduced the time it takes to update the imaginal buffer to 100 ms.

Appendix B: Detailed results for all models

Fits of all models—Experiment 1
Visual displays of all models’ fits are provided in Figures B1-B18. The figures showing the models are arranged in the
same order as the models in Tables 2, 3, and 4, which describe the models as well as quantify their fit. Each model’s
fit is plotted for the experimental trials solved by the participants from the recognition group (uneven figure numbers)
as well as the trials solved by the cue group (even figure numbers).

In each graph, the upper grey x-axis shows the number of negative cues; the corresponding data points (decisions
in Panel A, decision times in Panel B) are plotted in grey font (triangles). In each graph, the lower black x-axis shows
the number of positive cues; the corresponding data points are plotted in black font (circles).

Recognition group. As is to be expected, in the recognition group, those models that always choose recognized
cities (Table 2b) fit the human decisions perfectly (RMSD of 0 in Table 3). Specifically, the Model 1, 2, 3 and 1&3
classes (Figures B1, B3) always decide in favor of recognized cities, because recognition is the only decision rule
these models implement.

Also Models 5.1.P, 5.2.P, and 5.3.P (Figure B11), 1&5.1.P, 1&5.1.P.F (Figure B13), 1&5.2.P, 1&5.2.P.F (Figure
B15), and 1&5.3.P, 1&5.3.P.F (Figure B17), always choose recognized cities. However, these models base such
decisions on positive cues in addition to recognition. These models cannot choose unrecognized cities, because they
cannot retrieve negative cues.

Finally, although models 5.3.PN (Figure B11), 1&5.3.PN, and 1&5.3.PN.F (Figure B17) do have access to negative
cues, they always choose recognized cities, because the models require at least three negative cues (C = 3) to decide
against recognized cities and in Experiment 1 participants were only taught up to two negative cues (Table 1).

None of the simple models that fit the human decisions of the recognition group (Model classes 1, 2, 3, and Models
5.1.P, 5.2.P, 5.3.P, and 5.3.PN) are able to fit the human decision times. Model 1 does not retrieve cues and therefore
the cues do not affect timing (Figure B1). The Model 2 and 3 classes and those representatives of the Model 5 class
that always chose the recognized city are able to more closely approximate the human decision times, as they show
the tendency to produce slower decision times as a function of increasing amounts of negative cues (Figures B1 and
B11); however, these model classes fail to fit the spread of the decision time distributions, resulting in high RMSDs
(Table 3).

The race models that fit the human decisions of the recognition group (the Model 1&3 class, Figure B3; and Models
1&5.1.P, 1&5.1.P.F, Figure B13; 1&5.2.P, 1&5.2.P.F, Figure B15; 1&5.3.P, 1&5.3.P.F, 1&5.3.PN, 1&5.3.PN.F, Figure
B17) differ with respect to their decision time fit. Whereas they all show the tendency to produce slower decision
times with an increasing amount of negative cues (as found in the human data), the Model 1&3 and 1&5.3 classes, as
well as the P versions of the 1&5.2 class produce a decision time distribution that is closest to the human data, because
these models predict the largest spread in the decision times.

Cue group. Human decisions in favor of recognized cities tend to increase as a function of the number of positive
cues and decrease as a function of the number of negative cues (e.g., Figure B2). As is to be expected, the models
described in the previous section (i.e., see recognition group) do not fit this effect, because these models only produce
decisions in favor of recognized cities (Figures B2, B4, B12, B14, B16, B18).

In contrast, models that use cue knowledge implicitly in the decision, the Model 4 and 1&4 classes, fit the pattern
of decisions. In these models, the tendency to decide for the unrecognized city increases with the number of negative
cues (Figures B6, B8, B10). The models differ with respect to the overall proportion of choices for the recognized city.
For example, Model 4.H.PN fits the overall proportion well, whereas Model 4.L.PN underestimates the proportion of
choices for the recognized city.
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Model 5.1.PN, 5.2.PN, 1&5.1.PN, 1&5.2.PN, all of which use positive and negative cue knowledge explicitly in the
decision and are able to reach their decision criterion of C negative cues to decide against the recognized city in this
experiment, exhibit a tendency to choose unrecognized cities as a function of the number of negative cues. However,
these models predict a drop in decisions for the recognized city once the decision criterion C is reached, which was
not found in the human data (Figures B12, B14, B16).

None of the simple models that sometimes decide against the recognized city are able to predict the human decision
time distribution (Figures B6, B12). The race models differ in their ability to predict the decision times (Figures B8,
B10, B14, B16), with none of the models fitting the combination of decisions and decision times as well as the winning
Model 1&4.L class.
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Figure B1. Model 1, 2, and 3 classes and human data—recognition group—Experiment 1.
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Figure B2. Model 1, 2, and 3 classes and human data—cue group—Experiment 1.
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Figure B3. Model 1&3 class and human data—recognition group—Experiment 1.
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Figure B4. Model 1&3 class and human data—cue group—Experiment 1.
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Figure B5. Model 4 class and human data—recognition group—Experiment 1.
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Figure B6. Model 4 class and human data—cue group—Experiment 1.
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Figure B7. Model 1&4.H class and human data—recognition group—Experiment 1.
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Figure B8. Model 1&4.H class and human data—cue group—Experiment 1.
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Figure B9. Model 1&4.L class and human data—recognition group—Experiment 1.
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Figure B10. Model 1&4.L class and human data—cue group—Experiment 1.
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Figure B11. Model 5 class and human data—recognition group—Experiment 1.
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Figure B12. Model 5 class and human data—cue group—Experiment 1.
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Figure B13. Model 1&5.1 class and human data—recognition group—Experiment 1.
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Figure B14. Model 1&5.1 class and human data—cue group—Experiment 1.
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Figure B15. Model 1&5.2 class and human data—recognition group—Experiment 1.
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Figure B16. Model 1&5.2 class and human data—cue group—Experiment 1.
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Figure B17. Model 1&5.3 class and human data—recognition group—Experiment 1.
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Figure B18. Model 1&5.3 class and human data—cue group—Experiment 1.

10
00

15
00

20
00

25
00

0 1 2 3

3 2 1 0

de
cis

io
n 

tim
e 

(m
s)

N positive cues

N negative cues

Human

●

●
●

● ●
●

●

●

●

60
70

80
90

10
0

0 1 2 3

3 2 1 0

re
co

gn
ize

d 
cit

y 
ch

os
en

 (%
)

N positive cues

N negative cues

Human

●

●

●

●

neg cues
pos cues

a) Decisions

mean (SE)

SE is 0 when 
decisions are at 
100%.

b) Decision Times

median (quartiles)

60
70

80
90

10
0

0 1 2 3

3 2 1 0

re
co

gn
ize

d 
cit

y 
ch

os
en

 (%
)

N positive cues

N negative cues

Model 1&5.3.P.F

● ● ●

60
70

80
90

10
0

0 1 2 3

3 2 1 0

re
co

gn
ize

d 
cit

y 
ch

os
en

 (%
)

N positive cues

N negative cues

Model 1&5.3.PN.F

● ● ●

10
00

15
00

20
00

25
00

0 1 2 3

3 2 1 0

de
cis

io
n 

tim
e 

(m
s)

N positive cues

N negative cues

Model 1&5.3.P.F

●
●

●

● ● ●

●

●

●

10
00

15
00

20
00

25
00

0 1 2 3

3 2 1 0

de
cis

io
n 

tim
e 

(m
s)

N positive cues

N negative cues

Model 1&5.3.PN.F

● ●
●

● ● ●

●

●

●

60
70

80
90

10
0

0 1 2 3

3 2 1 0

re
co

gn
ize

d 
cit

y 
ch

os
en

 (%
)

N positive cues

N negative cues

Model 1&5.3.P

● ● ●

60
70

80
90

10
0

0 1 2 3

3 2 1 0

re
co

gn
ize

d 
cit

y 
ch

os
en

 (%
)

N positive cues

N negative cues

Model 1&5.3.PN

● ● ●

10
00

15
00

20
00

25
00

0 1 2 3

3 2 1 0

de
cis

io
n 

tim
e 

(m
s)

N positive cues

N negative cues

Model 1&5.3.PN

●
●

●

● ● ●

●

●

●

10
00

15
00

20
00

25
00

0 1 2 3

3 2 1 0

de
cis

io
n 

tim
e 

(m
s)

N positive cues

N negative cues

Model 1&5.3.P

●
●

●

● ● ●

●

●

●

https://doi.org/10.1017/S1930297500002473 Published online by Cambridge University Press

https://doi.org/10.1017/S1930297500002473


Judgment and Decision Making, Vol. 6, No. 6, August 2011 Quantitative process models 498

All Models’ generalizability—Experiment 2
Visual displays of all models’ fits for Experiment 2 are provided in Figures B19-B36. As for Experiment 1, the models
are presented in the same order as in Tables 2, 3, and 4, and each model’s prediction is shown separately for the
recognition group (uneven figure numbers) and the cue group (even figure numbers).

Recognition group. As is to be expected, in the recognition group, the same model classes as in Experiment 1
accurately predict the human decisions (simple models: Model 1, 2, 3, class, Figures B19; and the P versions of the
Model 5 class, Figure B29; race models: Model 1&3 class, Figure B21; and the P versions of the Model 1&5 class,
Figures B31, B33, B35). As explained in the main text, exceptions are Models 5.3.PN, 1&5.3.PN, and 1&5.3.PN.F
(Figures B29, B35), which always chose the recognized city in Experiment 1, but which can decide against recognized
cities in Experiment 2.

As in Experiment 1, none of the simple models that accurately predict the human decisions is able to additionally
predict the decision time distribution (Figures B19, B29). The race models differ in their ability to predict the decision
times (Figures B21, B31, B33, B35). As in Experiment 1, the Model 1&3 class as well as the P versions of the Model
1&5.2 and 1&5.3 classes produce a decision time distribution that most closely resembles the human data, because
these models predict a large spread in the decision times.

Cue group. In contrast to Experiment 1, in the cue group, the human decisions exhibit a drop in the proportion of
decisions for the recognized city when three negative cues (or zero positive cues) are associated with the recognized
city. Predicting a gradual decrease of decisions with an increasing number of negative cues, models that use cues
implicitly (Model 4 and 1&4 classes; Figures B24, B26, B28) have difficulties to predict this new pattern in Experiment
2. As can be seen, these models only capture the gradual decrease in decisions from zero to one negative cues, but not
the drop that is observed for decisions with three negative cues.

Models that use positive and negative cue knowledge explicitly (the PN versions of the Model 5 and 1&5 classes)
do predict a drop in the proportion of decisions for the recognized city once their decision criterion C negative cues is
reached. This drop is overestimated by the simple models (PN versions of Model 5 class, Figure B30) and by the race
Models 1&5.1.PN and 1&5.1.PN.F (Figure B32). Using a decision criterion of C = 2 and C = 3 cues, respectively,
Models 1&5.2.PN, 1&5.2.PN.F (Figure B34), 1&5.3.PN, and 1&5.3.PN.F (Figure B36) capture the drop in human
decisions.

As in Experiment 1, none of the simple models that sometimes decide against the recognized city is able to predict
the human decision time distribution (Figures B24, B30). The race models differ in their ability to predict the decision
times (Figures B26, B28, B32, B34, B36), with the models that predict the largest spread in the decision times fitting
the human decision time distribution best (Model 1&4 class and Models 1&5.3.PN; 1&5.3.PN.F).
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Figure B19. Model 1, 2, and 3 classes and human data—recognition group—Experiment 2.
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Figure B20. Model 1, 2, and 3 classes and human data—cue group—Experiment 2.
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Figure B21. Model 1&3 class and human data—recognition group—Experiment 2.
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Figure B22. Model 1&3 class and human data—cue group—Experiment 2.
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Figure B23. Model 4 class and human data—recognition group – Experiment 2.
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Figure B24. Model 4 class and human data—cue group—Experiment 2.
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Figure B25. Model 1&4.H class and human data—recognition group—Experiment 2.
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Figure B26. Model 1&4.H class and human data—cue group—Experiment 2.
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Figure B27. Model 1&4.L class and human data—recognition group—Experiment 2.
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Figure B28. Model 1&4.L class and human data—cue group—Experiment 2.
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Figure B29. Model 5 class and human data—recognition group – Experiment 2.
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Figure B30. Model 5 class and human data—cue group—Experiment 2.
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Figure B31. Model 1&5.1 class and human data—recognition group—Experiment 2.
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Figure B32. Model 1&5.1 class and human data—cue group—Experiment 2.
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Figure B33. Model 1&5.2 class and human data—recognition group—Experiment 2.

10
00

15
00

20
00

25
00

0 1 2 3

3 2 1 0

de
cis

io
n 

tim
e 

(m
s)

N positive cues

N negative cues

Human

● ●
●

●
●

●

●
●

●

60
70

80
90

10
0

0 1 2 3

3 2 1 0

re
co

gn
ize

d 
cit

y 
ch

os
en

 (%
)

N positive cues

N negative cues

Human

● ● ●

●

neg cues
pos cues

a) Decisions

mean (SE)

SE is 0 when 
decisions are at 
100%.

b) Decision Times

median (quartiles)

60
70

80
90

10
0

0 1 2 3

3 2 1 0

re
co

gn
ize

d 
cit

y 
ch

os
en

 (%
)

N positive cues

N negative cues

Model 1&5.2.P.F

● ● ●

60
70

80
90

10
0

0 1 2 3

3 2 1 0

re
co

gn
ize

d 
cit

y 
ch

os
en

 (%
)

N positive cues

N negative cues

Model 1&5.2.PN.F

●

● ●

10
00

15
00

20
00

25
00

0 1 2 3

3 2 1 0

de
cis

io
n 

tim
e 

(m
s)

N positive cues

N negative cues

Model 1&5.2.P.F

●

●
●

●

● ●

●

●

●

10
00

15
00

20
00

25
00

0 1 2 3

3 2 1 0

de
cis

io
n 

tim
e 

(m
s)

N positive cues

N negative cues

Model 1&5.2.PN.F

●

●
●

● ● ●

● ●

●

60
70

80
90

10
0

0 1 2 3

3 2 1 0

re
co

gn
ize

d 
cit

y 
ch

os
en

 (%
)

N positive cues

N negative cues

Model 1&5.2.P

● ● ●

60
70

80
90

10
0

0 1 2 3

3 2 1 0

re
co

gn
ize

d 
cit

y 
ch

os
en

 (%
)

N positive cues

N negative cues

Model 1&5.2.PN

●

● ●

10
00

15
00

20
00

25
00

0 1 2 3

3 2 1 0

de
cis

io
n 

tim
e 

(m
s)

N positive cues

N negative cues

Model 1&5.2.PN

●

●
●

● ● ●

●

●

●

10
00

15
00

20
00

25
00

0 1 2 3

3 2 1 0

de
cis

io
n 

tim
e 

(m
s)

N positive cues

N negative cues

Model 1&5.2.P

●

●
●

● ● ●

●

●

●

https://doi.org/10.1017/S1930297500002473 Published online by Cambridge University Press

https://doi.org/10.1017/S1930297500002473


Judgment and Decision Making, Vol. 6, No. 6, August 2011 Quantitative process models 514

Figure B34. Model 1&5.2 class and human data—cue group—Experiment 2.
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Figure B35. Model 1&5.3 class and human data—recognition group—Experiment 2.
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Figure B36. Model 1&5.3 class and human data—cue group—Experiment 2.
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Appendix C

Further illustration of the race models

Below, we explain the race models in more detail. Recall, that the race models were generated by partially combining
the Model 1, 3, 4, and 5 classes with each other, resulting in the Model 1&3, 1&4, and 1&5 classes. As all models,
each race model exists in a version that uses positive and negative cues (PN in the model name) and a version that
only uses positive cues (P in the model name). For simplicity, below we outline the PN versions. Note, however,
that the P versions are identical to the PN versions, with the only difference being that the P versions cannot retrieve
and use negative cues. Additionally, for each race model we implemented a version that assumes that retrieved cues
will at times be forgotten (F in the model name). For simplicity, below we outline the versions of the models that do
not forget cues. However, note that the forgetting versions are identical to the non-forgetting versions, with the only
difference being that as soon as at least two cues have been retrieved, the forgetting process will be added to the race.
If the forgetting process wins the race, all cues that have been retrieved up to that point will be “forgotten” and the race
between responding with the recognized city and retrieving and encoding cues starts again. Finally, note that for each
race, all processes that compete in the race have an equal likelihood to win the race (see Footnote 8 in the main text).

The 1&3 race Model class reflects the assumption that, while decisions will exclusively rely on recognition (as in
Model 1), occasionally cues about the recognized city are retrieved (as in the Model 3 class). Figure C1 shows the
different processes that race against each other at each possible step in the decision process of Model 1&3.PN. To
illustrate this, assume Model 1&3.PN is presented with a pair of cities. After assessing recognition of the cities, a race
between responding directly with the name of the recognized city (respond recognized) and retrieving and encoding
one of the three cues (retrieve industry, airport, or soccer) takes place. This race is repeated either (a) until the model
responds with the recognized city before all three cues are retrieved, or (b) until all three cues are retrieved and encoded
and a decision is made in favor of the recognized city.

Figure C1. Illustration of the race between different processes in Model 1&3.PN. As can be seen, the process to
decide with the recognized city races against the retrieval of not-yet-retrieved-cues up to three times. Once all three
cues have been retrieved, the decision will be made in favor of the recognized city.
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The race models of the Model 1&4 classes reflect the assumption that decisions can be based on recognition (as
in Model 1), as well as on an implicit use of cues (as in the Model 4 class). Figure C2 shows the different processes
that race against each other at each possible step in the decision process of Model 1&4.L.PN. In this model, the race
between different processes is repeated either (a) until the model responds with the recognized city before all three
cues are retrieved, or (b) until all three cues are retrieved and encoded and a decision is made in favor of the recognized
city, or (c) until all three cues are retrieved and encoded and the model attempts to retrieve the big chunk. Once the
process to retrieve the big chunk wins the race, the model’s decision will depend on the encoded cues via implicit,
subsymbolic spreading activation.
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Figure C2. Illustration of the race between different processes in Model 1&4.L.PN. As can be seen, the process
to decide with the recognized city races against the retrieval of not-yet-retrieved-cues up to three times. Once all
three cues have been retrieved, the process to decide with the recognized city races against the retrieval of intuitive
knowledge about the size of the recognized city (the big chunk).
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The race models of the Model 1&5 classes reflect the assumption that decisions can be based on recognition (as
in Model 1), as well as on an explicit use of C cues, with C reflecting the decision criterion of the model (as in the
Model 5 class). Figure C3 shows the different processes that race against each other at each possible step in the
decision process of Model 1&5.1.PN, in trials where the model is able to retrieve a positive or negative cue value for
the first cue. In such trials, the race between different processes is repeated either (a) until the model responds with
the recognized city before the decision criterion of C = 1 is reached, or (b) until one positive or negative cue has been
retrieved and encoded and a decision is made in favor of the recognized city, or (c) until one positive or negative cue
has been retrieved and encoded and a decision is made based on the cue (i.e., either in favor of recognized cities in
favor of unrecognized cities, depending on the retrieved cue). In trials where the value of the first retrieved cue is
unknown, the race can continue until one positive or negative cue value has been retrieved. If the decision criterion
cannot be reached after all cues were retrieved (i.e., in the 1&5.1 class this will happen if all three cue values are
unknown), the model uses recognition as its best guess.

Figure C3. Illustration of the race between different processes in Model 1&5.1.PN, in trials where the first retrieved
cue is either positive or negative. As can be seen, in such trials, the process to decide with the recognized city races
against the retrieval of the cues once. If a cue is retrieved, the process to decide with the recognized city races against
the cue-based response.
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Figure C4 shows the different processes that race against each other at each possible step in the decision process of
Model 1&5.2.PN, in trials where the first two retrieved cues are either positive or negative. In such trials, the race is
repeated either (a) until the model responds with the recognized city before the decision criterion of C = 2 is reached,
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or (b) until two positive or two negative cue have been retrieved and encoded and a decision is made in favor of the
recognized city, or (c) until two positive or two negative cue have been retrieved and encoded and a decision is made
based on the cues. In trials where the values of the first two cues are not both positive or negative, the race can continue
until all three cues have been retrieved. If the decision criterion cannot be reached after all cues were retrieved, the
model uses recognition as its best guess.

Figure C4. Illustration of the race between different processes in Model 1&5.2.PN, in trials where the first two
retrieved cues are either positive or negative. As can be seen, in such trials, the process to decide with the recognized
city can race against the retrieval of not-yet-retrieved-cues up to two times. Once two positive or two negative cues
have been retrieved, the process to decide with the recognized city races against the cue-based response.

City1	  recognized	  
City2	  unrecognized	  

Respond	  
recognized	  

Retrieve	  
airport	  

Retrieve	  
soccer	  

Respond	  
recognized	  

Retrieve	  
industry	  

Retrieve	  
airport	  

Retrieve	  
soccer	  

Respond	  
recognized	  

Retrieve	  
industry	  

Retrieve	  
soccer	  

Respond	  
recognized	  

Retrieve	  
industry	  

Retrieve	  
airport	  

Respond	  
recognized	  

Respond	  
cue-‐based	  

Respond	  
recognized	  

Respond	  
cue-‐based	  

Respond	  
recognized	  

Respond	  
cue-‐based	  

Respond	  
recognized	  

Respond	  
cue-‐based	  

Respond	  
recognized	  

Respond	  
cue-‐based	  

Respond	  
recognized	  

Respond	  
cue-‐based	  

Figure C5 shows the different processes that race against each other at each possible step in the decision process
of Model 1&5.3.PN, in trials where all three retrieved cues are either positive or negative. In such trials, the race is
repeated either (a) until the model responds with the recognized city before the decision criterion of C = 3 is reached,
or (b) until all three cues are retrieved and encoded and a decision is made in favor of the recognized city, or (c) until
all three cues are retrieved and encoded and a decision is made based on the cues. In trials where the values of the
three cues are not all positive or negative, the model cannot reach its decision criterion of C = 3 cues and will therefore
use recognition as its best guess.

Figure C5. Illustration of the race between different processes in Model 1&5.3.PN, in trials where all three cues
of the recognized city are either positive or negative. As can be seen, in such trials, the process to decide with the
recognized city can race against the retrieval of not-yet-retrieved-cues up to three times. Once three positive or three
negative cues have been retrieved, the process to decide with the recognized city races against the cue-based response.
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