
J. Fluid Mech. (2023), vol. 962, A5, doi:10.1017/jfm.2023.188
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Zonal jet formation in β-plane turbulence is investigated with the focus on whether an
accurate closure can be developed for the eddy momentum fluxes due to small-scale
random forcing. The approach of Srinivasan and Young (J. Atmos. Sci., vol. 71, 2014, pp.
2169–2185) is developed to give a relatively simple expression for the local Reynolds stress,
due to a white-in-time random forcing with characteristic length scale much less than the
jet spacing. In typical jet flows, however, it is demonstrated that the Srinivasan–Young flux
is not the full story because momentum fluxes due to jet-scale waves, present as a result
of distinct barotropic instabilities of the eastward and westward jets, respectively, also
play a key role in the momentum balance. Numerical simulations that explicitly include
the random forcing are then compared with those in which the Srinivasan–Young closure
is applied. For typical jet flows, good agreement of the equilibrium zonal flow is found
provided that the closure simulation is not truncated to be purely zonal, i.e. jet-scale
secondary barotropic instabilities are allowed to develop. Flows in which the geometry
or external forcing acts to suppress the development of secondary instabilities are also
simulated, and for these flows the Srinivasan–Young closure is shown to be successful as
a purely zonal closure. It is argued that vortex condensates in isotropic forced-dissipative
2D turbulence are an example of this latter situation.

Key words: atmospheric flows, rotating turbulence, wave–turbulence interactions

1. Introduction

From the atmospheres of giant planets to terrestrial oceans, self-organisation of turbulence
into jets is a ubiquitous feature of geophysical fluid dynamics (see, e.g., Galperin & Read
(2019) and references therein). The two-dimensional barotropic vorticity equation on a
β-plane, subject to stochastic forcing, has long been considered a key ‘toy’ model for
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understanding the physics of such jet formation, in particular the long-lived zonal jets of
Jupiter and Saturn. The governing equation

ζt + u · ∇ζ + βv = −μζ + (−1)n+1ν2n∇2nζ + √
εη (1.1)

describes the evolution of the absolute vorticity field ζ + βy, where ζ is relative vorticity
and βy is the variable part of the planetary vorticity, under the action of advection by
the velocity field u ≡ (u, v)T = ∇⊥(∇−2ζ ), a linear drag with rate μ, a regularising
hyperdiffusion of order n and coefficient ν2n, and a stochastic forcing η which is
white-in-time and spatially correlated over a characteristic length scale Lf . The forcing
η is here normalised so that ε is the rate of its energy input into the system. Numerous
studies based on (1.1) and its near relatives have uncovered much about its behaviour.
In a doubly periodic domain of dimension 2πLd × 2πLd the most physically significant
non-dimensional parameters have been found to be

Z = LRh

Lε
, Q = Ld

LRh
, F = Lf

LRh
. (1.2a–c)

Each parameter is a ratio of the ‘jet-spacing’ or Rhines scale LRh = (U/β)1/2 (Rhines
1975; Williams 1978), where U = (ε/μ)1/2 is the turbulent velocity scale, to other length
scales in the system, namely the transition length scale Lε = (ε/β3)1/5 of Maltrud & Vallis
(1991), the domain scale Ld and the forcing scale Lf respectively.

Phenomenologically, in the equilibrated state, the zonostrophy parameter Z =
β1/10ε1/20μ−1/4 (Sukoriansky, Dikovskaya & Galperin 2007; Scott & Dritschel 2012)
controls the ratio of energy of the zonal modes (i.e. the jet structures) to the non-zonal
modes (i.e. waves and vortices). At low Z(� 1) the zonal energy is negligible and the
flow is dominated by vortices as in 2D Navier–Stokes turbulence, but as Z increases
(�1) jet structures form, and almost all energy is contained in the jets at larger Z (�5).
The quantisation parameter Q simply determines the number of jets which appear in the
domain, provided that Z is sufficiently large for jets to form and F has a more subtle effect
on the jet dynamics (see, e.g., Scott & Dritschel (2012), where a range of different forcings
are considered) with an apparent stronger tendency to ‘potential vorticity (PV) staircase’
(Dritschel & McIntyre 2008) formation at larger F. Here, our focus is on the regime of
most relevance to the giant planets, Z � 1, Q � 1 and F � 1.

In the high zonostrophy limit Z � 1, it is well-established (e.g. Bouchet, Nardini &
Tangarife 2013; Tobias & Marston 2013) that nonlinear exchanges of energy in (1.1) are
dominated by triad interactions between pairs of wave modes and a mean flow mode
(defined here as Fourier modes with zonal wavenumber kx /= 0 and kx = 0, respectively).
As the high zonostrophy limit is approached (typically once Z � 5), triad interactions
between triplets of wave modes can be neglected, and the dynamics of (1.1) is well
captured by a quasi-linear (QL) approximation (see (2.3)). An advantage of the QL
system is that equations describing its statistics, known variously as the CE2 equations
(Marston, Conover & Schneider 2008; Srinivasan & Young 2012; Ait-Chaalal et al. 2016)
or the SSST equations (Farrell & Ioannou 2003, 2007), can be derived and analysed. An
important result is the exact solution for the second-order moments in the CE2 system,
in the special case where the mean flow is a linear shear flow (Srinivasan & Young 2014,
SY14 hereafter). In the small F limit, in which the excited waves are short compared to the
scale of the jets and will therefore ‘see’ only a linear shear flow locally, solutions following
the SY14 approach appear to hold the promise of a local closure for the ensemble average
wave momentum flux 〈u′v′〉. Such a closure, a long-time goal of researchers, would allow
for a single equation describing the evolution of the ensemble mean zonal wind U( y, t).
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Recently, using a different but essentially equivalent approach to SY14, Woillez &
Bouchet (2019, WB19 hereafter) have shown that in the joint limits Z � 1, F � 1, under
some mild restrictions on the forcing η to be discussed in the following, the momentum
flux closure becomes independent of the details of η and is given by

〈u′v′〉 = ε/Uy. (1.3)

A similar closure (modified slightly for polar geometry) has been postulated for the related
problem of vortex condensate formation in forced 2D Navier–Stokes turbulence (Laurie
et al. 2014), and can be used to predict the radial structure of the vortex condensate, thus
demonstrating that a local closure theory can be successful in the right setting. However,
in the β-plane jets problem, as WB19 recognised, it is clear that the closure (1.3) is
inadequate. First, (1.3) fails because the equilibrated flow must include jet minima and
maxima where Uy = 0, and where the predicted momentum fluxes of (1.3) are therefore
singular. Second, (1.3) does not depend on β, and therefore it cannot possibly lead to
equilibrated jets with spacing on the Rhines scale LRh. These observations, however, do
not necessarily preclude a local theory. An extended local theory can be hypothesised,
which could allow for higher-order terms in F to introduce dependency on β and the flow
curvature Uyy, and which would require a particular focus on boundary layer regions where
|Uy| = O(F). In principle, such a theory might resolve both of the previously described
issues and lead to a closure that is valid everywhere in the flow.

The present work aims, using a series of carefully designed CE2 and fully nonlinear
numerical simulations, to demonstrate the following.

(i) That in the right parameter regime (F � 1, Z � 1) the SY14 approach does lead to
accurate predictions for the Reynolds stresses 〈u′v′〉 due to the waves induced by the
small-scale forcing, including at jet maxima and minima where (1.3) breaks down.

(ii) That in a typical equilibrated state, both the eastward and westward jets fluctuate
around a state which is marginally unstable to barotropic instability (see also
Constantinou, Farrell & Ioannou 2014). Jet-scale barotropic waves due to these
instabilities are present on both jets, and these have a distinct characteristic structure
on each jet. Momentum fluxes due to these waves, which are here disentangled from
momentum fluxes due to the small-scale forcing, have a key role in the momentum
balance of the jets.

(iii) Because the barotropic waves emerge on the jet scale, i.e. they are global, a purely
local closure for the jet profile of the type suggested previously is doomed to failure.

The plan of the work is as follows. In § 2, the results of SY14 are reviewed and
reconciled with those of WB19, clarifying the limit in which (1.3) is valid. In § 3 CE2
and QL simulations designed to demonstrate the main points are described and the results
are analysed. A careful study of the linear stability properties of both the eastward and
westward jets is performed to clarify the role of the waves generated by barotropic
instability in the momentum balance of the equilibrated flow. In § 4, the model equations
are parameterised by replacing the stochastic term by a momentum flux convergence
based on SY14. A purely zonal closure is found to work in some special cases, including
a monotonic zonal flow profile and a flow which is strongly relaxed to an alternating
jet profile. In the general case, however, the parameterisation is found to work only if
non-zonal terms are retained in the equations and the barotropic secondary instabilities
are allowed to develop. Finally in § 5 conclusions are presented.
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2. The QL approximation, the CE2 equations and the SY14 local theory

In this section, analytical and numerical approaches to understanding the behaviour of
(1.1) are reviewed and extended.

2.1. QL approximation
The QL approximation to (1.1), has as its starting point the Reynolds decomposition

ϕ = ϕ̄ + ϕ′, (2.1)

where ϕ̄ denotes the zonal mean of a quantity ϕ and ϕ′ its non-zonal perturbation.
Decomposing the vorticity equation (1.1), and neglecting the non-zonal terms given by
∇ · (u′ζ ′)− ∇ · ( ¯u′ζ ′) in the perturbation equation, results in the QL equations

ζ̄t = −(v′ζ ′)y − μζ̄ + (−1)n+1ν2n∂
2n
y ζ̄ + √

εη̄, (2.2)

ζ ′
t = −ūζ ′

x − v′ζ̄y − βv′ − μζ ′ + (−1)n+1ν2n∇2nζ ′ + √
εη′. (2.3)

By construction, the QL equations allow for nonlinear interactions only between pairs
of wave modes and a single zonal mode, and not between triads of wave modes. This
excludes the possibility of a spectrally local inverse cascade of energy, as in the classical
Kraichnan–Batchelor 2D turbulence theory (Batchelor 1967; Kraichnan 1967).

2.2. CE2 equations
Following, e.g., Srinivasan & Young (2012) and Marston et al. (2008), the CE2 equations
are obtained by introducing an averaging operator 〈·〉, which in different interpretations
(see, e.g., Ait-Chaalal et al. 2016; Marston, Qi & Tobias 2019) is an ensemble average
over the noise process η, or a zonal average. In both cases, 〈·〉 satisfies the Reynolds
decomposition property 〈ϕ1ϕ2〉 = 〈ϕ1〉〈ϕ2〉 − 〈ϕ′

1ϕ
′
2〉, where ϕ′

i = ϕi − 〈ϕi〉. The CE2
equations are most conveniently formulated for the averaged zonal velocity U = 〈u〉 and
the second cumulant of vorticity

Z(x1, x2, t) = 〈ζ ′(x1, t)ζ ′(x2, t)〉. (2.4)

Applying the averaging operator to (1.1), neglecting the non-zonal terms as was done for
(2.2)–(2.3), results in the CE2 equations

Ut = −〈u′v′〉y − μU − (−1)nν2n∂
2n
y U, (2.5)

∂tZ + (U1 − U2) ∂xZ = −((β − U′′
1 )∇−2

1 − (β − U′′
2 )∇−2

2 )∂xZ
−2μZ − (−1)nν2n(∇2n

1 + ∇2n
2 )Z + εΠ. (2.6)

Here Π = 〈η′(x1, t)η′(x2, t)〉 is the covariance of the stochastic process η′, which is
assumed homogeneous so that Π ≡ Π(x1 − x2, t). It then follows that, in (2.6), Z ≡
Z(x, y1, y2) where x = x1 − x2 is the relative zonal distance between the two arguments
x1 and x2. Numerical subscripts in (2.6) refer to the argument variable, i.e. ∇i acts on
the xi variable, ∇−2

i denotes the inverse of the Laplacian operator again applied to the xi
variable, and Ui = U( yi).

To close the equations it is necessary to evaluate the Reynolds stress term 〈u′v′〉
appearing in (2.5) in terms of Z . From the relationship between relative vorticity ζ ′ and
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velocity u′ the required result is

〈u′v′〉( y) = −[∂y1∂x∇−2
1 ∇−2

2 Z(x, y1, y2)]x→0, y1→y2=y. (2.7)

The CE2 equations (2.5)–(2.7) are the simplest set in a hierarchy of cumulant models
of the statistics of (1.1). A sequence of potentially more accurate, if typically more
computationally expensive, cumulant models result from adopting different closures
for the wave–wave interaction terms which are neglected in CE2 (see, e.g., Farrell &
Ioannou (2003), Marston et al. (2019) and references therein). The CE2 equations are
mathematically equivalent to the SSST equations originally derived and analysed in Farrell
& Ioannou (2003, 2007). In each case, the closure models prioritise non-local zonal energy
exchanges, pitching them in opposition to turbulent cascade theories Rhines (1975) and PV
mixing theories (Dritschel & McIntyre 2008; Dritschel & Scott 2011).

2.3. The SY14 result for the momentum flux in a linear shear flow
Next, a re-working of the SY14 solution to (2.6), for the special case in which U( y) =
γ y is a steady constant shear flow, is presented. The aim is to obtain a relatively simple
and easy to evaluate formula for the steady momentum flux 〈u′v′〉, obtained from the
solution to (2.6) as t → ∞, which will be used to understand the outcome of our numerical
calculations in the following.

Our focus is restricted to a time-independent homogeneous forcing covariance Π(x),
which takes the argument x = (x, y)T = x1 − x2, and its Fourier transform Π̂(k) defined
by

Π̂(k) = 1
(2π)2

∫
R2
Π(x)e−ik · x dx, Π(x) =

∫
R2
Π̂(k)eik · x dk. (2.8a,b)

From the definition of Π , it follows that Π̂(k) = 〈η̂(k)η̂(−k)〉, where η̂ is the Fourier
transform of the stochastic forcing η in (1.1). In addition, because η is real, η̂(−k) = η̂∗(k),
and it follows that Π̂ = 〈|η̂(k)|2〉 is real and has the symmetry Π̂(k) = Π̂(−k). Further,
η must be normalised so that ε is the energy injection rate in (1.1), which in Fourier space
corresponds to the constraint ∫

R2

Π̂(k)
2|k|2 dk = 1. (2.9)

The SY14 analysis exploits the linearity of (2.6) to separate the contribution to 〈u′v′〉
from forcing at each wavevector k. It turns out, because there is no intrinsic length scale
associated with a constant shear flow, that the amplitude of the wavevector at which energy
is injected does not enter the SY14 analysis. Rather, for forcing at each k, the SY14 result
depends only on the phase angle φ = tan−1 (ky/kx). Consequently it is possible to express
the general result in terms of an energy input density ρε(φ), which is defined to be

ρε(φ) =
∫ ∞

0

Π̂(kek(φ))

k2 k dk, where ek(φ) = (cosφ, sinφ)T, −π

2
< φ � π

2
. (2.10)

The symmetry Π̂(k) = Π̂(−k) means that ρε(φ) = ρε(φ + π), which explains the
restriction to −π/2 < φ � π/2. The energy input constraint means that∫ π/2

−π/2
ρε(φ) dφ = 1, (2.11)

which means that ρε(φ) can be thought of as a density function describing the distribution
of the energy input with respect to the phase angle (cf. a probability density). Note that the
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case of isotropic forcing, i.e. forcing on an annulus in wavenumber space in the idealised
limit of an infinite domain, corresponds to ρε(φ) = 1/π (const.).

The key result of this section, which is obtained in Appendix A by adapting the general
approach of SY14, is that the momentum flux can be expressed as

〈u′v′〉 = ε

γ

∫ π/2

−π/2
ρε(φ)K(φ, α) dφ, (2.12)

where α = 2μ/γ is a parameter governed by the ratio of the Rayleigh friction rate μ to the
shear rate γ . The kernel function K(φ, α) appearing in (2.12) quantifies the contribution
of a wave forced at phase angle φ to the momentum flux. It is given by

K(φ, α) = 1 + 1
α

|z|2 Im
{
ezE1(z)

}
, where z(φ, α) = α(− tanφ + i),

(
−π

2
< φ � π

2

)
.

(2.13)

Here E1(z) is the complex exponential integral with the branch cut on the negative real
axis

E1(z) :=
∫ ∞

z

e−t

t
dt, |Arg(z)| < π. (2.14a,b)

Note that for fixed α the branch cut of E1(z) is not crossed as φ varies, and that the
restriction φ < |π/2| ensures that tanφ is continuous. Note also that K(φ, α) is an even
function of α.

The result (2.12) is an alternative, more accessible presentation of the results in
equations (B6)–(B9) of SY14. Our expression has several advantages over those of SY14.
First E1(z) is a tabulated function which is implemented in most mathematical software
packages (e.g. as ExpIntegralE[z,1] in Mathematica and expint(z) in Matlab), meaning that
(2.12) is relatively straightforward to evaluate. In addition, E1(z) has well-known series
expansions for both |z| � 1 and |z| � 1, which can be exploited to understand more about
the behaviour of 〈u′v′〉 for any forcing Π , allowing results obtained by SY14 and Bakas &
Ioannou (2014) for rather specific forcings to be generalised to all ρε(φ).

Finally, the form (2.12) is particularly amenable to the case of forcing applied at discrete
wavenumbers, e.g., on the doubly periodic domain typical for numerical simulations. In
that case

Π̂(k) =
∑

kj

ρεj |kj|2δ(k − kj), (2.15)

where the sum is over all of the discretised wavenumber vectors kj generated by the
domain, and ρεj is the fraction of energy injected at wavenumber kj. By construction∑

kj
ρεj = 2. The result (2.12) then simplifies to

〈u′v′〉 = ε

γ

∑
kj,kx>0

ρεj K(φj, α), (2.16)

which is a convenient form for accurate comparison with the numerical results in the
following. Forcing on the zonal mean (i.e. with kx = 0, or at φ = ±π/2) self-evidently
does not contribute to the wave-driven momentum flux 〈u′v′〉, which explains why the
sum is over wavevectors with kx > 0.
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Given a specific energy input density ρε(φ), a useful alternative form of (2.12) is

〈u′v′〉 = ε

2μ
G
(

2μ
γ

)
where G(α) := α

∫ π/2

−π/2
ρε(φ)K(φ, α) dφ. (2.17)

One reason (2.17) is useful is that it is often helpful to scale the momentum flux 〈u′v′〉 in
terms of the expected equilibrium energy E = ε/2μ in the system. The function G(α) is a
non-dimensional odd function of α which is unique to each energy input density ρε(φ).

2.4. General properties of the momentum flux formula
In order to understand the general momentum flux formulae (2.12) and (2.17), and to extend
and place in context previous results by SY14, WB19 and others, it is useful to understand
the behaviour of the kernel function K(φ, α). Figure 1 shows K(φ, α) for several values
of α, with panel (a) showing the full range (−π/2 < φ � π/2) and panel (b) showing a
scaled region (around φ = π/2) to illustrate some of the self-similar behaviours as α → 0.
Some key properties of K(φ, α), established in Appendix B and presented here for the case
α > 0, are:

(i) K(φ, α) < 1 for all φ ∈ (−π/2,π/2) and all α ∈ R \ {0};
(ii) the limiting values at the boundaries of the interval are K(±π/2, α) = 0;

(iii) K(φ, α) has a single minimum K−(α); in the limit α → 0, K−(α) ∼ −4πe−2/α,
and the location of the minimum is asymptotically close to φ = π/2 − α/2;

(iv) in the limit α → 0,

K(φ, α) = 1 − α
(
φ + π

2

)
sec2 φ + O(α2 logα); (2.18)

note that this formula applies to fixed φ, and therefore cannot be used to approximate
K(φ, α) when |φ ± π/2| ∼ O(α), meaning that it cannot describe the minima of
K(φ, α) shown in figure 1;

(v) as α → ∞,

K(φ, α) = −α−1 sin 2φ + 2α−2 cosφ cos 3φ + O(α−3); (2.19)

(vi) we have ∫ π/2

−π/2
K(φ, α) dφ = 0. (2.20)

Much of the structure of K(φ, α) can be understood by considering the momentum
fluxes generated by plane waves with different φ, and how those plane waves evolve in a
linear shear flow, under the so-called Orr mechanism (Orr 1907). When friction is large
(α → ∞), plane waves are dissipated before they evolve under the action of the shear flow,
and K(φ, α) is an odd function of φ determined by the momentum flux of waves at the
local phase angle φ at which they are generated. Hence, K(φ, α) is negative for positive φ
and positive for negative φ (see explanation on pp. 516–517 of Vallis 2006). When friction
is low (α → 0), by contrast, the waves generated at angle φ will be long-lived and as
time evolves their phase angle will decrease monotonically, as the wave is advected by
the shear flow. Waves generated at an initial angle φ close to π/2, i.e. with an extreme tilt
against the shear, undergo considerable transient growth due to the Orr mechanism as their
phase angle approaches zero. This transient growth occurs on a timescale 1/γ θ , where
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φ

Figure 1. (a) The function K(φ, α) against φ ∈ [−π/2,π/2] for various values of α. When α � 1, K is
sinusoidal (blue). As α → 0, K → 1 for all φ except an O(α) region at φ = π/2, where an O(α−1)minimum is
obtained. (b) The same plot as the (a) with rescaled axes illustrates the self-similar behaviour of K(φ, α) about
its minimum. Dotted black plots the α → 0 solution αK(φ, α) = −π(α/θ)2 exp(−α/θ) found in Appendix B.

θ = π/2 − φ. As they evolve, these waves are also damped on a timescale μ−1. The waves
which generate the most extreme negative momentum fluxes are therefore those with θ ≈
μ/γ , a value which allows for strong transient growth prior to the wave being dissipated,
but with sufficient dissipation occurring that the wave is attenuated significantly by the
time its phase angle becomes negative, so that the positive momentum fluxes during this
stage of its life cycle are insufficient to cancel the earlier negative momentum fluxes.

Properties (i)–(vi) are useful as they make it relatively straightforward to prove and
extend previous results regarding 〈u′v′〉 in a simple setting. The most important of these
are as follows.

(1) Bounds on the momentum flux: As K(φ, α) is bounded on [−π/2,π/2] exact bounds
on 〈u′v′〉 follow naturally, which apply to any choice of the energy input density
ρε(φ). For positive shear (γ > 0) these are

ε

γ
K−(α) � 〈u′v′〉 � ε

γ
K+(α), where K+(α) = sup

φ∈[−π/2,π/2]
{K(φ, α)}, (2.21)

and K− is the corresponding infimum. Note that property (i) ensures that K+ <
1. Each bound can be attained exactly by setting ρε(φ) = δ(φ − φ±(α)) where
φ = φ±(α) denotes the locations of the supremum and infimum, respectively.
Interestingly, the upper bound improves only very slightly on the bound
〈u′v′〉 � ε/γ (1 + α) found by SY14 from the energy power integral. The lower
bound, which satisfies K−(α) ∼ 4πe−2α−1 when α → 0, is only useful when α is
order unity. Equation (2.13) allows K± to be evaluated numerically to high accuracy,
and the results are shown in figure 2 along with the SY14 bound.

(2) The low friction limit (WB19 result): A key question raised in the introduction
is under what circumstances is the low-friction approximation (1.3), 〈u′v′〉 ≈ ε/γ

valid? It turns out that a simple necessary condition for (1.3) to be valid in the limit
α → 0, is that there is a wave angle cut-off in the forcing density ρε(φ). That is, it is
necessary that there exists a cut-off angle φα such that ρε(φ) = 0 for all φ satisfying
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32 4

1/(1 + α)

K+
K–

α
1

1

–1

–2

0

0

K
(φ

, 
α

) 
ra

n
g
e

Figure 2. Plot illustrating the range of K(φ, α). Plotted are the φ-supremum and φ-infimum, K+(α) (red) and
K−(α) (blue), respectively. The shaded grey region therefore is the range of K(φ, α). The dashed black line
corresponds to the upper bound for Reynolds stress established in SY14.

φα < |φ| < π/2. For example, such a cut-off occurs naturally for simulations in a
finite domain when the forcing is on an annulus in wavenumber space, because in
this case kx is bounded below and ky is bounded above. In this case (1.3) can be
refined by inserting the expansion (2.18) from property (iv) into (2.12), to give (for
α > 0)

〈u′v′〉 = ε

γ

(
1 − α

∫ φα

−φα

(
φ + π

2

)
sec2 φ ρε(φ) dφ

)
+ O(α2 logα)

→ ε

γ
as α → 0. (2.22)

The phase angle cut-off is evidently necessary in (2.22) in order for the leading-order
correction term to avoid the singularities in the integrand at φ = ±π/2 and
consequently remain bounded.
In practice, while formally valid for α � 1, (2.22) will be an accurate approximation
to (2.12) only if |π/2 − φα| � α, in order that the leading correction term in (2.22)
remains O(α). Although this condition will always be formally satisfied if φα is fixed
and the limit α → 0 is taken, long domains which allow for forcing at wavenumbers
with |kx| � |ky| will have |π/2 − φα| � 1, and will therefore require α to be very
small before (2.22) becomes accurate. A further practical point is that, when applied
to slowly varying jets, (2.22) cannot hold everywhere because no matter how small
the friction, α will not remain small in boundary layer regions around the jet extrema,
where |Uy|/μ � 1.

(3) The high-friction/low-shear limit: The behaviour in the limit α → ∞, corresponding
to high friction or weak shear, is always important in flows with jets close to the jet
extrema. This limit is also relevant for studying the emergence of β-plane jets from
an infinitesimal shear (see, e.g., Bakas & Ioannou 2013; Bakas, Constantinou &
Ioannou 2015). The behaviour of 〈u′v′〉 in the limit α → ∞ under the local theory is
found by inserting the expansion (2.19) from property (v) into (2.12). A cancellation
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of leading terms follows and the result is

〈u′v′〉 = − ε

2μ

(∫ π/2

−π/2
sin 2φρε(φ) dφ − 2

α

∫ π/2

−π/2
cosφ cos 3φρε(φ) dφ

)
+ O(α−2).

(2.23)

Reassuringly, (2.23) shows explicitly that 〈u′v′〉 is bounded as α → ∞ for all
possible ρε(φ), consistent with the findings of SY14. The leading term can be
recognised as the momentum flux arising from the high-friction solution of (2.6),
in which all terms involving the shear are neglected to give Z = εΠ/2μ. If ρε(φ) is
taken to be an even function of φ, as is typical in simulations, the first term vanishes
and the second term is dominant. In this case 〈u′v′〉 is linear in the shear γ ≡ Uy
near to the jet extrema.

(4) The isotropic forcing paradox: (2.20) of property (vi) ensures that if the forcing in
(2.12) is isotropic, i.e. ρε(φ) = 1/π, then

〈u′v′〉 = 0, for all α. (2.24)

This remarkable result, that an isotropic forcing leads to zero momentum flux,
was discovered by Farrell (1987) and was strongly emphasised by SY14. At first
glance, considering the limit α → 0, (2.24) appears to be in contradiction to
the WB19 result (1.3). However, isotropic forcing with ρε(φ) = 1/π does not
satisfy the wave angle cut-off property which is required for (1.3) to hold. The
subtlety here is the remarkable structure of K(φ, α) which allows properties (i) and
(vi) to hold simultaneously as α → 0. Essentially, an increasingly thin boundary
layer close to φ = π/2, illustrated in figure 1(b), allows the integral property (vi)
(
∫ π/2
−π/2 K(φ, α) dφ = 0) to hold even as K(φ, α) → 1 for all φ ∈ (−π/2,π/2).

Physically, what is occurring as α → 0 is that only those waves with the most
extreme tilt against the shear (kx � ky) can contribute a negative momentum flux,
but the momentum flux for these waves becomes increasingly large in magnitude
because they become very long-lived when friction is low. In any finite domain,
with forcing confined to an annulus in wavenumber space, waves with such extreme
tilts will not exist and (1.3) holds as α → 0. This reasoning provides an explanation
as to how numerical experiments, which use a discretised ‘isotropic’ forcing in a
finite domain (as in, e.g., Scott & Dritschel 2012; Srinivasan & Young 2012; Bakas
& Ioannou 2014; Constantinou et al. 2014), can result in jet flows with decidedly
non-zero 〈u′v′〉 in the context of the local theory only. An alternative perspective on
the same issue is given in Frishman (2017). There, the focus is on the length of time
required for the negative momentum fluxes of the ‘extreme tilt’ waves to become
established, which becomes increasingly long as α → 0. As a result, switching the
order of the limits α → 0 and t → ∞ in the solution of (2.6) results in isotropic
forcing giving (1.3) instead of (2.24). Here our focus is on steady equilibria and
consequently the limit t → ∞ is always taken first. Another consideration is that, in
any realistic scenario where the background shear is not exactly linear, next order
corrections to the linear theory will also produce non-zero momentum flux. For
example, Srinivasan & Young (2012) find that the correction term in the momentum
flux is proportional to β2U′′′, and a physical explanation for this result is given in
Bakas & Ioannou (2013, 2019).

Given a specific energy input density ρε(φ), (2.17) shows that momentum flux is
determined by the function G(α). Figure 3 shows G(α) for some simple examples of
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( f )(e)

(c) (d)

Figure 3. Examples of the SY14 momentum flux function G(α) defined in (2.17) for the wave forcings WF1,
WF2 and WF3. Panels (b,d, f ) show G(α) (purple), the limiting forms (2.22) (red curves) and (2.23) (orange
curves) and the WB19 result (1.3, G(α) = α) (dashed blue). Panels (a,c,e) show the patterns of the wave
forcings WF1, WF2 and WF3 in wavenumber space: WF1, φ1 = π/4; WF2, {φ1, φ2} = {−π/4,π/4} and
ρεj = 1/2; WF3, φj = tan−1 ( j/8) for j = −8, . . . , 0, . . . , 8 and ρεj ∝ cos2 φj.

different wave forcings (WF1, WF2 and WF3 hereafter, see the caption), together with the
corresponding limiting forms obtained from (1.3) and (2.22) (valid as α → 0) and (2.23)
(valid as α → ∞). The asymptotic expressions are seen to do a good job of approximating
G(α) for α < 10−1 and α > 101, with (2.22) representing a significant improvement on
(1.3). However, both the small α and large α expressions are inaccurate in the range
10−1 � α � 101. In figure 3 there is a notable contrast between G(α) for forcings for
which ρε(φ) is an even function of φ (figure 3c–f ) compared with otherwise (figure 3a,b).
In the latter case, G(α) tends towards a constant value as α → ∞, consistent with the fact
that the forcing in this case generates a non-zero momentum flux even in the absence of a
shear flow (see the leading term in 2.23).

2.5. The SY14 momentum flux closure applied to a jet flow
Up to this point the focus has been on constant shear flows with U( y) = γ y. How relevant
is the SY14 expression for the momentum flux when U( y) is instead a smooth jet flow?
Intuitively, when the parameter F, which determines the ratio of the forcing scale to the
jet scale, satisfies F � 1 one would expect that the eddies ‘see’ only a linear shear locally
and SY14 will be accurate. A key question is how small does F have to be in practice for
the SY14 formula to hold.
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The reason this question is important is that if a regime exists in which SY14 holds, the
question of whether the equilibrium jet profile U( y) is ever determined by a purely zonal
closure can be addressed. The SY14 zonal closure equation is obtained by inserting (2.17)
into (2.5) to give

μU = − ε

2μ
∂yG

(
2μ
Uy

)
− ν2n(−∂yy)

nU, (2.25)

where the function G is defined in (2.17). In principal (2.25), which becomes a
second-order ordinary differential equation for U when hyperdiffusion is neglected, can
be solved numerically to obtain an equilibrium jet profile U( y), for any G. A special case
is G(α) = α, which corresponds to the WB19 situation in which 〈u′v′〉 = ε/Uy (see (1.3)).
For this case the exact solution, neglecting hyperdiffusion, can be given in terms of the
inverse of the error function (Frishman 2017)

U( y) = 2
√
Eerf−1( y/

√
A2πE) for − A

√
πE < y < A

√
πE, (2.26)

where E = ε/2μ. Here the existence of a latitude y = 0 where U = 0 is assumed, and
A = Uy(0) > 0 is the local (undetermined) shear there. The profile (2.26), which becomes
singular at y = ±A

√
πE has nevertheless been argued by WB19 to be a reasonable fit to the

‘between jet’ zonal wind profiles seen in simulations. Obviously, however, the singularities
in (2.26) mean that it cannot be accurate everywhere. One of our main findings is, however,
that replacing G(α) = α with the full SY14 expression in (2.25) does not generally result
in more accurate jet profiles. Much of what follows is dedicated to explaining why it does
not.

A good starting point for investigating the SY14 closure is to perform a scattering
experiment. That is, the CE2 equation (2.6) is solved numerically for a fixed steady
jet-like wind profile U( y), and the resulting momentum flux 〈u′v′〉 is compared with
the theoretical prediction ((2.17) with γ replaced with Uy). Note that the CE2 solution is
exactly equivalent to that obtained by solving (2.3) with ū = U( y) held fixed and obtaining
〈u′v′〉 by statistical averaging, however CE2 is clearly more efficient because statistical
error is eliminated. In addition, when U( y) is held fixed, (2.6) becomes a Lyapunov
equation (see (A2)), which is much cheaper to solve numerically compared with the
full time-dependent CE2 equations. High-resolution solutions of (2.6) can therefore be
obtained, allowing for a numerical investigation of the small F limit.

In a 2π-periodic domain, the scattering experiments are performed on a fixed flow
U( y) = 2 sin y, with quantisation and zonostrophy parameters Q = 1.22 and Z = 1.94,
respectively. The value of Q is consistent with a single jet in the domain, and the value of
Z allows the boundary layers near jet extrema to be resolved, which becomes prohibitively
expensive at higher Z. By varying the forcing wavenumber kf across experiments, we
then investigate the effect of varying F in the range 0.04–0.84. Figure 4 shows the
resulting momentum flux 〈u′v′〉 for the wave forcing patterns WF2 and WF3, illustrated
in figure 4(a,d), and described further in the caption to figure 3. Figures 4(b,e) show the
main comparison and demonstrate that, away from the jet extrema, in both cases there is
good agreement between the CE2 scattering experiments at all three values of F and the
SY14 asymptotic result (2.17), and to a lesser extent the simpler expression (1.3).

Figures 4(c, f ) show a blow-up of the situation close to the jet extrema, where 〈u′v′〉
varies rapidly in thin boundary layers, in both the CE2 calculations and in the theory (2.17).
The theoretical expression (2.17) depends only on Uy and not β, and therefore is symmetric
at both east and west jets. The CE2 solutions include the effect of β and therefore the
convergence to (2.17) as F → 0 is seen to be rather different for each jet. In figure 4(a–c),
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Figure 4. Results from scattering experiments with U( y) = 2 sin y and Q = 1.22, Z = 1.94 and three different
values of F (corresponding to forcing wavenumber kf = (8, 32, 128) respectively, or F = (0.677, 0.169, 0.042)
in (a–c), and F = (0.844, 0.211, 0.053) in (d–f )). Panels (a–c) and (d–f ) show the results for the wave forcings
WF2 and WF3, respectively (see figure 3 caption). Panels (b) and (e) compare calculated and predicted 〈u′v′〉
across the full domain, and panels (c) and ( f ) show a close-up of the situation near the east and west jet cores.
The theoretical results ((1.3), WB19, dashed purple), ((2.17), SY14, red dotted line) and ((2.23), α → ∞,
dashed blue) are also plotted.

in which the forcing is concentrated on just a few waves, even the sign of the momentum
flux is opposite to the (2.17) prediction for the larger values of F, showing that convergence
is slow. When the forcing is distributed over a wider range of wavenumbers, as shown in
figure 4(d–f ), convergence is more uniform. In both sets of calculations convergence is
significantly slower at the east jet, where the PV gradient β − Uyy is large and positive,
compared with the west jet where the magnitude of β − Uyy is smaller.

In summary, the scattering experiments show clearly that, for sufficiently small but
nevertheless physically reasonable (and numerically accessible) values of F, the SY14
expression (2.17) can do a good job of predicting the momentum fluxes everywhere, for a
steady smooth and, crucially, stable zonal flow U( y). Why, then, does the closure (2.25)
not describe the equilibrium jets in our β-plane turbulence calculations? This question is
addressed next.
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3. Momentum balance in equilibrated jets

In this section the aim is to explain why purely zonal closures such as (2.25) cannot by
themselves describe the equilibrium jet profiles in β-plane turbulence. Evidence from QL
simulations, CE2 calculations and fully nonlinear simulations will be used to show that
momentum fluxes due to waves arising from jet-scale instabilities also have an essential
role in the momentum balance. It has been previously shown (e.g. Farrell & Ioannou 2017)
that equilibrated jets in β-plane turbulence are marginally stable to barotropic instability.
In their study upgradient momentum fluxes from the small scale forcing act to sharpen
the jets, whereas emergent secondary instabilities generate downgradient fluxes at the
westward jet which counter the sharpening. The secondary instability is associated with
the Rayleigh–Kuo stability criterion being violated at the westward jet cores. Our aim here
is to demonstrate that a similar secondary instability mechanism, due to a distinct unstable
mode with a different wavenumber, also leads to downgradient momentum fluxes at the
eastward jet. A specific choice of wave forcing is used in the simulations to facilitate the
analysis, which is described next.

3.1. Experimental design: separation of momentum flux contributions
A standard approach in β-plane simulations of jets is to use a (near-)isotropic wave forcing
η, in which the forcing is applied only at wavevectors k which lie within an annulus
(k− < |k| < k+). However, for fixed Q and Z, the equilibrium jet structure in nonlinear
simulations is known to be largely insensitive to the details of the forcing mechanism (e.g.
Scott & Dritschel 2012). Here, the freedom to choose the forcing structure is exploited
by instead using the forcing WF3, which is concentrated on a single zonal wavenumber
kx = kf (see the previous discussion). In all but one simulation, WF3 is augmented
(slightly) by also including an extremely weak forcing applied to waves with kx /= kf to
allow for the excitation of instabilities. The reason for this is twofold.

(i) The first is to allow the momentum fluxes associated with waves directly forced by η
and those generated by secondary instabilities to be clearly distinguished. Exploiting
the properties of the Fourier transform in x, it is helpful to first decompose the
momentum fluxes into contributions from each zonal wavenumber kx,

〈u′v′〉kx( y) = 2 Re
(
ũkx( y) ṽ∗

kx
( y)
)
, (3.1)

where ũkx and ṽkx denote the coefficient of the kx term in the x-Fourier transform
of u′ and v′, respectively. This allows for the decomposition of the momentum flux
〈u′v′〉 = 〈u′v′〉D + 〈u′v′〉S into directly forced and secondary components defined to
be

〈u′v′〉D = 〈u′v′〉kf (3.2)

〈u′v′〉S =
∑

kx /= kf

〈u′v′〉kx . (3.3)

The above decomposition pre-supposes that no secondary instabilities will occur
at kx = kf , which is the case in our simulations, because F � 1 and there is a clear
scale separation between the jet-scale secondary instabilities and the forcing. Forcing
on wavenumbers in an annulus does not allow for a clean decomposition, because
the zonal wavenumbers associated with the secondary instabilities will also be forced
directly. In the following, it will also prove useful to further decompose 〈u′v′〉S to
help distinguish between instabilities on the east and west jets.
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(ii) The second motivation for our forcing choice is to introduce a long-wave cut-off
for the excitation of zonal wave modes. It is now widely accepted that baroclinic
instability is the primary mechanism driving the extratropical jets on the giant
planets (e.g. Liu & Schneider 2010; Young, Read & Wang 2019; Read et al. 2020)
and, if η is to represent this process, it should have a long-wave cut-off in the zonal
direction (i.e. there should be no stochastic excitation of waves with |kx| < kmin for
some kmin > 0, cf. the Eady or Phillips model for baroclinic instability; e.g. Vallis
2006). As discussed previously, the existence of a long-wave cut-off is quantitatively
important because very long zonal waves can make a disproportionately large (and,
if not treated carefully, an unphysical) contribution to the momentum flux in the
local theory (see also Frishman 2017).

With the described forcing, a reference simulation (REF) is performed at parameter
settings (Z,Q,F) = (5.05, 2.91, 1.01). (This value of F corresponds to forcing at kf =
16.) For the purposes of comparison and model validation, simulation REF is repeated
in the full nonlinear equations (1.1), the QL equations (2.2)–(2.3) and the CE2 equations
(2.5)–(2.6). The resolution in the nonlinear simulation is 2562 Fourier modes, whereas
for QL and CE2 it is 16 × 256 because wavenumbers |kx| > kf are not necessary.
Hyper-diffusivity in all cases is ν4 = 2.5 × 10−8, which is sufficient to remove enstrophy
at small scales in the nonlinear simulation, but remains insignificant in the energy balance.
The results are reported next.

3.2. Momentum flux decomposition in an equilibrated jet flow
Figure 5 shows the spin-up and equilibration of jets in the QL, CE2 and nonlinear (NL)
simulations. The left panels are Hovmöller plots of the zonal mean wind U( y, t) and the
right panels show a time-mean taken over the final 0.5 μ−1 time units in each simulation.
The QL and CE2 simulations result in very similar jet profiles, as expected because
the latter describes the statistics of the former. The jets in the NL simulation are less
symmetric, with a more rounded westward jet, reflecting the fact that at Z ≈ 5 the NL
simulation only approaches the high zonostrophy (Z � 1) regime in which QL is expected
to be a good approximation to (1.1). Nevertheless figure 5 confirms the usefulness of QL
and CE2 as simplified models of the full nonlinear behaviour.

Figure 5(a) shows a QL simulation which gives a simple illustration of the importance of
secondary instabilities for the equilibrated jet profiles. In this simulation the ‘seed forcing’
in WF3 is switched off, meaning that waves with zonal wavenumber kx /= kf cannot be
excited. Despite the fact that, energetically speaking, the forcing is effectively unchanged,
because the fraction of energy input into the seed forcing into waves with kx /= kf is less
than 10−4 of the total, the outcome of the simulation is radically different. Thin jets are
formed with widths far less than the Rhines scale seen in the other simulations. Further
QL simulations (not shown) demonstrate that the equilibrated jets in the QL simulation
(second row) are independent of the amplitude used for the seed forcing, providing further
evidence that the role of the seed forcing is to excite instability.

To understand the mechanisms at play it is informative to look first at the momentum
flux decomposition for the CE2 and QL simulations, shown in figure 6(a–h), because
these are somewhat cleaner than their NL counterpart and give near-identical results.
Figures 6(a,e) show the time-mean zonal wind U( y) for reference, and figures 6(b–d, f –h)
show the contributions to the momentum flux convergence, i.e. the wave-induced force
on the zonal flow, for different zonal wavenumbers. Results for QL are obtained using a
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Figure 5. Left panels: Hovmöller plots of zonal mean flow U( y, t). (a) QL simulation with wave forcing WF3
with the ‘seed forcing’ omitted. (b) QL simulation with wave forcing WF3 including the seed forcing. (c) CE2
simulation with WF3 including the seed forcing. (d) Fully nonlinear simulation with WF3. Right panels: time
average of U( y, t) over the last 0.5 μ−1 time period. In all simulations Z = 5.05, Q = 2.91 and F = 1.01.

‘jet-following’ averaging procedure to compensate for any gradual evolution in jet position
which would otherwise smear out the results. The jet-following procedure resets in the
origin in the y-direction prior to averaging, by phase-shifting all quantities in Fourier space
to the phase of the jets, as determined by the second Fourier coefficient of U( y, t). Using
this method, averages are calculated over a long period (50 μ−1) of equilibrium, to obtain
good statistical convergence. CE2 adopts an alternative averaging procedure, because
equilibrium solutions for CE2 undergo small oscillations (Marston et al. 2019) about a
steady jet configuration. In the solution presented the oscillations are relatively small,
but a temporal average is taken anyway once a steady state is reached (from t = 49 μ−1

to 50 μ−1).
The directly forced contribution to the momentum flux convergence −∂y〈u′v′〉D (for

kx = kf = 16) is shown in figure 6(d,h). The secondary instability contribution −∂y〈u′v′〉S
is found to be entirely dominated by zonal wavenumbers kx = 3, 4 and 6 and these
contributions are plotted in figure 6(b,c, f ,g). A striking feature of figure 6 is that at the
jet cores there is a cancellation between two large terms: the direct wave induced force
which acts to accelerate both the westward and eastward jets, and the contributions from
the secondary instabilities which are decelerating. At the westward jets, in particular, the
direct and secondary momentum flux convergences are about an order of magnitude larger
than the frictional force in the momentum balance in (2.5). The main contributions at
the eastward and westward jets have somewhat different scales (kx = 6 and kx = 3, 4,
respectively), which we show in the following is characteristic of the scale of barotropic
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Figure 6. Long-time equilibrium mean quantities from the (a–d) CE2, (e–h) QL and (i–l) NL simulations
reported in figure 5. Panels (a,e,i) show the average mean wind profile U( y). The other panels plot
−μ−1∂〈u′v′〉kx for significant modes kx. The CE2 and QL results are similar, clearly identifying distinct
instabilities at the westward (shaded red) and eastward (shaded blue) jets which counteract the jet-sharpening
contribution from the forcing wave kx = kf . Analysis of the NL simulation reveals wave ranges performing
similar roles as the QL and CE2 simulations: e.g. kx = 1, 2 damps westward jet growth, kx = 3–7 all have a
similar structure counteracting the eastward jet sharpening and the waves kx > 13 perform the jet sharpening
role of the forcing wave kf .
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Figure 7. Further analysis of the CE2 simulation in figure 6. The half domain [−π/4, 3π/4] is reported to
view a single eastward and westward jet. (a) Mean zonal wind profile (blue) and the PV gradient (orange).
(b) Momentum flux quantities scaled by E . These are the CE2 results for 〈u′v′〉 (dotted blue), 〈u′v′〉D (black)
and 〈u′v′〉S (green) and the SY14 〈u′v′〉 (red dotted line). Sufficiently distant from the points where β − Uyy ≈ 0
it is observed that 〈u′v′〉D ≈ 0 and the SY14 solution agrees with the CE2.

instability on each jet. The secondary instabilities are non-local, however their influence
is not felt across the full domain, and there are wide regions in the jet flanks where
〈u′v′〉S � 〈u′v′〉D. Figure 7 shows that, within these wide regions, SY14 formula (2.12)
is an excellent prediction for the Reynolds stress.

The momentum flux decomposition for the NL simulation is shown in figure 6( j–l).
There are striking similarities between NL and QL/CE2 in the patterns of the momentum
flux convergences at each jet, but also significant differences in both the magnitudes and
latitudinal scales, as well as the breakdown by zonal wavenumber. The differences can be
accounted for by the fact that Z is finite in the NL simulation, and agreement between
NL and QL is expected to improve at higher Z. As Z increases, away from jet extrema
the zonal eddy-eddy interactions are suppressed (e.g. Tobias & Marston 2013.) Indeed, in
some small region around jet extrema, it is not clear why the QL approximation should
hold; however, such a region is expected to be vanishingly narrow with increasing Z. The
simulations indicate that finite Z affects the NL flow statistics in two important ways.

(i) First, there is significant wave–wave interaction in the nonlinear simulation, which
leads to wave energy being scattered in wavenumber space. This affects the
direct wave-induced force −∂y〈u′v′〉D by spreading its contribution over a range
of wavenumbers centred on kx = kf , and similarly the spectrum of −∂y〈u′v′〉S is
broadened to a larger range of kx.

(ii) Second, the average variance of the mean wind profile about its temporal mean
is roughly five times greater in the NL case compared with QL (both cases are
calculated using the ‘jet following’ procedure). The increased variance is exhibited
as (a) less steady relative jet positions, which smears the statistics to give weaker and
broader patterns for the momentum flux convergence, and (b) increased variability in
the magnitude of U at each jet, meaning that there are periods when the Raleigh–Kuo
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condition for stability is broken for a broader range of kx, which results in a broader
zonal spectrum of emergent waves.

These effects account for the difference between the CE2/QL and NL momentum flux
decompositions in figure 6, because the latter can be viewed as a ‘smeared out’ version
of the former, but is otherwise qualitatively similar. From figure 6 it is evident that the
QL and CE2 statistics are almost identical. An exception is the QL kx = 3, 4 contribution
near the eastward jet which is absent in CE2: a small reminder that CE2 is not an exact
representation of the QL statistics as its averaging procedure cannot fully model the mean
flow fluctuations which occur in realisations of the QL flow. Curiously, the NL kx = 1, 2
modes provide the opposite (sharpening) Reynolds stress at the eastward jets compared
with kx = 3–7 which is larger. Hence, the overall contribution from 〈u′v′〉S, as in CE2/QL,
is to counteract the sharpening from 〈u′v′〉D.

In summary, momentum fluxes from the directly forced waves act to accelerate both
the eastward and westward jets, and opposing these are momentum fluxes from relatively
long (kx = 1–7) jet-scale waves which appear to derive from secondary instabilities. To
investigate the origin of these long waves more thoroughly, a linear instability analysis of
the time-mean flow is conducted next.

3.3. Linear stability analysis of the equilibrium jet flow
To investigate the origin of the emergent long waves that drive the secondary momentum
fluxes 〈u′v′〉S, a linear stability analysis of the time-mean flow in the CE2 simulation is
presented next. The CE2 simulation is chosen for analysis because the time-variability
of U( y, t) is significantly lower than for the stochastic simulations, meaning that its time
average is an excellent statistical representation of the actual state at any fixed time. One
of the pitfalls of a single numerical linear stability calculation of a time-mean state of a
system near marginal stability is that the results can return large number of wave modes
with near-zero growth rates, making the results hard to interpret. The goal of our analysis,
therefore, is to investigate whether there are states nearby to the time-mean state (in a sense
to be described) in which there are specific wave modes with significant growth rates.
The idea is that, as U( y, t) evolves it will spend a proportion of its time in these more
unstable states, exciting the strongly unstable wave modes, which will persist because they
are relatively weakly damped when the system is outside the unstable regime.

The linear stability problem is formulated by seeking a solution to (2.3) of the form

ψ ′(x, y, t) = Re {Ψ ( y) exp (ikx(x − ct))} , (3.4)

resulting in the generalised eigenvalue problem

LΨ = cMΨ, (3.5)

for linear operators

L = (ikxU + μ− (−1)n+1ν2n(∂yy − k2
x)

n)(∂yy − k2
x)+ ikx(β̃ − Uyy),

M = ikx(∂yy − k2
x).

}
(3.6)

Here β̃ = β + δβ, where δβ is a perturbation to the value of β used in the CE2 simulations,
which has been introduced as a device to investigate the stability of ‘nearby’ states to
the CE2 time-mean flow. Our assumption here is that the stability properties of nearby
states generated by varying δβ are representative of those of the nearby states generated by
fluctuations in U( y, t). We believe this is reasonable as growth rates are largely determined
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Figure 8. Linear stability analysis for the CE2 profile in figure 6. The contour plot shows the maximum
eigenmode growth rate kci as δβ and kx are varied. Here, δβ = β̃ − β measures the deviation of the Coriolis
parameter β̃ used for the stability analysis compared to the actual β value used in the CE2 simulation. Two
distinct unstable regions are visible at kx = 3, 4 and kx = 6, corresponding to instabilities at the westward and
eastward jets as labelled. The unstable wavenumbers agree with those identified in figure 6. The right-hand side
line plots show the normalised momentum flux divergence (solid blue) of the most unstable mode at the points
indicated by the green and blue dots. For reference the PV gradient β̃ − Uyy is also shown (dotted red).

by the width and magnitude of the PV gradient reversal region in which β − Uyy changes
sign, as suggested by the Rayleigh–Kuo necessary criterion for instability, which states
that a sign change must be present for instability in the inviscid system. Note that the
reference time mean profile, with δβ = 0, just satisfies the Rayleigh–Kuo criterion, with
small regions of opposite sign PV gradient located at the westward jet extrema and in
flanks of the eastward jet.

The generalised eigenvalue problem (3.5) is discretised on a grid of 1024 points
by replacing L and M with the matrices obtained when standard centred-difference
approximations replace y-derivatives. The calculated growth rate kxci of the fastest
growing mode, obtained by taking the imaginary part of the computed eigenvalues c of
(3.5), is plotted in figure 8 as a function of (kx, δβ). As δβ is reduced and the system
becomes more unstable, growing waves are seen to emerge at around kx ≈ 3.7 and
kx ≈ 6.1, which correspond to instabilities at the westward and eastward jets, respectively.
Notably, there is a significant asymmetry between strong positive growth rates at negative
δβ and weak decay rates at positive δβ, supporting the idea that the system need spend
only a relatively small fraction of time in the unstable regime to support the emergence of
these waves.

The latitudinal structure of the momentum flux convergence associated with each
unstable waves can be calculated from the corresponding eigenvector Ψ . Figures 8(b,c)
show the calculations for a typical unstable wave on the westward jet (green dot) and
eastward jet (blue dot), respectively. The pattern of the latitudinal structure in each case
is seen to be close to those calculated in the equilibrium QL/CE2 and NL simulations,
shown in figure 7. This correspondence in the momentum flux structures at each jet,
together with the close matches in the respective emergent zonal wavenumbers (kx = 3, 4
for the westward jet and kx = 6 for the eastward jet) provides conclusive evidence that each
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jet is independently marginally stable to barotropic instability, and that these barotropic
instabilities are the source of the secondary instabilities which contribute to 〈u′v′〉S in the
equilibrium simulations reported previously.

4. Deterministic parameterisation of the stochastic forcing

In the previous section it was established that the SY14 closure for the momentum flux
(2.17) can accurately predict the direct contribution 〈u′v′〉D due to stochastic forcing, at
least in the limit F → 0. In the equilibrated jet flows, however, an equally important
contribution 〈u′v′〉S is present due to barotropic instabilities at both the eastward and
westward jets. Next, our aim is to address the question of whether, when and how exactly
the SY14 closure can practically be used to model stochastically forced zonal flows, by
exploring three settings of increasing complexity.

(i) A stable monotonic zonal flow: For this class of flows the SY14 closure and, because
there are no turning points, the simple approximation (1.3) can be used to predict
〈u′v′〉D. Provided the stochastic forcing is not too strong, the equilibrium flow will
remain in the stable regime and there will be no secondary instabilities, i.e. 〈u′v′〉S =
0. This scenario is therefore closely analogous to the ‘vortex condensate’ situation
(e.g. Laurie et al. 2014) discussed in the introduction, in which zonal closures have
been shown to be successful.

(ii) A stable zonal flow with alternating jets: In this scenario a strong ‘radiative’ damping
is used to maintain the flow in a stable state consisting of an eastward and westward
jet. This is a tougher test of SY14 than the monotonic flow above, because the flow
must adjust to rapid changes in 〈u′v′〉D near the jet cusps. However, it remains
simpler than the β-plane jet flows of § 3, because by design the flow is stable
and 〈u′v′〉S = 0. This regime is key to understanding the mechanism by which the
directly forced momentum fluxes 〈u′v′〉D lead to the onset of secondary instability.

(iii) A typical equilibrated jet flow in β-plane turbulence: In this flow we know from
the previous section that it is essential to include some representation of barotropic
instability so that 〈u′v′〉S is captured. Our approach in the following is simply to
replace the stochastic forcing with a deterministic term based on SY14 to model
〈u′v′〉D, and to permit barotropically unstable waves to emerge spontaneously in
the flow, by including non-zonal perturbations in the initial conditions. Therefore,
our parameterisation in this case is not purely zonal, but can still be useful when
F � 1, i.e. there is a large-scale separation between the forcing scale and the jet
scale, because the latter determines the scale of the barotropic waves.

A practical consideration when implementing the SY14 closure concerns the large
gradients in the calculated 〈u′v′〉D which invariably emerge in thin boundary layers near
jet cusps. Numerically these boundary layers can always be resolved with a sufficiently
high-resolution grid. However, it is often computationally more practical to apply a
smoother to the momentum flux 〈u′v′〉D calculated from (2.17). Here we use a kernel
smoother which acts on a function f ( y) according to

fσ ( y) =
∫ ∞

−∞
f ( y′)Kσ ( y − y′) dy′, (4.1)

where Kσ ( y) denotes a smoothing kernel with characteristic length scale. In practice, a
Gaussian with variance σ 2 is used. It turns out that, for a significant range of σ , this
modified closure (denoted SY14σ hereafter) actually improves the comparison with our
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numerical results, for the simple reason that the smoothing in (4.1) can replicate the effect
of finite F (see figure 4).

Results from the three different flow scenarios are reported next.

4.1. A stable monotonic zonal flow
To generate a stable monotonic zonal flow, the Rayleigh friction term in the original
governing equation (1.1) is modified so that the flow is relaxed towards a prescribed profile
U0( y) = erf( y), modelling, e.g., a wind stress term in an oceanic flow. The boundary
conditions are periodic in the zonal x-direction, as before, but for this problem periodicity
in y is replaced with solid wall boundaries at y = ±π at which the usual (Phillips)
boundary conditions are applied. To minimise wall effects, the stochastic excitation is
confined to the shear zone, so the governing equation becomes

ζt + u · ∇ζ + βv = −μ(ζ − ζ0)− ν4∇4ζ +
√
εf ( y)η, (4.2)

with ζ0 = −2 exp(−y2)/
√

π. The local energy injection rate is now εf ( y) with f ( y) =
exp(−y2/2σ 2

n )/
√

2πσn and σn = π/8. As the flow is monotonic it is not necessary to use
the smoothed closure (SY14σ described previously), therefore results from (4.2) can be
compared with those from the unsmoothed SY14 closure equation which is (cf. (2.25))

∂tU = −μ(U − U0)− ε

2μ
∂y

(
f ( y)G

(
2μ

U′( y)

))
+ ν4∂

4
y U, (4.3)

with G(α) given by (2.17).
Figure 9 shows a comparison between the equilibrated states of the CE2 equations

obtained from (4.2) with the equilibrated solution of the SY14 closure equation (4.3).
The parameters (μ, (2π)2ε/μ, β) = (0.002, 4, 2) have here been chosen in order that the
stochastic forcing is rather weak, in the sense that the equilibrated flow remains close
to the relaxation profile U0( y). It is clear (see figure 9(b)) that SY14 does an excellent
job of describing the deviation from U0( y) induced by the stochastic forcing in the CE2
model (the small differences here can be attributed to finite F effects). Evidently, a class of
channel flows exist in which zonal local closure theories are entirely successful, replicating
previous success with vortex condensate flows (Laurie et al. 2014).

Further experiments (not shown) reveal that, even in this simple setting, this regime in
which the SY14 local zonal closure theory remains accurate is rather restricted. Increasing
the forcing (higher ε) or broadening the forcing region (higher σn) tends to lead to
the formation of local extrema with Uy = 0, which lead to secondary instabilities by a
mechanism to be described in the next subsection. For the reasons described previously,
SY14 is sensitive to finite F effects at local extrema, and consequently local extrema
deserve special attention, in the following flow scenario.

4.2. A stable zonal flow with alternating jets
To generate a stable alternating jet flow, (1.1) is modified to include a ‘radiative relaxation’
term, as has been used by, e.g., Scott & Polvani (2008) to model the effect of large scale
radiative damping on the jets of the giant planets. The governing equation, solved on the
doubly periodic domain, becomes

ζt + u · ∇ζ + βv = r
(
ψ̄ − Ψrad

)− μζ − ν4∇4ζ + √
εη. (4.4)

Here the streamfunction ψ = ∇−2ζ , and Ψrad = cos( y) so that the zonal flow is
effectively relaxed towards a sinusoidal ‘deep jet’ profile (cf. Thomson & McIntyre 2016),
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Figure 9. (a) Plots of U( y) from CE2 (blue) and LCT (purple) for a channel flow linearly relaxed to U0 =
erf( y) (red). (b) Similar to (a), but plots the difference U − U0. (c) The forcing profile f ( y). The forcing profile
is also indicated on the two left-most panels with a blue gradient indicating the forcing magnitude.

given here by

U0( y) = 1
1 + (μ/r)

sin( y). (4.5)

To maintain the stability of the equilibrium flow, it was found to be necessary to use a
relatively strong relaxation and damping. This set-up thus allows an exploration of strongly
relaxed jets without excessive damping of eddy activity at the forcing scale.

The parameter settings for our main calculation, using the CE2 truncation of (4.4),
solved numerically on a grid of 256 points, are (β, μ, r, ε) = (22, 0.05, 0.05, 0.05/(2π)2).
The large value of β was found to be necessary to suppress secondary instabilities and, in
fact, because β � |Uyy| throughout the domain, has the effect of making the behaviour at
the east and west jets almost symmetric. Useful insight into the expected behaviour at the
jet cusps is provided by the scattering experiments of § 3, where typical momentum fluxes
for a fixed sinusoidal jet were plotted for different values of the forcing scale parameter F.
Strong sensitivity to F is therefore expected, and because it is not computationally feasible
to explore the F → 0 limit in these interactive CE2 calculations, we take kf = 16 and aim
to compare our results with the SY14σ closure (i.e. (4.3) modified for this system, with
the smoother (4.1) applied), which can capture the qualitative effects of finite F.

Figure 10 shows the comparison between the CE2 calculation and solutions obtained
from the SY14σ closure equation (solved numerically on a 2048 grid). The SY14σ results
show sensitivity to the smoothing parameter σ , reflecting the sensitivity to F in the CE2
momentum flux patterns seen in figure 4. For the present calculation, an optimal value
of σ = σ∗ = 0.237/kf results in good agreement between CE2 and SY14σ throughout
the domain. Admittedly, this good agreement requires a flow-specific parameter fit for σ ,
and more research is required to determine how best finite F effects can be captured in a
modified or extended SY14.

The eddy-induced changes to U seen in figure 10 serve to illustrate why the regime in
which 〈u′v′〉S = 0, and the purely zonal closure based on SY14σ is applicable, is restricted
to a narrow region of parameter space in which the stochastic forcing is weak and the
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σ∗ = 0.237/kf σ∗ = 0.237/kf
σ = 0.125/kf

σ = 0.5/kf

–π/2

–0.8 –0.6–0.4 –0.2 0

U U – U0 
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–π/2

–π

0

π
(b)(a)

Figure 10. CE2 and LCT quantities from the radiatively damped experiment. Panel (a) compares the mean
wind profile with U0 for CE2 and SY14σ (with the optimal σ ∗ = 0.237/kf ). Panel (b) investigates results in
more detail by plotting the profile deviation from the radiatively relaxed profile, U − U0. SY14σ results are
given for σ = [0.125/kf , σ

∗, 0.5/kf ]. In all cases kf = 16.

relaxation of the jet is strong. Because 〈u′v′〉D peaks strongly near the jet cores, even rather
modest eddy forcing, which has little effect on the flow elsewhere, has a strong effect at the
jet tips, acting to sharpen them. The jet curvature Uyy at the westward jet tip and eastward
jet flanks increases rapidly with forcing strength, leading to β − Uyy changing sign and,
thus, the potential for secondary instability. The effect is more pronounced as F is reduced,
or σ is reduced in SY14σ , as seen in figure 10. Through this sharpening mechanism,
stochastic forcing at a jet cusp has a much stronger tendency to lead to secondary instability
than elsewhere, explaining why the stable alternating jet regime discovered here occupies
such a narrow region of parameter space, especially so at low F. Much more important are
the canonical equilibrated jets, which have active secondary instabilities, to be discussed
next.

4.3. A typical equilibrated jet flow in β-plane turbulence
Finally, we are ready to address the question of whether the SY14σ closure can be adapted
to parameterise the stochastic term in the canonical NL β-plane turbulence simulation
described in § 3.2 (see figure 5). Recall that SY14σ can capture only the directly forced
momentum flux 〈u′v′〉D, and not the secondary flux 〈u′v′〉S due to barotropic instability,
which we know from § 3 is equally important in the equilibrated momentum balance.
In the absence of a (known) means to parameterise 〈u′v′〉S, our approach is simply to
allow unstable waves to develop spontaneously in the parameterised flow, by solving the
deterministic nonlinear equation

ζt + u · ∇ζ + βv = −μζ + (−1)n+1ν2n∇2nζ − ε

2μ

[
∂yyG

(
2μ
ζ̄

)]
σ

, (4.6)
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Figure 11. (a,c) Snapshots of PV ζ + βy and relative vorticity ζ from the NL simulation reported in figures 5
and 6. (b,d) Snapshots of the same quantities from an SY14σ simulation with the same parameters. In the
SY14σ model the stochastic forcing is replaced with the deterministic forcing term described in the main text.
The zonal jet structure and scaling are comparable in each case, as are the non-zonal instabilities which emerge
in the flow.

where the square brackets [·]σ denote that the smoother (4.1) is applied. Equation
(4.6) is simply (1.1) with the stochastic term replaced by the deterministic SY14σ
parameterisation.

Figure 11 compares PV and vorticity snapshots in the NL simulation of § 3.2 with
those from a corresponding integration of the parameterised equation (4.6). The parameter
settings and numerical configurations are identical, and both simulations are integrated for
the same length of time until an equilibrated state is reached. The value σ = 0.237/kf ,
found in the alternating jet experiment above, is used for the smoothing parameter in
SY14σ .

There are several striking similarities between the two simulations apparent in
figure 11.

(i) Excellent correspondence between the structure of the equilibrated jets in the two
simulations.

(ii) Relatively short waves (kx = 4–6) propagating on the PV barriers at the core of the
eastward jets. These correspond to the eastward jet instability identified in the linear
analysis of figure 8.

(iii) Longer waves (kx = 1–3) propagating on the PV barriers located at the flanks of the
westward jets. Note that, although these waves are only clearly visible in snapshots
of the parameterised run, their presence in the NL simulation is evident from the
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momentum flux decomposition of figure 6. They correspond to the waves generated
by the westward jet instability identified in figure 8.

From the compiled evidence, it is clear that SY14σ is successful because it captures
the direct momentum flux 〈u′v′〉D sufficiently accurately to permit the flow to reach a
marginally stable equilibrium in which emergent waves generate the correct secondary flux
〈u′v′〉S. Further analysis of the momentum budget (not shown) supports this interpretation.
In these simulations, the main drawback of SY14σ is that it does not give a computational
saving compared with the NL simulation, in fact the computational cost is almost identical
as both runs are on the same grid over the same time period. However, this need not be true
in general, particularly as F is reduced. This is because, as inspection of figure 11 confirms,
the length scale of waves in the parameterised simulation is set by the jet spacing, not by
the forcing scale. Therefore, a scenario with F � 1 in which the parameterised run is
many orders of magnitude cheaper than NL would not be difficult to set up.

5. Discussion and conclusions

The dynamics of jets in geophysical fluids have been described as a ‘wave–turbulence
jigsaw’ (e.g. McIntyre 2008). Here, we have made progress in understanding how the
pieces of the jigsaw fit together for the canonical model flow of stochastically forced
β-plane turbulence. The key findings are that the momentum fluxes in the equilibrated
jet states can be decomposed into a direct contribution due to the forcing 〈u′v′〉D, and
a secondary flux 〈u′v′〉S due to emergent jet-scale instabilities at both the eastward and
westward jets. Note that our finding of jet-scale barotropic instability at the eastward jet
does not support the local theory for the momentum balance there proposed recently by
WB19. Moreover, 〈u′v′〉D can be accurately modelled throughout the flow (at least for
F � 1) using the analytical approach of SY14, which has been developed and simplified
in § 2. Using these insights a parameterised simulation in which the stochastic forcing
is replaced by a deterministic term based on SY14, and which accurately captures the
dynamical equilibrium of a stochastically forced flow, was presented in § 4.3.

The success of our parameterised simulation depends upon allowing the jet-scale
waves responsible for 〈u′v′〉S to emerge spontaneously, due to the barotropic instability
of the equilibrated flow. For a complete theory of β-plane turbulence these waves also
need to be parameterised. However, the development of a closure for unstable flows in
forced-dissipative equilibrium remains a (classic) unsolved problem (see, e.g., Marston
et al. 2008), and is a fundamentally more difficult problem than parameterising the
stochastic forcing, because there is no scale separation between the jets and the waves
to exploit. Some flows do exist, nevertheless, in which there is no secondary instability
(i.e. 〈u′v′〉S = 0) and these are most easily found when the flow profile is monotonic (see
§ 4.1), otherwise strong relaxation towards a stable flow is required (as in § 4.2). For such
flows a completely zonal closure theory based on SY14 (or SY14σ ) can be successful.
An important example is the vortex condensate flows (Laurie et al. 2014; Kolokolov &
Lebedev 2016; Frishman 2017; Frishman & Herbert 2018) found in forced-dissipative
isotropic 2D turbulence, for which the simplest local closure theory, based on (1.3), gives
excellent predictions for the azimuthal velocity profile of the vortex condensate. A key
qualitative finding in this work is just how destabilising even weak turbulent forcing can be
near flow extrema, particularly as F → 0, as the momentum flux pattern near jet extrema
has a strong tendency to sharpen jets, causing a large increase in flow curvature, and
subsequent instability due to the PV gradient reversals which are generated.
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Even in the absence of a closure for 〈u′v′〉S, the ability to parameterise 〈u′v′〉D has
the potential to be an extremely useful for modellers wishing to explore jet flows that
are subject to very small-scale forcing (i.e. F � 1), and may even be of practical use
in the development of general circulation models for the giant planets. The main reason
is that the parameterised model need only resolve the emergent waves which occur
due to the instability, for which 101–102 model grid points per jet spacing should be
adequate. Resolving the actual energy injection scale k−1

f may easily require many orders
of magnitude more resolution. However, to end on a note of caution, the SY14 expressions
for 〈u′v′〉D presented here are strictly valid only for (near-)steady jets. Extending the results
to the full time-dependent situation will be the subject of future work.
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Appendix A. General momentum flux result

The second cumulant equation (2.6) may be Fourier transformed in x for

∂tZ̃kx + ikx (U1 − U2) Z̃kx = −ikx

{(
β − U′′

1
)∇−2

1 − (
β − U′′

2
)∇−2

2

}
Z̃kx − 2μZ̃kx

+ εΠ̃kx, (A1)

where Z̃kx( y1, y2) is the zonal Fourier transform of Z( y1, y2, x). The equation may be
written in matrix form

∂tZ̃kx + Akx Z̃kx + Z̃kxA†
kx

= εΠ̃kx, (A2)

where † is the complex transpose and Akx is an operator which depends on U( y). The
equation with ∂tZ̃k ≡ 0 is the Lyapunov equation used to solve CE2 directly over a steady
profile U( y).

Writing (A1) in collective coordinates ( y, ȳ) = ( y1 − y2, ( y1 + y2)/2) (see Srinivasan
& Young (2012) for full details), it is seen that setting Uy = γ implies Z̃kx is independent
of ȳ. Moreover, the translational meridional symmetry means the Coriolis parameter β is
unimportant (SY14), and (A1) in the collective coordinates reads simply

∂tZ̃kx + ikyγ Z̃kx = −2μZ̃kx + εΠ̃kx . (A3)

Fourier transforming this in y, the method of characteristics can be used to find the ‘sheared
disturbance’ solution (e.g. SY14 equation (B2)) at a sufficiently late time after spin-up
(t � μ−1) as

Ẑ(k) =
∫ ∞

0
εΠ̃

(
kx, ky + kxγw

)
e−2μw dw. (A4)

Here Ẑ(k) is the two-dimensional Fourier transform (as defined in the main text) of
Z(x, y).
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In wavenumber space, the Reynolds stress is

〈u′v′〉 = −
∫

R2

kxkyẐ(
k2

x + k2
y

)2 dk, (A5)

= −ε
∫

R2

∫ ∞

0

kxkye−2μw(
k2

x + k2
y

)2 Π̂
(
kx, ky + γ kxw

)
dw dk, (A6)

= −ε
∫

R2

∫ ∞

0

kx(ky − kxγw)e−2μw(
k2

x + (ky − γ kxw)2
)2 Π̂ (

kx, ly
)

dw dk, (A7)

= −ε
∫

R2

{
− Π̃k

2γ |k|2 + μ

γ

∫ ∞

0

Π̂(kx, ky)e−2μw

k2
x + (ky − γ kxw)2)

dw

}
dk, (A8)

where the last line is found by parts. By (2.9) the first term of the final line is ε/γ (i.e. the
inverse shear result). For the latter term we transform the k integral into polar form with
(kx, ky) = (κ cosφ, κ sinφ) for

〈u′v′〉 = ε

γ
− εμ

γ

∫ π

−π

∫ ∞

0

∫ ∞

0

Π̂(κ cosφ, κ sinφ)e−2μw

cosφ2 + (sinφ − γw cosφ)2
1
κ

dw dκ dφ. (A9)

At this point, we deviate from SY14. Instead of specifying a radial structure of Π̂ , we
recognise that the κ integral serves only to determine the energy injection at a given wave
angle φ. The symmetry Π̂(k) = Π̂(−k) implies the wave angles φ and φ + π have equal
energy input. The fact that the denominator of the integrand is also invariant under φ →
φ + π means we can let ρε(φ) represent the total energy injection of the wave angles φ and
φ + π (as given by (2.10)) and consider the integral on the half domain φ ∈ (−π/2,π/2),
i.e.

〈u′v′〉 = ε

γ
+ 2εμ

γ

∫ π/2

−π/2

∫ ∞

0
ρε(φ) sec2 φ

e−2μw

1 + (tanφ − γw)2
dw dφ. (A10)

The change of variable s = γw − tanφ finds

〈u′v′〉 = ε

γ

(
1 − 2μ

γ

∫ π/2

−π/2
ρε(φ) sec2 φe−2μ tanφ/γ

(∫ ∞

− tanφ

e−2μs/γ

1 + s2 ds
)

dφ

)
. (A11)

The inside s integral can be performed with the general result∫ ∞

−x

e−αs

1 + s2 ds = −Im
{

eαiE (α(−x + i))
}
, (A12)

allowing us to write

〈u′v′〉 = ε

γ

(
1 + 1

α

∫ π/2

−π/2
ρε(φ)α2 sec2(φ) Im {exp(α(− tanφ + i))E (α(− tanφ + i))} dφ

)
,

(A13)

where α = 2μ/γ . Equivalently, this can be written in the form in the main text

〈u′v′〉 = ε

γ

∫ π/2

−π/2
ρε(φ)K(φ, α) dφ, K(φ, α) = 1 + 1

α
|z|2 Im

{
ezE (z)

}
, (A14a,b)

where z(φ, α) = α(− tanφ + i).
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Expressions for 〈u′u′〉 and 〈v′v′〉 can be found using a similar method to before. Starting
from the equivalent to (A5) for each case, the integrals can be reduced to

〈u′2〉 = ε

γ

∫ π/2

−π/2
ρε(φ)

(
− 1
α

|z|2
(

1
α

Im
{
ezE1(z)

}+ Re
{

ezE1(z)− 1
z∗

}))
dφ, (A15)

〈v′2〉 = ε

γ

∫ π/2

−π/2
ρε(φ)

(
− 1
α

|z|2
(

1
α

Im
{
ezE1(z)

}− Re
{

ezE1(z)− 1
z∗

}))
dφ, (A16)

where ∗ is conjugate. These results are not reported in the main text, however the numerical
Lyapunov solution for the experiment reported in figure 4 confirms the above solutions
for 〈u′u′〉 and 〈v′v′〉 as F → 0. Note the expressions are written in such a way that they
obviously satisfy γ 〈u′v′〉 = ε − μ(〈u′2〉 + 〈v′2〉).

Appendix B. Kernel properties

Two useful expansions of the exponential integral are

E1(z) = γ1 − ln(z)−
∞∑

n=1

(−z)n

nn!
, (B1)

where γ1 is Euler’s constant (Abramowitz & Stegun 1972, p. 229), and

ezE1(z) =
∞∑

n=0

(−1)nn!
zn+1 , (B2)

for large values of Re(z) (Bleistein & Handelsman 1975, p. 3).
Proofs of the six properties of K(φ, α) are as follows.

(i) The kernel function K(φ, α) < 1 for all φ ∈ (−π/2,π/2) and all α ∈ R \ {0}.
The definition of K(φ, α) (2.13) prompts the observation

sgn
(

1
α

|z|2 Im
{
ezE1(z)

}) = sgn
(

1
α

Im
{

eiα
∫ ∞

α(− tanφ+i)

e−t

t
dt
})

,

= sgn
(

1
α

Im
{∫ ∞

−α tanφ

s − iα
s2 + α2 e−s ds

})
,

= sgn
(

−
∫ ∞

−α tanφ

e−s

s2 + α2 ds
)
,

= −1, (B3)

proving that K(φ, α) < 1.
(ii) The limiting values at the boundaries of the interval are K(±π/2, α) = 0.

Corollary of property (v), see the following.
(iii) The kernel function K(φ, α) has a single minimum K−(α). In the limit α → 0,

K−(α) ∼ −4πe−2/α, and the location of the minimum is asymptotically close to
φ = π/2 − α/2.
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It can be shown K(φ, α) solves the differential equation

cos2 φ
∂

∂φ
K(φ, α) = (sin 2φ − α)K(φ, α)− sin 2φ, (B4)

so any minimum must solve

K−(α) = sin(2φ−)
sin(2φ−)− α

. (B5)

Seeking a minimum point φ− such that c = α/θ− = O(1), where θ− = π/2 − φ−,
the leading-order behaviour for K(φ−, α) as α → 0 is found from (B1) as

K(φ−, α) = − 1
|α|

(
α

θ−

)2

πe−α/θ− + O(1). (B6)

If the minimum point exists, the leading-order terms of (B5) and (B6) balance, i.e.

− c2

|α|π exp(−c) = 2
c − 2

+ O(α2), (B7)

which rearranges for

c = 2
(

1 − |α|
(

1
c2πe−c

)
+ O(α2)

)
= 2 + O(α). (B8)

As c = O(1), the solution is self-consistent and in the small α limit

K−(α) = −4πe−2

α
+ O(1), with φ− = π/2 − α/2 + O(α2). (B9)

(iv) As α → 0, K(φ, α) = 1 − α(π/2 + φ) sec2 φ + O(α2 logα).
For any fixed φ, the complex number z = α(− tanφ + i) has infinitesimal magnitude
in the limit α → 0. Thus, it follows from the expansion (B1), and the exponential
series ez = ∑∞

n=0 zn/n!, that we have

Im
{
ezE1(z)

} = −Arg(z)+ Im {z ln(z)} + · · · . (B10)

The argument of z is Arg(z) = φ + π/2, so using the above in the definition of
K(φ, α), and noting |z2|/α = sec2 φ, the approximation is found.

(v) As α → ∞, K(φ, α) = −α−1 sin 2φ + 2α−2 cosφ cos 3φ + O(α−3).
Plugging into the series expansion stated previously for large Re(z), i.e. large
α tan(φ), we have

K(φ, α) = 1 + 1
α

|z|2Im
{
ezE1(z)

} = 1 + 1
α

Im

{ ∞∑
n=0

(−1)nn!(z∗)n+1

|z|2n

}

=
∞∑

n=1

(−1)nn! cos2n φ

αn Im
{
(tanφ + i)n+1

}
.

(B11)

For φ ∈ (−π/2,π/2) we can use that tan(φ)+ i = secφeiθ to show

cosn+1 φ Im{(tanφ + i)n+1} = sin ((n + 1)π/2) cos ((n + 1)φ)

− sin ((n + 1)φ) cos ((n + 1)π/2) , (B12)
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and depending on n odd or even one of the right-hand side terms vanishes.
Substituting (B12) into (B11), a little work finds that K(φ, α) can be written

K(φ, α) =
∞∑

n=1

anα
−n, an =

{
(−1)(n+1)/2n! sin((n + 1)φ) cosn−1(φ), if n odd,
(−1)n/2+1n! cos((n + 1)φ) cosn−1(φ), if n even.

(B13a,b)

The first few terms are

K(φ, α) = − 1
α

sin(2φ)+ 2
α2 cos(φ) cos(3φ)+ 6

α3 cos2(φ) sin(4φ)+ · · · . (B14)

Hence,

〈u′v′〉 = − ε

2μ

∫ π

0
ρε(φ)

(
sin(2φ)− 2

α
cos(φ) cos(3φ)+ O(α−2)

)
dφ. (B15)

The series is valid for α tan(φ) → ∞. This covers the case α → ∞ with φ fixed,
but also the limit φ → ±π/2 for any α /= 0, concluding

lim
φ→±π/2

K(φ, α) = 0. (B16)

i.e. property (ii).
(vi) We have

∫ π/2
−π/2 K(φ, α) dφ = 0.

By definition of K(φ, α) (2.13),∫ π/2

−π/2
K(φ, α) dφ = π + 1

α

∫ π/2

−π/2
|z|2 Im

{
ezE1(z)

}
dφ. (B17)

Changing the variable of integration to z (using dz/dφ = −|z|2/α) and using parts∫ π/2

−π/2
K(φ, α) dφ = π − lim

t→∞ Im

{∫ −αt+iα

αt+iα
ezE1(z) dz

}
, (B18)

= π − lim
t→∞ Im

{[
ezE1(z)+ ln(z)

] |−αt+iα
αt+iα

}
, (B19)

= 0, (B20)

where the ezE1(z) terms in the final evaluation are vanishingly small (by expansion
(B2)) and the logarithms cancel the π.
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