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Preliminaries

1.1 Integration

We presuppose basic knowledge of the theory of Lebesgue integration on mea-
surable subsets of Rn. The few results listed below are often used subsequently
and are given simply for the convenience of the reader. Proofs may be found
in [54] and [157], for example.

By � we shall usually mean a measurable (often open) subset of Rn; its
Lebesgue n-measure will be denoted by |�|n, or even by |�| if no ambiguity is
possible. All functions mentioned in this subsection are assumed to be extended
real-valued; given any such function f on �, we set

f + = max{f , 0}, f − = − min{f , 0}.
A measurable function f on � is said to be integrable over � if both

∫

�
f +(x) dx

and
∫

�
f −(x) dx are finite.

Theorem 1.1 (The monotone convergence theorem) Let {fk}k∈N be a non-
decreasing sequence of measurable functions on � such that for some k ∈ N,
∫

�
f −
k (x) dx < ∞. Then

lim
l→∞

∫

�

fl(x) dx =
∫

�

lim
l→∞ fl(x) dx.

Theorem 1.2 (Fatou’s lemma) Let {fk}k∈N be a sequence of non-negative mea-
surable functions on �. Then

∫

�

lim inf
k→∞ fk(x) dx ≤ lim inf

k→∞

∫

�

fk(x) dx.

Theorem 1.3 (Lebesgue’s dominated convergence theorem) Let {fk}k∈N be
a sequence of measurable functions on � such that for almost all x ∈ �,

limk→∞ fk(x) = f (x). Moreover, suppose that there is a function g, integrable
over �, such that
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|fk(x)| ≤ g(x) for all k ∈ N and almost all x ∈ �.

Then f and each fk are integrable over � and
∫

�

f (x) dx = lim
k→∞

∫

�

fk(x) dx.

Theorem 1.4 (Fubini’s theorem) For i = 1, 2, let �i be a measurable sub-
set of Rni; put � = �1 × �2 and suppose that f : � → R is such that
∫

�
f (x, y) dx dy is finite. Then

∫

�1
f (x, y) dx exists for almost all y ∈ �2,

∫

�2
f (x, y) dy exists for almost all x ∈ �1, and

∫

�

f (x, y) dx dy =
∫

�1

(∫

�2

f (x, y) dy
)

dx =
∫

�2

(∫

�1
f (x, y) dx

)

dy.

To apply this theorem we need to know that the function f is integrable over
�. This difficulty is overcome by Tonelli’s theorem, which leads to the conclu-
sion that if one of the iterated integrals

∫

�1

(∫

�2

|f (x, y)| dy
)

dx,
∫

�2

(∫

�1

|f (x, y)| dx
)

dy

is finite, then f is integrable over � and the conclusion of Theorem 1.4 holds.
For details of this, see [54], p. 194 and [164], pp. 353–354.

The next result gives connections between various types of convergence of
functions.

Theorem 1.5 Let p ∈ [1,∞), let� be a measurable subset ofRn and suppose
that f , fk (k ∈ N) are functions on � such that

∫

�

|f (x)|p dx < ∞,

∫

�

|fk(x)|p dx < ∞ (k ∈ N)

and
∫

�

|f (x)− fk(x)|p dx → 0 as k → ∞.

Then:

(i) There is a subsequence of {fk} that converges pointwise a.e. to f .
(ii) The sequence {fk} converges in measure to f : that is, given any ε > 0,

lim
k→∞

|{x ∈ � : |fk(x)− f (x)| > ε}| = 0.

We shall occasionally need to deal with integration over σ -finite measure
spaces: details of this, which follow similar lines to that just detailed, may be
found in Chapter 1 of [146].
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1.2 Banach Spaces

It is assumed that the reader is familiar with the fundamental concepts concern-
ing normed linear spaces: our purpose here is to place on record the notation
and some basic facts. More details and proofs of the various assertions may be
found in standard texts on functional analysis, such as [54].

Given a normed linear space X over the real or complex field, its norm will
be denoted by ‖·|X‖ or ‖·‖X , depending on the size of the expression X; if there
is no ambiguity, we shall simply write ‖·‖. The closed ball in X with centre x
and radius r is represented by B(x, r), abbreviated to BX if x = 0 and r = 1;
by SX will be meant the unit sphere {x ∈ X : ‖x‖ = 1}. A Banach space X is a
normed linear space that is complete in the sense that every Cauchy sequence
in X converges to a point in X. Let X,Y be Banach spaces over the same field
of scalars and let T : X → Y be linear. Then T is continuous if and only if

‖T‖ := sup {‖Tx‖Y : ‖x‖X ≤ 1} < ∞;
B(X,Y) stands for the set of all continuous linear maps from X to Y , abbreviated
to B(X) if X = Y . The map T �−→ ‖T‖ is a norm on this space endowed with
which B(X,Y) is a Banach space. The dual X∗ of X is the space B (X,
), where

 is the underlying scalar field. Given x ∈ X and x∗ ∈ X∗, we shall often denote
x∗(x) by 〈x, x∗〉X , or even 〈x, x∗〉 if the context is clear. A sequence

{

xj
}

j∈N in
X converges strongly to x ∈ X, written xj → x, if and only if

∥
∥x − xj

∥
∥ → 0;

it converges weakly to x, written xj ⇀ x, if and only if
〈

xj − x, x∗〉 → 0 for all
x∗ ∈ X∗. The adjoint of a map T ∈ B(X,Y) is the map T∗ : Y∗ → X∗ defined
by

〈

x,T∗y∗〉
X = 〈

Tx, y∗〉
Y for all x ∈ X and all y∗ ∈ Y∗.

It emerges that T∗ ∈ B (Y∗,X∗) and ‖T∗‖ = ‖T‖. A linear map T : X →
Y is said to be compact if, for every bounded set B ⊂ X, the closure T(B)
is compact in Y; equivalently, given any bounded sequence {xn} in X, {Txn}
has a subsequence that converges in Y . A compact linear map is necessarily
bounded; the family K(X,Y) of all compact linear maps from X to Y is closed in
B(X,Y).

A map T ∈ B(X,Y) is said to be strictly singular if there is no infinite
dimensional closed subspace Z of X such that the restriction T|Z of T to Z is an
isomorphism of Z onto T(Z). Equivalently, for each infinite-dimensional closed
subspace Z of X,

inf {‖Tx‖Y : ‖x‖X = 1, x ∈ Z} = 0.

If instead T has the property that given any ε > 0 there exists N(ε) ∈ N such
that if E is a subspace of X with dim E ≥ N(ε), then there exists x ∈ E, with
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‖x‖X = 1, such that ‖Tx‖Y ≤ ε, then T is said to be finitely strictly singular.
This second definition can be expressed in terms of the Bernstein numbers
bk(T) of T . We recall that these are given, for each k ∈ N, by

bk(T) = sup
E⊂X,dim E=k

inf
x∈E,‖x‖X=1

‖Tx‖X .

Then T is finitely strictly singular if and only if

bk(T) → 0 as k → ∞.

The relations between these notions and that of compactness of T are illus-
trated by the following diagram:

T compact =⇒ T finitely strictly singular =⇒ T strictly singular

and each reverse implication is false in general. For further details and gen-
eral background information concerning these matters, together with particular
examples, we refer to [1], [117], [118], [119] and [147].

We write X ↪→ Y to signify that X can be identified with a subset of Y
and that the natural embedding map from X to Y is continuous; if this map
is compact we write X ↪→↪→ Y . The dual X∗ of a Banach space X is also a
Banach space, the dual of which is denoted by X∗∗. There is a natural mapping
κ : X → X∗∗ defined by

〈

x∗, κx
〉

X∗ = 〈

x, x∗〉
X for all x ∈ X and all x∗ ∈ X∗;

κ is an isometric isomorphism of X onto κ(X). If κ(X) = X∗∗ the space X is
said to be reflexive. An important property of any reflexive space X is that every
bounded sequence in X has a subsequence that is weakly convergent to some
point of X.

The modulus of convexity of a Banach space X (with dim X ≥ 2) is the map
δX : (0, 2] → [0, 1] defined by

δX(ε) = inf
{

1 − 1
2

‖x + y‖ : x, y ∈ BX, ‖x − y‖ ≥ ε

}

;

the space X is said to be uniformly convex if δX(ε) > 0 for all ε ∈ (0, 2];
every uniformly convex space is reflexive. Morover, if

{

xj
}

j∈N is a sequence
in a uniformly convex space X such that xj ⇀ x ∈ X and

∥
∥xj
∥
∥ → ‖x‖, then

xj → x. For details of the companion notion of uniform smoothness see [61],
Chapter 1.

A Banach space X is said to have the approximation property (AP) if, given
any compact subset K of X and any ε > 0, there exists T ∈ B(X) with finite
rank such that ‖Tx − x‖ < ε for all x ∈ K. Every Banach space X with a basis
has the AP: we recall that a sequence {xn}n∈N of elements of X is a (Schauder)
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basis of X if, given any x ∈ X, there is a unique sequence {an}n∈N of scalars
such that x = ∑∞

n=1 anxn. We refer to Chapter 1 of [61] and the references given
there for proofs of these assertions, together with that made below, and further
background.

A map μ : [0,∞) → [0,∞) that is continuous, strictly increasing and has
the properties that μ(0) = 0 and limt→∞ μ(t) = ∞ is called a gauge function.
Given a gauge function μ and a Banach space X with uniformly convex dual
X∗, there is a map κ : X → X∗ such that for each x ∈ X, κx = x∗, where

〈

x, x∗〉 = ‖x‖ ∥∥x∗∥∥ and
∥
∥x∗∥∥ = μ (‖x‖) .

That this map is well defined is a consequence of the uniform convexity of X∗:
indeed this is the case under weaker assumptions on X∗. The map κ is called the
duality map on X (with gauge function μ) and is continuous on X : κxk → κx
in X∗ whenever xk → x in X. For proofs of these assertions and further details
we refer to [61], Chapter 1.

A particularly important class of Banach spaces is that of Hilbert spaces,
which we now briefly recall. An inner product on a linear space X over a scalar
field 
 is a map (·, ·) : X × X → 
 such that

(i) (αx1+βx2, y) = α (x1, y)+β (x2, y) for all α, β ∈ 
 and all x1, x2, y ∈ X;
(ii) (x, y) = (y, x) for all x, y ∈ X;

(iii) (x, x) > 0 if x ∈ X\{0}.
A linear space X equipped with an inner product is called an inner product

space; the map x �→ (x, x)1/2 is a norm on X; and if the resulting normed
linear space is complete, it is said to be a Hilbert space. Every Hilbert space is
uniformly convex.

To conclude this section we give various examples of Banach spaces.

(i) Rn and Cn with norm given by ‖x‖ =
(
∑n

j=1

∣
∣xj
∣
∣
2
)1/2

, x = (x1, ..., xn);
these are Hilbert spaces, with the natural definition of the inner product.

(ii) lp, the space of all sequences x = {

xj
}

j∈N of scalars such that

‖x‖p :=
⎛

⎝

∞
∑

j=1

∣
∣xj
∣
∣
p

⎞

⎠

1/p

< ∞ (1 ≤ p < ∞) ,

and
‖x‖∞ := sup

j∈N

∣
∣xj
∣
∣ < ∞.

(iii) Lp(�), the linear space of all (Lebesgue) measurable functions on a mea-
surable subset � of Rn, functions equal almost everywhere being identi-
fied, such that
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‖f ‖p,� :=
(∫

�

|f (x)|p dx
)1/p

< ∞ (1 ≤ p < ∞) ,

and

‖f ‖∞,� := ess sup
�

|f (x)|.

When 1 < p < ∞, the spaces lp and Lp(�) are uniformly convex and have
the AP; they are Hilbert spaces, with natural definitions of the inner product,
if p = 2. The duality map κ on Lp(�) (1 < p < ∞) with gauge function
t �−→ tp−1 is given by κf = |f |p−2 f

(

f ∈ Lp(�)
)

.

1.3 Function Spaces

1.3.1 Spaces of Continuous Functions

Throughout, � will stand for a non-empty open subset of Rn with boundary
∂� and closure �; a domain is a connected open set. Points of Rn will be
denoted by x = (xi) = (x1, ..., xn) and we write |x| = (∑n

i=1 x2
i

)1/2 and (x, y) =
∑n

i=1 xiyi; given r > 0, we put B(x, r) = {y ∈ Rn : |x − y| < r}, abbreviating
this to Br if x = 0. If α = (α1, ..., αn) ∈ Nn

0, where N0 = N ∪ {0}, we write

α! = ∏n
j=1αj!, |α| =

∑n

j=1
αj, xα = ∏n

j=1x
αj
j (x ∈ Rn)

and

Dα := ∂ |α|

∂xα1
1 ...∂xαn

n
:= ∏n

j=1D
αj
j , where Dj = ∂/∂xj;

it is to be understood that if some αj is zero, then the corresponding term is to
be omitted; if all αj are zero, so that α = 0, then Dαu = u for any appropriate
function u.

Given any k ∈ N0, by Ck(�) is meant the linear space of all real- or complex-
valued functions u on � such that for all α ∈ Nn

0 with |α| ≤ k, the function
Dαu exists and is continuous on �. The subspace of Ck(�) consisting of all
those functions with compact support contained in � is denoted by Ck

0(�), and
C∞

0 (�) := ∩∞
k=1Ck

0(�); recall that the support of a function u, supp u, is the
closure of {x ∈ � : u(x) �= 0}. The function φ defined on Rn by

φ(x) =
⎧

⎨

⎩

exp
(

−1
1−|x|2

)

, |x| < 1,

0, |x| ≥ 1

belongs to C∞
0 (Rn), with supp φ = B(0, 1) and

∫

Rn φ(x) dx > 0, so that ψ :=
φ/
∫

Rn φ(x) dx has the useful properties that ψ ∈ C∞
0 (Rn) and

∫

Rn ψ(x) dx = 1.
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We define Ck(�) to be the linear space of all bounded functions u in Ck(�)

such that u and all its derivatives Dαu with |α| ≤ k have bounded, continuous
extensions to � : a norm ||| · |||k,� is defined on this space by

||| u |||k,� := max
|α|≤k

sup
x∈�

|Dαu (x)|,

and Ck(�) becomes a Banach space when given this norm. For a discussion of
the advantages and disadvantages of this notation see [65], p. 10.

Let k ∈ N0, λ ∈ (0, 1]. We shall need various spaces of Hölder-continuous
functions. First, C0,λ(�) (often written as Cλ(�)) will stand for the linear space
of all continuous functions on � which satisfy a local Hölder condition on �;
that is, given any compact subset K of �, there is a constant C > 0 such that

|u(x)− u(y)| ≤ C |x − y|λ for all x, y ∈ K.

We also put

Ck,λ(�) := {

u ∈ Ck(�) : Dαu ∈ Cλ(�) for all α ∈ Nn
0 with |α| = k

}

.

These spaces are not given norms. However,

Ck,λ(�) := {

u ∈ Ck(�) : given any α ∈ Nn
0 with |α| = k, there

exists C > 0 such that for all x, y ∈ �, |Dαu(x)− Dαu(y)| ≤ C |x − y|λ}

becomes a Banach space when provided with the norm

||| u |||k,λ,� := ||| u |||k,� + |u|k,λ,�,
where

|u|k,λ,� = max
|α|=k

sup
x,y∈�,x �=y

|Dαu(x)− Dαu(y)| / |x − y|λ .

For convenience, when λ ∈ (0, 1), we write Cλ(�) = C0,λ(�) and ||| · |||λ,�,
| · |λ,� instead of ||| · |||0,λ,�, | · |0,λ,� respectively. By Ck,λ

0 (�) will be meant
the linear subspace of Ck,λ(�) consisting of all those functions with compact
support contained in �. Note that if u, v ∈ Cλ(�), then

|uv|λ,� ≤ ||| u |||0,�|v|λ,� + ||| v |||0,�|u|λ,�;
and that if u ∈ Cλ1(�), v ∈ Cλ2(�) and � is bounded, then uv ∈ Cγ (�), where
γ = min (λ1, λ2), and

||| uv |||γ,� ≤ max
{

1, |diam �|λ1+λ2−2γ } ||| u |||λ1,�||| v |||λ2,�.

Useful properties relating these spaces of functions are given in the following
theorem.
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Theorem 1.6 Let k ∈ N0, 0 < ν < λ ≤ 1 and suppose that � is an open
subset of Rn. Then

(i) Ck+1 (�
)

↪→ Ck (�
)

and

(ii) Ck,λ (�
)

↪→ Ck,ν (�
)

↪→ Ck (�
)

.

If � is bounded, both the embeddings in (ii) are compact. If � is convex, then

(iii) Ck+1 (�
)

↪→ Ck,1 (�
)

and

(iv) Ck+1 (�
)

↪→ Ck,ν (�
)

.

If � is bounded and convex, then the embeddings in (i) and (iv) are compact.

Finally we turn to conditions useful in the extension of functions. Let � be
an open subset of Rn (n ≥ 2) with non-empty boundary ∂�, let k ∈ N0 and
suppose that γ ∈ [0, 1]. Given x0 ∈ ∂�, r > 0, β > 0, local Cartesian co-
ordinates y = (y1, ..., yn) = (y′, yn) (where y′ = (y1, ..., yn−1)), with y = 0 at
x = x0, and a real continuous function h : y′ �−→ h(y′) (

∣
∣y′∣∣ < r), we define a

neighbourhood Ur,β,h(x0) of x0 (an open subset of Rn containing x0) by

U = Ur,β,h(x0) = {

y ∈ Rn : h(y′)− β < yn < h(y′)+ β,
∣
∣y′∣∣ < r

}

.

Then � is said to have boundary ∂� of class Ck,γ if for each x0 ∈ ∂� there
are a local co-ordinate system, positive constants r and β and a function h ∈
Ck,γ

(

B′
r) (where B′

r = {

y′ ∈ Rn−1 : ∣∣y′∣∣ < r
})

such that

Ur,β,h(x0) ∩ ∂� = {

y ∈ Rn : yn = h(y′),
∣
∣y′∣∣ < r

}

and

Ur,β,h(x0) ∩� = {

y ∈ Rn : h(y′)− β < yn < h(y′),
∣
∣y′∣∣ < r

}

.

In general, the constants r, β and the function h depend on x0. However, if in
addition � is bounded, there are points x1, ..., xm ∈ ∂�, positive numbers r and
β (independent of the xj) and functions h1, ..., hm such that the neighbourhoods
Uj = Ur,β,hj(xj) (j = 1, ...,m) cover ∂�. When γ = 0 we simply write ∂� ∈
Ck (or ∂� ∈ C if k = 0). If ∂� ∈ C0,1 we shall say that the boundary is of
Lipschitz class: if � is convex its boundary is of this class.
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1.3.2 Morrey and Campanato Spaces

These are defined by means of some kind of mean oscillation property imposed
on their elements. All we need in this book is that certain Campanato spaces
are isomorphic to spaces of Hölder-continuous functions, but their great impor-
tance in the past coupled with considerable current research activity lead us to
give some basic definitions and results, together with references in which more
details are provided.

Throughout this subsection we shall suppose that � is a bounded open subset
of Rn with the property that there exists A > 0 such that

|B(x, r) ∩�| ≥ Arn for all x ∈ � and all r ≤ diam �. (1.3.1)

This condition means that ∂� cannot have sharp outward cusps; Lipschitz
boundaries are allowed.

Definition 1.7 Let p ∈ [1,∞) and λ ≥ 0. The Morrey space Mp,λ (�) is the
space of all u ∈ Lp(�) such that

∥
∥u|Mp,λ (�)

∥
∥

p := sup
x0∈�,0<r< diam�

r−λ
∫

�∩B(x0,r)
|u(x)|p dx < ∞.

When endowed with the norm
∥
∥·|Mp,λ (�)

∥
∥ it becomes a Banach space. The

Campanato space Lp,λ (�) is the space of all u ∈ Lp(�) such that

{u}p
p,λ := sup

x0∈�,0<r< diam�

r−λ
∫

�∩B(x0,r)

∣
∣u(x)− ux0,r

∣
∣
p dx < ∞,

where

ux0,r = |� ∩ B (x0, r)|−1
∫

�∩B(x0,r)
u(x) dx.

Furnished with the norm
∥
∥u|Lp,λ (�)

∥
∥ := ‖u‖p,� + {u}p,λ,

it is a Banach space. The space Lp,λ (Rn) is defined analogously.

By way of background we list some of the main properties of these spaces.

(i) For all p ∈ (1,∞), both Mp,0 (�) and Lp,0 (�) are isomorphic to Lp(�);
Mp,n (�) is isomorphic to L∞ (�).

(ii) If 1 ≤ p ≤ q < ∞ and λ, ν are non-negative numbers such that (λ− n)/p ≤
(ν − n)/q, then

Mq,ν (�) ↪→ Mp,λ (�) and Lq,ν (�) ↪→ Lp,λ (�) .
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(iii) Suppose that p ∈ [1,∞). Then

Lp,λ (�) is isomorphic to Mp,λ (�) if λ ∈ [0, n),

Mp,λ (�) = {0} if λ > n,

Lp,λ (�) is isomorphic to C(λ−n)/p (�
)

if λ ∈ (n, n + p],
and

Lp,λ (Rn) is isomorphic to C(λ−n)/p (Rn) if λ ∈ (n, n + p].
For proofs of these assertions and further details, we refer to [88], [106]

(especially for the claim concerning Lp,λ (Rn)), [146] and [152].

1.3.3 Banach Function Spaces

To explain what these are we begin with the notion of the non-increasing re-
arrangement of a measurable function and refer to [21], [60] or [146] for further
details and proofs. Let (R, μ) be a σ -finite measure space and set

M (R, μ) =
{

f : f is a measurable function on R with values in [−∞,∞]
}

,

M0 (R, μ) =
{

f ∈ M (R, μ) : f is finite μ−a.e. on R
}

and

M+ (R, μ) = {f ∈ M0 (R, μ) : f ≥ 0 } .
When R is a Lebesgue-measurable subset � of Rn and μ is a Lebesgue
n-measure these objects are denoted by M (�), etc. The non-increasing re-
arrangement f ∗ : [0,∞) → [0,∞] of a function f ∈ M (R, μ) is defined by

f ∗(t) = inf {λ ∈ (0,∞) : μ ({s ∈ R : |f (s)| > λ}) ≤ t} , t ∈ [0,∞).

The maximal non-increasing rearrangementf ∗∗ : (0,∞) → [0,∞] of a func-
tion f ∈ M (R, μ) is given by

f ∗∗(t) = t−1
∫ t

0
f ∗(s)ds, t ∈ (0,∞).

If |f | ≤ |g| μ−a.e. in R, then f ∗ ≤ g∗; however, the map f �−→ f ∗ does
not preserve sums or products of functions and is not subadditive. By way of
compensation it turns out (see Chapter 2, (3.10) of [21]) that for all t ∈ (0,∞)

and all f , g ∈ M0 (R, μ),
∫ t

0
(f + g)∗ (s) ds ≤

∫ t

0
f ∗(s) ds +

∫ t

0
g∗(s) ds,
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so that

(f + g)∗∗ ≤ f ∗∗ + g∗∗.

Moreover, the Hardy lemma (see Chapter 2, Proposition 3.6 of [21]) asserts that
if f , g are non-negative measurable functions on (0,∞) such that

∫ t

0
f (s) ds ≤

∫ t

0
g(s) ds

for all t ∈ (0,∞) and h : (0,∞) → [0,∞) is non-increasing, then
∫ ∞

0
f (s)h(s) ds ≤

∫ ∞

0
g(s)h(s) ds.

The Hardy–Littlewood inequality (see Chapter 2, Theorem 2.2 of [21]) states
that for all f , g ∈ M0 (R, μ),

∫

R
|fg| dμ ≤

∫ ∞

0
f ∗(t)g∗(t) dt.

If (R, μ) and (S, ν) are σ -finite measure spaces, functions f ∈ M0 (R, μ) and
g ∈ M0 (S, ν) are said to be equimeasurable, and we write f ∼ g if f ∗ = g∗ on
(0,∞).

After these preliminaries we introduce the notion of a Banach function norm,
by which is meant a functional ρ : M0 (R, μ) → [0,∞] such that, for all f , g
and

{

fj
}

j∈N and all λ ≥ 0, the following conditions are satisfied:

(P1) ρ(f ) = 0 if and only if f = 0; ρ(λf ) = λρ(f ); ρ(f + g) ≤ ρ(f ) + ρ(g)
(the norm axiom);

(P2) f ≤ g μ–a.e. implies ρ(f ) ≤ ρ(g) (the lattice axiom);
(P3) fj ↑ f μ–a.e. implies ρ

(

fj
) ↑ ρ(f ) (the Fatou axiom);

(P4) ρ (χE) < ∞ for every E ⊂ R with finite measure (the non-triviality ax-
iom);

(P5) if E ⊂ R with μ(E) < ∞, then there is a constant CE ∈ (0,∞), depend-
ing only on E and ρ, such that for all f ∈ M+ (R, μ),

∫

E
fdμ ≤ CEρ(f )

(the local embedding in L1);
if, in addition, ρ satisfies

(P6) ρ(f ) = ρ(g) whenever f ∗ = g∗ (f , g ∈ M+(R, μ)) (the rearrangement-
invariance axiom),
then we say that ρ is a rearrangement-invariant (r.i.) norm.

If ρ satifies conditions (P1)–(P5), the space

X = X(ρ) := {f ∈ M (R, μ) : ρ (|f |) < ∞}
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12 Preliminaries

is said to be a Banach function space. With the natural linear space operations
it is easy to check that X is a linear space and ‖·‖X , where

‖f ‖X := ρ(|f |),
is a norm on it that makes it into a Banach space. If this Banach space X also
satisfies condition (P6), it is called a rearrangement-invariant space, written
r.i. Note that ‖f ‖X is defined for every f ∈ M (R, μ) and that ‖f ‖X < ∞ if and
only if f ∈ X.

With any r.i. function norm ρ is associated another functional, ρ ′, defined for
all g ∈ M+ (R, μ) by

ρ ′(g) = sup
{∫

R
fgdμ : f ∈ M+(R, μ), ρ(f ) ≤ 1

}

.

This functional is also an r.i. norm and is called the associate norm of ρ. For
every r.i. norm ρ and every f ∈ M+ (R, μ), it turns out that (see Chapter 1,
Theorem 2.9 of [21])

ρ(f ) = sup
{∫

R
fgdμ : g ∈ M+(R, μ), ρ(g) ≤ 1

}

.

If ρ is an r.i. norm, X = X(ρ) is the r.i. space determined by ρ and ρ ′ is the
associate norm of ρ, then the function space X(ρ ′) determined by ρ ′ is called
the associate space of X and is denoted by X′. It emerges that

(

X′)′ = X; and
the Hölder inequality

∫

R
fgdμ ≤ ‖f ‖X ‖g‖X′

holds for all f , g ∈ M (R, μ).
From the Hardy lemma follows (see Chapter 2, Theorem 4.6 of [21]) the

Hardy–Littlewood principle, which asserts that if functions f and g satisfy the
Hardy–Littlewood–Pólya relation, defined by

∫ t

0
f ∗(s) ds ≤

∫ t

0
g∗(s) ds, t ∈ (0,∞),

sometimes denoted by f ≺ g in the literature, then ‖f ‖X ≤ ‖g‖X if the underlying
measure space is resonant: this condition means that either (R, μ) is nonatomic
or it is completely atomic, all atoms having equal measure. From now on we
shall suppose that (R, μ) is nonatomic.

Given any r.i. space X over a measure space (R, μ), the Luxemburg repre-
sentation theorem (see Chapter 2, Theorem 4.10 of [21]) implies that there is
a unique r.i. space X (0, μ(R)) over the interval (0, μ(R)) endowed with the
one-dimensional Lebesgue measure such that ‖f ‖X = ‖f ∗‖X(0,μ(R)). This space
is called the representation space of X and is often denoted by X (0, μ(R)) or
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even X. When R = (0,∞) and μ is Lebesgue measure, every r.i. space X over
(R, μ) coincides with its representation space.

If X = X(ρ) is the r.i. space determined by an r.i. norm ρ, its fundamental
function φX is defined by

φX(t) = ρ(χE), t ∈ [0, μ(R)),
where E ⊂ R is such that μ(E) = t. That φX is well defined is a consequence of
the properties of r.i. norms and the nonatomicity of (R, μ). A useful property
of the fundamental function is that

φX(t)φX′ (t) = t, t ∈ [0, μ(R)).
When p ∈ [1,∞) and X = Lp(R, μ) it is easy to see that φX(t) = t1/p

(t ∈ [0, μ(R)).
Basic examples of r.i. spaces are provided by the usual Lp spaces. With an eye

to later applications, we confine ourselves for the moment to the case in which
R is an open subset � of Rn and μ is Lebesgue n-measure. For p ∈ [1,∞]
define the functional ρp by

ρp(f ) = ‖f ‖p,� = ‖f ‖p =
{
(∫

�
|f |p dx

)1/p
, if 1 ≤ p < ∞,

ess sup � |f | , if p = ∞
for f ∈ M (�,μ). This is an r.i. norm with corresponding r.i. space Lp(�).
More generally, given p, q ∈ [1,∞], define ρp,q by

ρp,q(f ) = ‖f ‖p,q,� = ‖f ‖p,q = ∥
∥s1/p−1/qf ∗(s)

∥
∥

q,(0,|�|)
for f ∈ M (�,μ). The set Lp,q(�), defined to be the family of all f ∈ M (�,μ)

such that ρp,q(f ) < ∞, is called a Lorentz space. If either 1 < p < ∞ and
1 ≤ q ≤ ∞, or p = q = 1, or p = q = ∞, then ρp,q is equivalent to an
r.i. norm in the sense that there are an r.i. norm σ and a constant C ∈ (0,∞),
depending on p and q but independent of f , such that for all f ∈ Lp,q(�),

C−1σ(f ) ≤ ρp,q(f ) ≤ Cσ(f ).

Accordingly Lp,q(�) is considered to be an r.i. space for these values of p and
q: see [21], Chapter 4. If p = 1 and q > 1, then Lp,q(�) is a quasi-normed
space; if p = ∞ and q < ∞, then Lp,q(�) = {0}.

For all p ∈ [1,∞], Lp,p(�) = Lp(�). The dependence of the Lorentz spaces
on the first index is given by

Lr,s(�) ↪→ Lp,q(�) if 1 ≤ p < r ≤ ∞ and q, s ∈ [1,∞];
as for the second index we have, when |�| < ∞,

Lp,q(�) ↪→ Lp,r(�) if p ∈ [1,∞] and 1 ≤ q < r ≤ ∞.
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14 Preliminaries

For further details and proofs see [60] and [146].
Given any sequence

{

Ej
}

of measurable subsets of R, we write Ej → ∅ a.e. if
χEj → 0 μ−a.e. If every f in the Banach function space X has the property that
∥
∥
∥fχEj

∥
∥
∥

X
→ 0 whenever Ej → ∅ a.e., X is said to have absolutely continuous

norm; it turns out that to verify this property it is enough to consider decreasing
sequences

{

Ej
}

. When X and Y are Banach function spaces (with the same
underlying measure space), we say that X is almost compactly embedded in Y,
and write X

∗
↪→ Y , if, for every sequence

{

Ej
}

of measurable sets such that
Ej → ∅ a.e., we have

lim
j→∞ sup

‖u‖X≤1

∥
∥
∥uχEj

∥
∥
∥

Y
= 0.

Replacement of
{

Ej
}

by
{∪k≥jEk

}

shows that in this definition the sequence
{

Ej
}

may be taken to be non-increasing. This notion is useful in establishing
the compactness of embeddings of Sobolev spaces. For a connected account
of it, based on results given in [159] and [76], we refer to [146]. Among the
important properties established in these references are the following, in which
X,Y are assumed to be Banach function spaces over a σ -finite measure space
(R, μ):

(i) If X ↪→↪→ Y , then X
∗
↪→ Y .

(ii) X
∗
↪→ Y if and only if Y ′ ∗

↪→ X′.
(iii) X

∗
↪→ Y if and only if for every sequence {fk} of μ−measurable functions

on R satisfying ‖fk‖X ≤ 1 and fk → 0 μ−a.e. we have ‖fk‖Y → 0.
(iv) If (R, μ) is completely atomic, then X

∗
↪→ Y if and only if X ↪→↪→ Y .

(v) If (R, μ) is nonatomic and μ(R) = ∞ , then there is no pair X,Y such
that X

∗
↪→ Y .

(vi) Suppose that (R, μ) is nonatomic and 0 < μ(R) < ∞. Then X
∗
↪→ Y

implies that

lim
t→0+

φY(t)/φX(t) = 0;

the converse is false: see [107], p. 286. Moreover, X
∗
↪→ Y if and only if

lim
t→0+

sup
‖f‖X≤1

sup
μ(E)≤t

‖fχE‖Y = 0;

or equivalently,

lim
t→0+

sup
‖f‖X≤1

∥
∥f ∗χ[0,t)

∥
∥

Y = 0.

From (vi) it follows immediately that if � is a bounded open subset ofRn and
1 ≤ q < p < ∞, then Lp(�)

∗
↪→ Lq(�). In fact, a similar argument shows that
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Lp(�)
∗
↪→ Lp,r(�) if 1 < p < r and r ∈ (1,∞), which since Lp,r(�) ↪→ Lq(�)

if p > q gives a sharpening of the earlier result.

1.4 The Palais–Smale Condition

Let X be a uniformly convex Banach space and suppose that G ∈ C1(X,R), so
that the Fréchet derivative G′ of G belongs to B (X,X∗). A point x ∈ X is said
to be critical (for G) if G′(x) = 0; otherwise x is called regular. A real number
λ is a critical value of G if there is a critical point x ∈ X such that G(x) = λ;
otherwise λ is a regular value of G (even if λ /∈ G(X)).

Now let M := {u ∈ X : G(u) = 1}; assumed to be non-empty, M is a C1

manifold (see, for example, [51]); and we suppose that 1 is a regular value of
G. Given u ∈ M,

TuM := {

x ∈ X : 〈x,G′(u)
〉 = 0

}

is the tangent space TuM of M at u; the norm on the dual space (TuM)∗ will be
denoted by

∥
∥·| (TuM)∗

∥
∥. Let 
 ∈ C1(X,R) and represent its restriction to M by


̃. For each u ∈ M the norm of the derivative of 
̃ at u is
∥
∥
̃′(u)

∥
∥∗ := ∥

∥
′(u)| (TuM)∗
∥
∥ .

The functional
 is said to satisfy the Palais–Smale condition at level c (written

 ∈ (PS)c,M) if every sequence

{

uj
}

in M such that

lim
j→∞


(

uj
) = c and lim

j→∞
∥
∥
̃′(uj)

∥
∥∗ = 0

has a convergent subsequence.
Given any k ∈ N, the unit sphere of Rk is denoted by Sk and we write

Co
(

Sk,M
) = {

h ∈ C
(

Sk,M
) : h is odd

}

.

Finally, we state a theorem due to Cuesta [46].

Theorem 1.8 Let 
 ∈ C1(X,R) be even, suppose that k ∈ N, set

d = inf
h∈Co(Sk,M)

max
z∈Sk


(h(z))

and assume that d ∈ R. If 
 ∈ (PS)d,M, then there exists u ∈ M such that

(u) = d and 
̃′(u) = 0.

The proof uses the Ekeland variational principle [71] and is too long to re-
produce here. Application of this result will be made in Chapter 4 in connection
with the second eigenvalue of the fractional p-Laplacian.
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1.5 Inequalities

Here we collect some inequalities that will be useful later on, following largely
the presentation of Appendix B of [29]. For shortness of presentation we in-
troduce the function Jp : R → [0,∞) defined for each p ∈ (1,∞) by Jp(t) =
|t|p−2 t. Note that on [0,∞) it is convex when p > 2 and concave if p ∈ (1, 2].
Lemma 1.9 Suppose that a, b ∈ R and ab ≤ 0. Then

|a − b|p−2 (a − b)a ≥
{ |a|p − (p − 1) |a − b|p−2 ab if p ∈ (1, 2],

|a|p − (p − 1) |a|p−2 ab if p ∈ (2,∞).

Proof We may suppose that a ≥ 0 and b ≤ 0. When p > 2, the convexity of
Jp implies that

Jp(x)+ (y − x)J
′
p(x) ≤ Jp(y), 0 ≤ x ≤ y; (1.5.1)

similarly, when p ∈ (1, 2] we have

Jp(x)+ (y − x)J
′
p(y) ≤ Jp(y), 0 ≤ x ≤ y. (1.5.2)

Suppose that p ∈ (1, 2]. Then from (1.5.2) with y = a − b and x = a, we see
that

|a − b|p−2 (a − b) = Jp(a − b) ≥ Jp(a)− bJ
′
p(a − b)

= |a|p − (p − 1) |a − b|p−2 b,

from which the desired result follows immediately. The argument when p > 2
is similar, this time using (1.5.1).

Lemma 1.10 Let p ∈ (1,∞). Then there is a constant c = c(p) > 0 such that
for all a, b ∈ R,

|a − b|p ≤ |a|p + |b|p + c
(|a|2 + |b|2)(p−2)/2 |ab| .

Proof When ab ≥ 0 it is enough to suppose that a, b ≥ 0 and a ≥ b. But
then

|a − b|p ≤ ap ≤ |a|p + |b|p

and the result follows. On the other hand, if ab ≤ 0, then we may assume that
a ≥ 0 and b ≤ 0, so that b = −d for some d ≥ 0. We have to show that

(a + d)p ≤ ap + dp + c
(

a2 + d2)(p−2)/2
ad.

This is obvious when a = 0, and so it is enough to prove that

(1 + x)p ≤ 1 + xp + c
(

1 + x2)(p−2)/2
x.
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Since

lim
x→0+

(1 + x)p − 1 − xp

(

1 + x2
)(p−2)/2 x

= lim
x→∞

(1 + x)p − 1 − xp

(

1 + x2
)(p−2)/2 x

= p,

the claim follows and completes the proof.

Lemma 1.11 For all a, b ∈ R,
(|b|p−2 b− |a|p−2 a

)

(b−a) ≥
{

(p−1) |b−a|2 (|a|2 + |b|2)−(2−p)/2
if p∈(1, 2],

22−p |b−a|p if p∈(2,∞).

Proof Suppose that p ∈ (1, 2]. Then

(

Jp(b)− Jp(a)
)

(b − a) = (b − a)
∫ 1

0

d
dt

Jp ((1 − t)a + tb) dt

= (p − 1)(b − a)2
∫ 1

0
|(1 − t)a + tb|p−2 dt.

Since

|(1 − t)a + tb|2 ≤ (1 − t) |a|2 + t |b|2 ≤ |a|2 + |b|2 ,
the desired inequality follows.

When p ∈ (2,∞) we argue as in [128] and use the identity

(|b|p−2 b − |a|p−2 a
)

(b − a) = |b|p−2 + |a|p−2

2
|b − a|2

+
(|b|p−2 − |a|p−2) (|b|2 − ∣∣a2

∣
∣
)

2
,

from which it is immediate that
(|b|p−2 b − |a|p−2 a

)

(b − a) ≥ 2−1 (|b|p−2 + |a|p−2) |b − a|2
≥ 22−p |b − a|p .
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