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Objective: Activation of the immune-inflammatory response system (IRS) and the compensatory
immune-regulatory system (CIRS) and aberrations in endogenous opioids play a role in the
pathophysiology of major depressive disorder (MDD). There are no studies which examined the
associations between both systems in MDD. The aim of the present study was to examine the relation
between p-Endorphin (B-EP), Endomorphin-2, and their mu-opioid receptor (MOR) as well as interleukin
(IL)-6 and IL-10, an anti-inflammatory cytokine, in MDD patients.

Iﬁé/rmoor;is;lm Method: The study included 60 depressed drug-free male patients and 30 matched controls. Serum p-EP,
Endornolf‘phin—Z Endomorphin-2, MOR, IL-6 and IL-10 levels were measured using ELISA techniques.

L6 Results: The results revealed a significant increase in serum -EP, MOR, IL-6 and IL-10 in MDD patients
IL-10 versus healthy controls. MOR levels were strongly associated with IL-10 levels. There were no significant

correlations between endogenous opioids and IL-6 and IL-10.
Conclusion: The results show that MOR levels may function as a possible component of the CIRS whilst
there is no evidence that p-EP and EM-2 may modify the IRS. The significant correlation between MOR
levels and IL-10 may be explained through central activation of the HPA-axis and increased B-cell
numbers expressing MOR as a response to cytokine over-secretion in MDD.

© 2018 Elsevier Masson SAS. All rights reserved.

Immune
Inflammation

1. Introduction system (CIRS), which attenuates an overzealous inflammatory

response, as indicated by increased levels of IL-10, a negative

Major depressive disorder (MDD) is a psychiatric disorder
which is a state of extreme sadness characterized by a combination
of symptoms including biochemical, environmental, genetic, and
psychological factors that interfere with a person’s ability to work,
sleep, study, eat, and enjoy once-pleasurable activities [1]. There is
now evidence that MDD is characterized by an activation of the
immune-inflammatory response system (IRS), as indicated by
increased levels of pro-inflammatory cytokines including inter-
leukin (IL)-6 [2-5]. Moreover, recently it was shown that this
primary IRS also induces the compensatory immune-regulatory
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immune-regulatory cytokine [6]. Altered functioning of the IRS and
CIRS is implicated in multiple medical morbidities of MDD
including neuroinflammatory and autoimmune disorders [7-9].
Many patients with MDD report somatic pain symptoms, which
are considered to be a multidimensional experience that entails
sensory as well as emotional, cognitive and behavioral aspects [ 10—
12]. The most important biological pathways related to pain
include pain matrix alterations, pro-inflammatory cytokines,
including IL-6, and opioid levels [12,13]. Some studies showed
that MDD is not only associated with IRS/CIRS activation [14], but
also with changes in endogenous opioids [15] and opioid receptors
[16,17]. Endogenous opioid peptides including p-endorphin (B-EP)
and endomorphin-2 (EM-2), are small molecules that are naturally
produced in the central nervous system (CNS) and in various
glands throughout the body, such as the pituitary and adrenal
glands. These peptides produce the same effects as the well-known
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alkaloid opiates, which include morphine and heroine. p-EP and
EM-2 peptides function both as hormones and as neuromodulators
[18]. There is strong evidence that opioid release is part of the
organisms' defense mechanism against the harmful effects of
stress [19], including increased HPA-axis activity, which is
frequently observed in MDD [20]. Moreover, opioid receptors
are involved in various physiological and pathophysiological
activities, including pain modulation, emotional responses, im-
mune functions, feeding, cardiovascular and respiratory control as
well as neurodegenerative processes [21]. Many of these functions
are disturbed in MDD and therefore the study of opioid receptor
levels in this disorder is important in addition to their ligands B-EP
and EM-2. Endogenous opioids, including g-EP and EM-2, as well as
their p-opioid receptor (MOR) are found throughout the central
and peripheral nervous systems and in other tissues as well.
Moreover, immunocytes express opioid receptors, including MOR,
which additionally may modulate immune functions [22,23]. A
molecular basis of bidirectional interactions between the opioid
system and the immune system had been elucidated previously
[24]. Furthermore, in animal models, pro-inflammatory cytokines
affect opiate-dependent pathways by up-regulating the expression
of MOR [25]. Exogenous opioids show immunosuppressive effects
[26], while cytokines may elicit the release of endogenous opioids
[27]. Thus, there are multiple reciprocal relationships between
endogenous opioids and the immune system.

The present study aims to delineate the relation between IL-6, a
pro-inflammatory cytokine, and IL-10, a CIRS cytokine, and two
endogenous opioids (B-EP and EM-2) and MOR levels in MDD
patients. The specific hypotheses are that MDD is accompanied by
increased levels of IL-6, IL-10, B-EP and EM-2 and increased MOR
levels.

2. Method
2.1. Participants

This case control study involved 60 depressed drug free male
patients aged 14-70year and 30 age matched healthy males as a
control group. The samples were collected at “The Psychiatry Unit”,
Al-Hakeem General Hospital and a private psychiatricclinicrunbyan
assistant professor in psychiatry, Najaf Governorate-Iraq during the
period January to]July 2017. C-reactive protein (CRP) was evaluated in
all samples and we excluded subjects with CRP values >6 mg/L to
eliminate any effects of overt inflammation on the results [3].
Patients were diagnosed by psychiatrists according to DSM-IV
criteria (5th revision of the Diagnostic and Statistical Manual of
Mental Disorders). Severity of clinical symptoms was assessed using
the 24-item Hamilton Depression Rating Scale (HDRS) one or two
days before blood was drawn. Only MDD patients with a total HDRS
score >21 were included. Informed consent was obtained from all
participants after approval from the ethics committee (IRB) of the
College of Science, University of Kufa, Iraq.

Patients were evaluated by full medical history. We excluded
subjects with systemic disease that may affect immune param-
eters, including diabetes, liver disease, and renal disease. We also
excluded MDD patients who were medicated, and subjects with
other-axis I diagnosis including substance abuse. Individuals with
highly increased hsCRP values (CRP >6 mg/L) were also excluded to
participate.

2.2. Measurements

Five milliliters of venous blood samples were drawn, utilizing
disposable needle and plastic syringes, from patients and controls.
The samples were transferred into a clean plain tube. Haemolyzed
samples were discarded. The blood was left at room temperature
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for 15 min for clotting, centrifuged 3000 rpm for 10 min, and then
serum was separated and transported into two Eppindroff tubes to
be stored at —80 °C until analyzed. Serum CRP was measures using
a kit supplied by Spinreact®, Spain. The test is based on the
principle of the latex agglutination. Commercial ELISA sandwich
kits were used to measure serum EM2 and MOR (MyBioSource®,
Inc. CA, USA) and p-EP, IL-6, and IL-10 (CUSABIO® Co., China). The
procedures were followed exactly without modifications accord-
ing to manufacturer’s instructions.

2.3. Statistical analysis

Normality of distribution of the variables was examined using
the Kolmogorov-Smirnov test. The results were expressed as
(mean + standard deviation). Pooled t-test were used for the
comparison between patients and controls. Pearson's correlation
coefficients (r) were calculated to estimate the correlation
between parameters. The differences between groups are consid-
ered to be statistically different when p < 0.05 (two tailed). The p-
values were adjusted using the Benjamini-Hochberg method for
multiple-hypothesis testing and false discovery rate (FDR).
Statistical differences in categorical variables were evaluated by
using y2-test. All statistical analysis were performed using SPSS
Statistics Version 25 (2017) by IBM-USA. Figures were made using
the Excel program of Microsoft Office 2013.

3. Results
3.1. Demographic and clinical characteristics

The demographic and clinical characteristics of the patients
with MDD and control groups are presented as observational data
in Table 1. Patients with MDD and control groups showed no
significant differences in age.

These data showed that most MDD subjects were married.
About less than half of the patients were smokers. Most of them are
urban and educated patients. All patients were newly diagnosed
cases (drug free) in order to eliminate the effect of drugs on the
measured parameter levels. The results in Table 1 showed a
significantly lower BMI (p <0.05) in MDD patients as compared
with controls.

3.2. Comparison between patients with MDD and control groups
Serum B-EP, MOR, IL-6 and IL-10 concentrations in the MDD were

significantly higher than in the control group (p <0.05, Table 2),

while EM-2 was not significantly different between both groups.

3.3. Comparison between smoking and nonsmoking MDD patients

Table 3 presents the comparison between smokers and
nonsmokers MDD groups in addition to control group. There

Table 1
Demographic and clinical characteristics of patients and controls.

Parameter Patients Control p-value
Gender: male(female) 60(0) 30(0)
Age, year 3248 +11.70 28.17+12.42 NS
BMI, kg/m? 24.69+43  26.17+5.2 NS
Demographic area: Urban (Rural) 45(15) 25(5) NS
Education: Learned (llliterate) 49(11) 28(2) NS
Employment: Employed (Not 33(27) 26(4) 0.003
Employed)
Marital status: Married (Single) 38 (22) 14(16) NS
Smoking (Not smoking) 25(35) 1(29) <0.001
Treatment: Treated (not-Treated) 0(60) 0(30)
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Table 2
Comparison between MDD patients and control group.

Parameter Patients Control p-value

B-EP pg/ml 34.15+3.65 24.83+5.37 <0.001

MOR pg/ml 4.06 +1.45 3.02+0.64 0.004

EM-2 pg/ml 3.24+0.34 3.17 £0.41 0.417

IL-6 pg/ml 16.39+3.04 11.44+2.21 0.046

IL-10 pg/ml 9.52+2.24 6.03 +1.40 <0.001
Table 3

Comparison between groups (control, nonsmoker MDD, and smoker MDD) in
cytokine levels after adjusting for Age and BMI.

Parameter Control Smokers MDD Nonsmokers MDD  Significance
IL-6 pg/ml 11.44+2.21 12.95+3.20 11.88 +2.86 NS
IL-10pg/ml  6.03+140 8.89+2.15 8.90+2.00 AB
B-EPpg/ml  24.83+5.37 34.90+3.97 33.02+2.75 AB,C

MOR pg/ml  3.02+0.64 4.44+149 4.03+1.27 AB
EM-2pg/ml 317+041  3.284+0.40 3.19+0.21 NS

A: Significant difference (p<0.05) between Control and nonsmokers MDD groups.
B: Significant difference (p <0.05) between Control and smokers MDD groups.
C: Significant difference (p < 0.05) between Smokers and nonsmokers MDD groups.

were no significant differences between smoking and nonsmoking
MDD patients in IL-6 and EM-2. B-EP was significantly higher in
both smoking and nonsmoking MDD patients than in controls
(p<0.05). IL-10 and MOR were significantly higher in both MDD
subgroups than in controls, whilst there were no significant
differences between both MDD subgroups (p < 0.05).

3.4. Correlation among parameters in MDD group

Correlation analyses among the parameters showed a signifi-
cant correlation between IL-10 and MOR in the MDD group as seen
in Fig. 1. This association remained significant after p-correction for
FDR (p=0.012). There were no significant correlations between IL-
6 and any of the opioid system measurements and between IL-10
and either B-EP and EM-2.

4. Discussion

The first major finding of this study is that MDD is characterized
by significant increases in serum B-EP and MOR levels. This
increase may indicate stimulation of the synthesis of opioids and
its receptor as a result of immune-inflammatory activation in MDD.
The involvement of the opioid system in depression has been
previously studied by several groups [17,28-30]. The results of 8-EP
assays in different papers is controversial. Hegadoren et al. [31]
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Fig. 1. Correlation between IL-10 and MOR in MDD group.
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summarized findings on serum baseline levels of nineteen
published studies. Of these studies, seven reported increases in
B-EP levels in MDD compared to controls; five reported decreased
B-EP levels; and seven reported no changes. Nevertheless,
measurements of post-dexamethasone B-EP levels in MDD
indicate that there are aberrations in the EP system in MDD.
Thus, post-dexamethasone B-EP levels are significantly higher in
MDD with melancholic and psychotic features as compared with
controls, although there were no differences in baseline B-EP levels
[28]. The variability in the B-EP results across studies may be
explained by differences in subgrouping, comorbidity issues, sex
difference, drug state of the patients, sample size, etc. (31). All in
all, our results that B-EP levels are in increased in MDD are in
agreement with a number of other studies revealing that plasma f-
EP levels and MOR levels are elevated in MDD [32,33].

There is evidence that endogenous opioids may modulate
human mood and that the endogenous p-opioid tone is
dysregulated in depression [34]. Accumulating evidence from
animal research shows that MOR exerts a significant control over
mood-related processes [35]. B-EP binds to opioid receptors
thereby activating the endogenous analgesia system, which is
located in the CNS. Moreover, this activation inhibits pain
conduction and agitation of nociceptors to exert an analgesic
effect [36]. These phenomena may be a reaction of the body against
depression symptoms to overcome the psychological and somatic
pain caused by MDD [37].

In the present study we found no significant differences in EM-2
levels between MDD patients and controls. To the best of our best
knowledge, serum EM-2 levels in MDD were not previously
studied. The possible role of endogenous opioid peptides in
depression is supported by neurochemical and neurobehavioral
findings [38]. It has been demonstrated that EMs and MORs are
present in brain regions containing monoamine neurotransmitters
(serotonin, dopamine, and noradrenaline), which play a role in the
physiopathology of depressive disorders.

In fact, EMs have been shown to modulate dopaminergic [39],
noradrenergic [40] and serotoninergic [41] neurotransmission. In
animal studies, EMs and MOR may be involved in the pathophy-
siopathology of depressive disorders, whilst the endomorphinergic
system could serve as a novel target for the development of
antidepressant drugs [42]. The analgesia produced by EMs is short
and its effect may not be significant because EMs are easily
degraded by various proteases (poor metabolic stability) [43]. This
effect may also limit possible increases in EMs in MDD patients.
However, in a comprehensive survey [44], no consistent changes in
endogenous opioids levels were observed in MDD patients.

Our results that IL-6 is increased in MDD is in agreement with
several studies, reviews and meta-analyses [2,3,45-47]. The IL-6
results indicate that MDD is accompanied by increased proin-
flammatory IL-6 trans-signaling [45]. Moreover, our results that IL-
10is increased in depression is in line with other studies and meta-
analyses [3,47,48]. These results further support the view that
MDD is accompanied by a simultaneous activation of the IRS
(increased IL-6 signaling) and CIRS (increased IL-10 production)
amongst other immune pathways [6]. In fact, increased IL-6
signaling is a key characteristic of the activated IRS in MDD, while
IL-10 is one of the hallmarks of the CIRS [6]. Other findings [49]
suggest that IL-10 may have a regulatory effect on the HPA axis.
Furthermore, it is required for regulating immune functions by
promoting the widespread suppression of immune responses
through its pleiotropic effects [6]. Stress can induce nerve cells in
the hypothalamus to produce and release CRH, which stimulates
the release of B-EP. CRH is transported to the anterior pituitary
gland where it stimulates production of a proopiomelanocortin
(POMC), which is the precursor for a number of stress-related
hormones, including adrenocorticotropic hormone (ACTH) and f-
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EP. ACTH stimulates cells of the adrenal glands to produce and
release the stress hormone cortisol [50]. Cortisol has many effects
when it binds to glucocorticoid receptors, including effects on
cardiovascular function, immunologic status, arousal, and learning
and memory. All of these systems are affected when the HPA-axis is
activated in response to stress [51]. Thus, the anti-inflammatory
effects of cortisol are brought about by reducing proinflammatory
cytokines, histamine secretion, stabilizing the membranes of cell
components and lysosomes [52], and stimulating immune
complements [53].

The finding of the present study show that the differences in IL-
10, MOR and p-EP between MDD patients and controls were not
affected by smoking. Table 3 shows a significant difference in
serum B-EP between smoking and nonsmoking MDD patients. In
one study, B-EP level was found to be higher in light smokers (less
than fifteen cigarettes daily) than in controls [54]. Increased
nicotine induces transient increases in circulating B-EP [55],
suggesting that there may be individual differences in the response
of B-EP to nicotine, its derivatives, or other components of cigarette
tobacco [54]. There are few studies reporting on the impact of
smoking on inflammatory markers in MDD. Nunes et al. [56]
showed that smoking and MDD act synergistically to increase
inflammatory markers. Another paper found an association
between IL-6 and smoking status where male current smokers
had significantly higher levels of serum IL-6 compared to male
former smokers [57]. Our negative MOR results with regard to
smoking status are in accordance with Kuwabara et al. [58] who
found no significant difference in MOR availability between
controls and smokers.

The second major finding of this study is that IL-10 levels are
strongly correlated with MOR levels (Fig. 1), while there was no
significant correlation between endogenous opioids and IL-6 and
IL-10. To the best of our knowledge, this is a first study that MOR
levels are associated with IL-10, a key component of the CIRS.
Cytokines regulate growth and proliferation of glial cells, modulate
the activity of endogenous opioid peptides, release endogenous
opioids, activate the HPA-axis [59] via increased production of
corticotrophin releasing hormone (CRH) and elicit changes in
neurotransmitter activity [27]. Endogenous opioids, in turn, exert a
negative tonic inhibition on CRH secretion from the hypothalamus
thereby inhibiting cortisol secretion [60]. This process may result
in increased density of opioid receptors in peripheral nerve
terminals, contributing to antinociceptive effects of opiates [59].
Furthermore, opioid administration may suppress the immune
system thereby increasing vulnerability to infections, although
endogenous opioids may not have such effects [61]. Recent studies
show that the role of opioid receptors in immune function is very
complex and entails various different mechanisms. Experimental
and clinical studies have clearly shown that activation of
peripheral opioid receptors with exogenous opioid agonists and
endogenous opioid peptides are able to produce significant
analgesic and anti-inflammatory effects, without central opioid
mediated side effects (e.g., respiratory depression, sedation,
tolerance, dependence [62]. B-EP, an anti-nociceptive neuropep-
tide [63], may be released in the brain in response to nociceptive
stimuli indicating a possible mechanism for the organisms to cope
with pain as observed in MDD patients [64].

Different opioids may have immunosuppressive effects and/or
immunostimulatory effects [22]. Finley et al. [65] suggested a
broad role of opioids in the modulation of the immune system
function and concluded that the kappa opioid receptor induces an
antiinflammatory response through down-regulation of cytokines,
chemokines and chemokine receptor expression, while activation
of MOR may favor a more proinflammatory response. Al-Hashimi
et al. [66] concluded that opioids produce immune modulation in
both humans and experimental animals. Furthermore, they found
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that MOR receptors are probably the main target for classical
opioid immune modulation [66]. Activated dendritic cells can be
regulated by endogenous opioid through MOR expression.
Moreover, MOR activation by EP activates IL-10 productions and
suppresses IL-12 and IL-23 secretion [67], suggesting that MOR
plays a role in the CIRS and attenuates some IRS components. In
animal models, exogenous opioids (heroin and morphine) have a
strong stimulatory effect on the release of anti-inflammatory
cytokines including IL-10 [68]. Another possible pathway explain-
ing the association between IL-10 and MOR revolves around B cell
functions. Thus, B-lymphocytes express w, 8, and k opioid
receptors [69], while ., but not § or k, opioid receptors may
regulate immune functions [23]. During the later phase of the
adaptive immune response, increased production of T cell
cytokines helps to activate B cells [70]. In MDD, Maes et al. [71]
noticed a significant increase in B-cells number and percentage as
compared with controls. Therefore, the correlation between the
MOR and IL-10 could in part be explained by the increased number
of B-cells that express MOR and are activated during an adaptive
immune response.

5. Limitations of the study

One limitation of this study is that we included only males and
excluded females in order to eliminate any effects of changes in
female hormones, an irregular menstrual cycle or menopausal
status on the results.

6. Conclusions

Serum B-EP, MOR, IL-6 and IL-10 concentrations are significant-
ly higher in MDD than in controls, while EM-2 did not show a
significant difference. Endogenous opioids (B-EP and EM-2) play a
crucial role in relaxation and regulation of mood of depressed
patients through the reduction of stress while attenuating immune
responsivity. We found a significant correlation between IL-10 and
MOR indicating that there is a possible link between immune
system and endogenous opioid receptors in MDD that needs more
mechanistic research for absolute proof.
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