COMMENT ON THE DEFINITION OF THE NONROTATING ORIGIN

HEINRICH EICHHORN
Observatoire de Paris ${ }^{\text {I }}$
6I, ave. de l'Observatoire
F-75014 Paris
France

Abstract

The paper gives a rigorous and purely formal derivation for the relationship between the "nonrotating" origin and the x-axis of the Q_{t} system, i.e., the true equator system. Neglecting nutation, a nonrotating origin could also be achieved by putting $m=0$ in the formula for the time derivative of right ascension.

The condition defining the nonrotating origin is stated by Capitaine, Guinot and Souchay (1986) as " σ is kinematically defined in such away that, as P moves in the CRS, [Oxyz] has no component of instantaneous rotation with respect to the CRS around $O z$." This obviously means that the axis of instantaneous rotation must lie in the $y-z$ plane of [Oxyz].

We denote, for brevity, the CRS by K and the system $[O x y z]$ by k . It is therefore clear, that the matrix $\mathbf{M}(\mathrm{k}, \mathrm{K})$, which transforms a given vector from k to K is

$$
\begin{aligned}
& \mathbf{M}(\mathrm{k}, \mathrm{~K})=\mathbf{R}_{3}\left(-E-90^{\circ}\right) \mathbf{R}_{1}(-d) \mathbf{R}_{3}\left(S+90^{\circ}\right)= \\
& \left.\begin{array}{rrr}
\sin E \sin S+\cos E \cos S \cos d & -\sin E \cos S+\cos E \sin S \cos d & \cos E \sin d \\
-\cos E \sin S+\sin E \cos S \cos d & \cos E \cos S+\sin E \sin S \cos d & \sin E \sin d \\
-\cos S \sin d & -\sin S \sin d & \cos d
\end{array}\right)=\left(\begin{array}{c}
a_{11} a_{12} a_{13} \\
a_{21} a_{22} a_{23} \\
a_{31} a_{32} a_{33}
\end{array}\right)
\end{aligned}
$$

In this expression, E and d are longitude and colatitude, respectively, of the z^{k}-axis with respect to K , and S, which replaces $E+s$ of Capitaine, Guinot and Souchay, is the angle between the x^{k}-axis and the direction of the vector (001) ${ }^{\mathrm{T}} \times \hat{\boldsymbol{x}}(E, d)^{\mathrm{T}}$ with respect to K , i.e., that along the direction in which the $\mathrm{x}-\mathrm{y}$ planes of K and k , respectively, intersect.

Since the matrix $\mathbf{M}(k, K)$ is orthogonal, we have

$$
\mathbf{M}(\mathrm{K}, \mathrm{k})=\mathbf{M}^{\mathrm{T}}(\mathrm{k}, \mathrm{~K}) .
$$

We therefore have

$$
x^{\mathrm{k}}=\mathbf{M}^{\mathrm{T}}(\mathrm{k}, \mathrm{~K}) \boldsymbol{x}^{\mathrm{K}} \quad \text { and } \quad \boldsymbol{x}^{\mathrm{K}}=\mathbf{M}(\mathrm{k}, \mathrm{~K}) \mathbf{x}^{\mathrm{k}} .
$$

Since we assume $\boldsymbol{x}^{\mathrm{K}}$ not to vary with time, we have

[^0]$$
\dot{\boldsymbol{x}}^{\mathrm{k}}=\left[\left(\frac{\partial}{\partial E} \mathbf{M}(\mathrm{~K}, \mathrm{k})\right) \dot{E}+\left(\frac{\partial}{\partial S} \mathbf{M}(\mathrm{~K}, \mathrm{k})\right) \dot{S}+\left(\frac{\partial}{\partial \mathrm{d}} \mathbf{M}(\mathrm{~K}, \mathrm{k})\right) \dot{d}\right] \mathbf{M}(\mathrm{k}, \mathrm{~K}) \mathbf{x}^{\mathrm{k}},
$$
which expresses the components of $\dot{x}^{\mathbf{k}}$ in terms of $\boldsymbol{x}^{\mathbf{k}}$ itself, as well as of $E, S, d, \dot{E}, \dot{S}$ and \dot{d}.
Routine calculations show that
\[

$$
\begin{aligned}
& \left(\frac{\partial}{\partial E} \mathbf{M}(\mathrm{~K}, \mathrm{k})\right) \mathbf{M}(\mathrm{k}, \mathrm{~K})=\left(\begin{array}{ccc}
0 & a_{33} & -a_{32} \\
-a_{33} & 0 & a_{31} \\
a_{32} & -a_{31} & 0
\end{array}\right), \\
& \left(\frac{\partial}{\partial S} \mathbf{M}(\mathrm{~K}, \mathrm{k})\right) \mathbf{M}(\mathrm{k}, \mathrm{~K})=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \text { and } \\
& \left(\frac{\partial}{\partial d} \mathbf{M}(\mathrm{~K}, \mathrm{k})\right) \mathbf{M}(\mathrm{k}, \mathrm{~K})=\left(\begin{array}{ccc}
0 & 0 & -\cos S \\
0 & 0 & -\sin S \\
\cos S & \sin S & 0
\end{array}\right)
\end{aligned}
$$
\]

One obtains the angular velocity vector $\boldsymbol{\sigma}$ (whose direction is in the axis of rotation) by taking the cross product of the vector with its velocity. Thus we get

$$
\omega^{k}=\left(\begin{array}{c}
-(\dot{E} \sin S \sin d-\dot{d} \cos S) x y+(\dot{E} \cos S \sin d+\dot{d} \sin S)\left(y^{2}+z^{2}\right)+(\dot{E} \cos d-\dot{S}) x z \\
(\dot{E} \sin S \sin d-\dot{d} \cos S)\left(x^{2}+z^{2}\right)-(\dot{E} \cos S \sin d+\dot{d} \sin S) x y+(\dot{E} \cos d-\dot{S}) y z \\
-(\dot{E} \sin S \sin d-\dot{d} \cos S) y z-(\dot{E} \cos S \sin d+\dot{d} \sin S) x z-(\dot{E} \cos d-\dot{S})\left(x^{2}+y^{2}\right)
\end{array}\right)
$$

This shows that $\boldsymbol{\sigma}$ depends on the vector; the requirement stated by Capitaine, Guinot and Souchay could therefore be changed to read:
" σ is kinematically defined in such a way that, as P (i.e., the z-axis of k) moves with respect to K, the equatorial plane of k has no component of instantaneous rotation with respect to the z-axis of k." Only for $z=0$ will $E \cos d=S$ satisfy this requirement.
(Note that what I have done is to regard the motion of a vector (supposedly fixed in K) with respect to k , this mirrors the motion of the system with respect to the vector and is practically the same thing.)

There is a certain analogy of the whole situation with the precessional motion of the Q_{m} system with respect to the Q_{0} system. The derivative of α with respect to time is given by $\dot{\alpha}=m+n \sin \alpha \tan \delta$. Even if we had a nonmoving origin for the right ascensions, which would be accomplished by setting the origin such that $m=0$, we see that in general, $\dot{\alpha}=0$ only on the instant equator, quite analogous to the situation we have described above.

Acknowledgement

I am indebted to my colleagues Nicole Capitaine and Suzanne Débarbat for comments and criticism.

Reference

Capitaine, N., Guinot, B. and Souchay, J. 1986. Celest. Mech. 39, 283.

[^0]: ${ }^{1}$ On leave from the Department of Astronomy, University of Florida, Gainesville, FL, 32611

