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The Weakly Nilpotent Graph of a
Commutative Ring

Soheila Khojasteh andMohammad Javad Nikmehr

Abstract. Let R be a commutative ringwithnon-zero identity. In this paper,we introduce theweakly
nilpotent graph of a commutative ring. _e weakly nilpotent graph of R denoted by Γw(R) is a
graph with the vertex set R∗ and two vertices x and y are adjacent if and only if xy ∈ N(R)∗, where
R∗ = R ∖ {0} and N(R)∗ is the set of all non-zero nilpotent elements of R. In this article, we
determine the diameter of weakly nilpotent graph of an Artinian ring. We prove that if Γw(R) is a
forest, then Γw(R) is a union of a star and some isolated vertices. We study the clique number, the
chromatic number, and the independence number of Γw(R). Among other results, we show that for
an Artinian ring R, Γw(R) is not a disjoint union of cycles or a unicyclic graph. For Artinan rings,
we determine diam(Γw(R)). Finally, we characterize all commutative rings R for which Γw(R) is a
cycle, where Γw(R) is the complement of the weakly nilpotent graph of R.

1 Introduction

_e study of algebraic structures using the properties of graphs has become an ex-
citing research topic in the last twenty years, leading to many fascinating results and
questions. _ere are many papers on assigning a graph to a ring; see, for example,
[1, 4, 5, 7–13]. For an arbitrary commutative ring R, the zero-divisor graph Γ(R), is a
graph whose vertices are all non-zero zero-divisors of R and such that two distinct
vertices x and y are adjacent if and only if xy = 0. In [7], Chen deûned a kind of
graph structure of a ring R whose vertices are all the elements of R, and two distinct
vertices x and y are adjacent if and only if xy ∈ N(R), where N(R) denotes the set of
all nilpotent elements of R. Recently, ΓN(R) was deûned with the vertex set ZN(R)∗,
where ZN(R) = {x ∈ R ∣ xy ∈ N(R), for some y ∈ R∗}, X∗ = X ∖ {0} for any subset
X of R and two distinct vertices are adjacent if and only if xy ∈ N(R), or equivalently,
yx ∈ N(R); see [8,9]. It is easy to see that the usual zero-divisor graph is a subgraph of
ΓN(R). Motivated by previous studies, in this paper, we deûne the weakly nilpotent
graph of a commutative ring. Our main goal is to study the connection between the
algebraic properties of a ring and the graph theoretic properties of the graph associ-
ated with it.

_roughout this paper, R is a commutative ringwith non-zero identity. _eweakly
nilpotent graph of R denoted by Γw(R) is deûned to be the undirected simple graph
with the vertex set R∗ and two vertices x and y are adjacent if and only if xy ∈ N(R)∗.
Clearly, Γw(R) is a subgraph of the nilpotent graph that was introduced by Chen [7].
We also think that the weakly nilpotent graph of a ring helps us to study the algebraic

Received by the editors January 6, 2014; revisedMay 5, 2015.
Published electronically January 26, 2017.
AMS subject classiûcation: 05C15, 16N40, 16P20.
Keywords: weakly nilpotent graph, zero-divisor graph, diameter, girth.

https://doi.org/10.4153/CMB-2016-096-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2016-096-1


320 S. Khojasteh andM. J. Nikmehr

properties of rings using graph theoretical tools. Now, consider the complement of
the weakly nilpotent graph of R, denoted by Γw(R). For any two distinct vertices x
and y in R∗, x is adjacent to y if and only if xy ∉ N(R)∗. Obviously, the usual zero
divisor graph is a subgraph of Γw(R).

We denote the set of unit elements of R, the set of zero divisors of R, the set of
nilpotent elements of R, and the Jacobson radical of R by U(R), Z(R), N(R), and
J(R), respectively. If R has a uniquemaximal idealm, then R is said to be a local ring
and it is denoted by (R,m). A ring R is said to be a reduced ring if N(R) = 0. A subset
S of a commutative ring R is called a multiplicative closed subset (m.c.s.) of R if 1 ∈ S
and x , y ∈ S implies that xy ∈ S. If S is an m.c.s. of R, then we denote by S−1R the
ring of fractions of R.

Let G be a graph with vertex set V(G). A path from x to y is a series of adjacent
vertices x— x1 — x2 — ⋅ ⋅ ⋅— xn — y. For x , y ∈ V(G) with x /= y, d(x , y) denotes
the length of the shortest path from x to y; if there is no such path, we will make the
convention d(x , y) =∞. _e diameter of G is deûned as

diam(G) = sup{d(x , y) ∣ x and y are vertices of G}.

For any x ∈ V(G), d(x) denotes the number of edges incident with x, called the
degree of x. A cycle is a path that begins and ends at the same vertex in which no
edge is repeated and all vertices other than the starting and ending vertex are distinct.
We use Cn to denote the cycle with n vertices, where n ≥ 3. We denote the complete
graph with n vertices by Kn . If a graph G has a cycle, then the girth of G (notated
gr(G)) is deûned as the length of the shortest cycle of G; otherwise gr(G) = ∞. A
bipartite graph is a graph whose vertices can be partitioned into two disjoint sets U
and V such that every edge connects a vertex in U to one in V . A complete bipartite
graph is a bipartite graph inwhich every vertex of one part is joined to every vertex of
the other part. We denote by Km ,n the complete bipartite graph,with part sizes m and
n. _e star graph is denoted by K1,n , for a positive integer n. We say that a graph G is
totally disconnected ifno two vertices ofG are adjacent. _e disjoint union of graphsG1
andG2,which is denoted byG1∪G2,whereG1 andG2 are two vertex-disjoint graphs,
is a graph with V(G1 ∪G2) = V(G1) ∪ V(G2) and E(G1 ∪G2) = E(G1) ∪ E(G2). A
unicyclic graph is a connected graph with a unique cycle, or we can regard a unicyclic
graph as a cycle attached with each vertex a (rooted) tree. An independent set is a
subset of the vertices of a graph such that no vertices are adjacent. _e number of
vertices in amaximum independent set of G is called the independence number of G
and is denoted by α(G). A clique of a graph is a complete subgraph and the number
of vertices in a largest clique of graphG, denoted by ω(G), is called the clique number
of G. By χ(G), we denote the chromatic number of G, i.e., the minimum number of
colors that can be assigned to the vertices of G in such a way that every two adjacent
vertices have diòerent colors.

In Section 2, we determine the diameter of weakly nilpotent graph of an Artinian
ring. We prove that if Γw(R) is a forest, then Γw(R) is a union of a star and isolated
vertices. We study the clique number, the chromatic number, and the independence
number of Γw(R). Among other results, we show that for an Artinian ring R, Γw(R)
is not a disjoint union of cycles or a unicyclic graph. In Section 3, we determine
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diam(Γw(R)), where R is an Artinian ring. We characterize all commutative rings
R for which Γw(R) is a cycle.

2 The Weakly Nilpotent Graph of a Commutative Ring

In this section, we will focus on the weakly nilpotent graph of an Artinian ring. We
prove that if Γw(R) has no isolated vertex, then diam(Γw(R)) ≤ 4, where R is an
Artinian ring. It is shown that if Γw(R) is a forest, then Γw(R) is a union of a star and
some isolated vertices. We start with the following remark.

Remark 2.1 A ring R is a reduced ring if and only if Γw(R) is totally disconnected.
In fact, if R is a reduced ring, then N(R)∗ = ∅, and so Γw(R) is totally disconnected.
Conversely, if Γw(R) is totally disconnected and N(R)∗ /= ∅, then every element of
N(R)∗ is adjacent to 1, a contradiction. _erefore, R is a reduced ring.

_eorem 2.2 Let R be a commutative Artinian ring. _en Γw(R) is a complete graph
if and only if R ≅ Z2.

Proof One side is clear. For the other side, assume that Γw(R) is a complete graph.
Hence, ∣U(R)∣ = 1. Since R is an Artinian ring, by [2, Lemma 1], R ≅ Zr

2, for some
positive integer r. Let e i be the 1 × n vector whose i-th component is 1 and other
components are 0. If r ≥ 2, then e1 is not adjacent to e2, a contradiction. _erefore,
R ≅ Z2.

Clearly, Γw(F) is totally disconnected, where F is a ûeld. _erefore, in the next
theorem we assume that themaximal ideal is non-zero.

_eorem 2.3 Let (R,m) be a local ring andm /= 0. Ifm = N(R), then

diam(Γw(R)) = 2.

Proof Obviously, every element of N(R)∗ is adjacent to each element ofU(R). _is
shows that Γw(R) is a connected graph and diam(Γw(R)) ≤ 2. If U(R) = {1}, then
by [6, p. 10], 1 +m ⊆ U(R) and so m = 0, a contradiction. _erefore, ∣U(R)∣ ≥ 2. Let
u, v ∈ U(R). Since u and v are not adjacent and diam(Γw(R)) ≤ 2, d(u, v) = 2. _us,
diam(Γw(R)) = 2.

_eorem 2.4 Let R be a commutative Artinian ring. If Γw(R) has not any isolated
vertex, then diam(Γw(R)) ≤ 4.

Proof By [6,_eorem 8.7], we know that R ≅ ∏n
i=1 R i , where n ≥ 1 and (R i ,mi) is

a local ring, for every i, 1 ≤ i ≤ n. Let e i be the 1× n vector whose i-th component is 1
and other components are 0. If m1 = 0, then e1 is an isolated vertex, a contradiction.
_erefore,m1 /= 0. Similarly,mi /= 0 for every i, 1 ≤ i ≤ n. If n = 1, then by_eorem 2.3,
diam(Γw(R)) = 2. _erefore, we can assume that n ≥ 2. Let a = ∑n

i=1 a i e i , b =
∑n

i=1 b i e i ∈ V(Γw(R)). We have the following three cases.

Case 1. a, b ∈ U(R). _en we have a— x— b, where x ∈ N(R)∗. Hence, d(a, b) = 2.
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Case 2. a ∈ U(R) and b ∉ U(R). If b i ∈ mi , for every i, 1 ≤ i ≤ n, then a is adjacent
to b and d(a, b) = 1. Otherwise, suppose that J = { i ∣ 1 ≤ i ≤ n, b i ∈ U(R i) }. Let
x = ∑n

i=1 r i e i and y = ∑i∉J e i +∑i∈J r i e i , for r i ∈ m∗
i . _en a— x— y— b is a path

between a and b. _erefore, d(a, b) ≤ 3.

Case 3. a, b ∉ U(R). If a i , b i ∈ mi , for every i, 1 ≤ i ≤ n, then ∑n
i=1 e i is adjacent

to a and b. _erefore, d(a, b) ≤ 2. Otherwise, let I = { i ∣ 1 ≤ i ≤ n, a i ∈ U(R i) }
and J = { i ∣ 1 ≤ i ≤ n, b i ∈ U(R i) }. If x = ∑i∉I e i + ∑i∈I r i e i , y = ∑n

i=1 r i e i and
w = ∑i∉J e i +∑i∈J r i e i , for r i ∈ m∗

i , then a— x— y—w— b is path between a and
b. _erefore, d(a, b) ≤ 4. _us, diam(Γw(R)) ≤ 4.

Remark 2.5 In view of proof of_eorem 2.4, we ûnd that if R =∏n
i=1 R i , (R i ,mi)

is a local ring, for every i, 1 ≤ i ≤ n, andm j = 0, for some j, 1 ≤ j ≤ n, then Γw(R) has
at least one isolated vertex.

By Remark 2.1, we know that Γw(Zp) = K p−1, where p is a prime number. In the
following example we determine when Γw(Zn) is a connected graph and compute
diam(Γw(Zn)).

Example 2.6 Let n = pk1
1 ×⋅ ⋅ ⋅× pks

s ,where p i is a prime number and k i is a positive
integer number. _en Γw(Zn) is a connected graph if and only if k i ≥ 2, for every i,
1 ≤ i ≤ s. Moreover, if Γw(Zn) is a connected graph, then diam(Γw(Zn)) = 2.

Proof First suppose that Γw(Zn) is a connected graph. If k1 = 1, then by Remark 2.1,
s ≥ 2. We show that a = pk2

2 × ⋅ ⋅ ⋅ × pks
s is an isolated vertex. To see this we note that if

a is adjacent to b, for some b ∈ Z∗n , then since ab /= 0 and a ∉ p1Z, we conclude that
b ∉ p1Z. On the other hand, since ab ∈ N(R)∗, b ∈ p1Z, a contradiction. _erefore,
k1 ≥ 2. Similarly, k i ≥ 2, for every i, 1 ≤ i ≤ s.

Now, suppose that k i ≥ 2 for every i, 1 ≤ i ≤ s. We show that diam(Γw(Zn)) = 2.
Let a, b ∈ Z∗n . _ere are three cases.

Case 1. a, b ∈ U(Zn). _en a is not adjacent to b, and we have a— p1 × ⋅ ⋅ ⋅ × ps — b.
_erefore, d(a, b) = 2.

Case 2. a ∈ U(Zn) and b ∉ U(Zn). We can assume that b = upt1
1 × ⋅ ⋅ ⋅ × ptr

r , where
1 ≤ r ≤ s and u ∉ p iZ, for every i, 1 ≤ i ≤ s and t i is a positive integer, for every i,
1 ≤ i ≤ r. If r = s, then a is adjacent to b. If r /= s, then since ks ≥ 2, bp1 × ⋅ ⋅ ⋅ × ps /= 0.
Now, a and b are adjacent to p1 × ⋅ ⋅ ⋅ × ps . _us, d(a, b) ≤ 2.

Case 3. a, b ∉ U(Zn). _en let a = upt1
1 × ⋅ ⋅ ⋅ × ptr

r and b = vpl1
1 × ⋅ ⋅ ⋅ × pl j

r , where
u, v ∉ p iZ, for every i, 1 ≤ i ≤ s, 1 ≤ r ≤ j ≤ s, t i is a positive integer, for every i,
1 ≤ i ≤ r and l i is a positive integer, for every i, 1 ≤ i ≤ j. If r = j < s, then a and b
are adjacent to p1 × ⋅ ⋅ ⋅ × ps . If r = j = s, then a and b are adjacent to 1. Now, suppose
that r < j. If j = s, then a is adjacent to b. If r < j < s, then a and b are adjacent to
p1 × ⋅ ⋅ ⋅ × ps . _erefore, in this case, d(a, b) ≤ 2. _is completes the proof.
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Remark 2.7 If ∣N(R)∣ ≥ 3, then let x , y ∈ N(R)∗. It is easy to see that 1 is adjacent
to x and y. We know that 1 + x is a unit element, and so 1 + x is adjacent to x and y.
Now, 1— x— 1+ x— y— 1 is a 4-cycle in Γw(R). _is yields that gr(Γw(R)) ∈ {3, 4}.

In the following theorem we study the case where Γw(R) is a forest.

_eorem 2.8 Let R be a commutative ring. If Γw(R) is a forest, then the following
hold:
(i) ∣N(R)∣ ≤ 2.
(ii) If ∣N(R)∣ = 1, then Γw(R) is totally disconnected.
(iii) If ∣N(R)∣ = 2, then Γw(R) is a union of a star and some isolated vertices.

Proof If ∣N(R)∣ ≥ 3, then byRemark 2.7, gr(Γw(R)) ∈ {3, 4}. _erefore, ∣N(R)∣ ≤ 2.
If ∣N(R)∣ = 1, then R is a reduced ring and by Remark 2.1, Γw(R) is totally discon-
nected. Now, we can assume that ∣N(R)∣ = 2. _en R has exactly one non-zero nilpo-
tent element, say x. Hence, x2 = 0. We note that every element of U(R) is adjacent
to x. If x is adjacent to all vertices, then Γw(R) is a star. If every vertex that is not
adjacent to x, is an isolated vertex, then we are done. _erefore, we can assume that
there exists y ∈ V(Γw(R)) such that d(y) = 1 and x is not adjacent to y. Since x is
not adjacent to y and xy ∈ N(R), we conclude that xy = 0. Assume that y is adjacent
to a. _en ya = x and y(a+ x) = x. _erefore, y is adjacent to a+ x, a contradiction.
_is implies that if d(y) = 1, then x is adjacent to y. Since Γw(R) is a forest, we ûnd
that Γw(R) is a union of a star (with center x) and some isolated vertices.

Remark 2.9 _ere are some rings R such that ∣N(R)∣ ≤ 2 and gr(Γw(R)) =∞. For
instance, let R1 = Z3 and R2 = Z4. _en ∣N(R1)∣ = 1, ∣N(R2)∣ = 2 and gr(Γw(R i)) =
∞, for i = 1, 2.

_eorem 2.10 If R is an Artinian ring, then the following hold:
(i) If Γw(R) is totally disconnected, then R =∏n

i=1 Fi ,where Fi is a ûeld, for 1 ≤ i ≤ n.
(ii) Γw(R) is a forest if and only if R is isomorphic to one of the rings Z4, Z2(x)/(x2)

and∏n
i=1 Fi , where Fi is a ûeld, for i = 1, . . . , n.

(iii) Γw(R) is not a disjoint union of cycles or a unicyclic graph.

Proof Since R is anArtinian ring, by [6,_eorem 8.7], R ≅∏n
i=1 R i , where (R i ,mi)

is a local ring. Moreover, by [6, p. 87], everymi is nilpotent. Let e i be the 1× n vector
whose the i-th component is 1 and other components are 0.

(i) Since ∑n
i=1 e i is adjacent to every non-zero element of ∏n

i=1 mi , ∏n
i=1 mi = 0.

_is implies that every Ri is a ûeld, and so R =∏n
i=1 Fi . _is completes the proof.

(ii) Assume that Γw(R) is a forest. _ere are two following cases:

Case 1. n ≥ 2. If m1 ,m2 /= 0, then we have e1 + e2 — a1e1 — e1 + a2e2 — a1e1 + e2 —
a2e2 — e1+ e2, for a i ∈ m∗

i and i = 1, 2, a contradiction. _erefore,we can assume that
R2 is a ûeld. Similarly, we can assume that R2 , . . . , Rn are ûelds. If ∣m1∣ ≥ 3, then let
{a, b} ⊆ m1. Since by [6, p. 10], 1+ a is a unit element of R1,we conclude that (1+ a)e1
— ae1 — e1 + e2 — be1 — (1+ a)e1 is a 4-cycle, a contradiction. _erefore, ∣m1∣ ≤ 2. If
∣m1∣ = 2, then by [3,_eorem 3], R1 ≅ Z4 ,Z2(x)/(x2). _erefore R ≅ Z4 ×∏n

i=2 Fi or
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R ≅ Z2(x)/(x2)×∏n
i=2 Fi . If R ≅ Z4 ×∏n

i=2 Fi , then e1 — 2e1 — 3e1 — 2e1 + e2 — e1 is
a 4-cycle, a contradiction. If R ≅ Z2(x)/(x2) ×∏n

i=2 Fi , then e1 — xe1 — (1 + x)e1 —
xe1 + e2 — e1 is a 4-cycle, a contradiction. _us, ∣m1∣ = 1 and so R1 is a ûeld. Hence,
R ≅∏n

i=1 Fi .

Case 2. n = 1. Since every element of U(R) is adjacent to each element of N(R)∗, we
conclude that ∣N(R)∗∣ = 0, 1. By [3, p. 87], m = N(R). _erefore, m = 0 or ∣m∣ = 2. If
m = 0, then R is a ûeld. If ∣m∣ = 2, then by [3,_eorem 3], R ≅ Z4 ,Z2(x)/(x2).
Conversely, if R ≅ Z4 ,Z2(x)/(x2), then Γw(R) = K1,2. If R ≅ ∏n

i=1 Fi , then by
Remark 2.1, Γw(R) is totally disconnected. _is completes the proof.

(iii) By contradiction, assume that Γw(R) is a disjoint union of cycles or a unicyclic
graph. _ere are two cases.

Case 1. n ≥ 2. If R1 is a ûeld, then e1 is an isolated vertex, a contradiction. _erefore,
R1 is not a ûeld. Similarly, R i is not a ûeld, for i = 1, . . . , n. Since m1 /= 0 and by
[6, p. 10], ∣U(R1)∣ ≥ 2. Let {1, u} ⊆ U(R1), 0 /= a ∈ m1 and 0 /= b ∈ m2. _en
e1 — ae1 + e2 — ae1 + be2 — e1 and ue1 — ae1 + e2 — ae1 + be2 — ue1 are two cycles,
a contradiction.

Case 2. n = 1. _en (R,m) is an Artinian local ring and by [6, p. 87], m = N(R).
We note that every element of U(R) is adjacent to each element of m∗. _is implies
that ∣m∗∣ ≤ 1. Since otherwise, if a, b ∈ m∗, then 1— a— 1 + a— b — 1 and 1—
a— 1+b— b— 1 are two cycles of Γw(R), a contradiction. Now, since ∣m∗∣ ≤ 1 and by
[3,_eorem 3],we conclude that R ≅ Z2 ,Z4 ,Z2(x)/(x2). It is easy to see that Γw(Z2)
is an isolated vertex and Γw(Z4) = Γw(Z2(x)/(x2)) = K1,2, a contradiction.

Example 2.11 If Γw(R) is a forest, then by _eorem 2.8, Γw(R) is totally discon-
nected or it is a union of a star and some isolated vertices. By the previous theorem,
we ûnd that if R is an Artinian ring and Γw(R) is a forest with at least one edge, then
Γw(R) is a star. We note that there are some rings R for which Γw(R) has at least one
edge, but it is a disconnected graph. For instance, let R = Z4 ×Z2. It is easy to see that
(0, 1) is an isolated vertex of Γw(R) and Γw(R) is not totally disconnected.

_eorem 2.12 Let R be a commutative ring and R = ∏n
i=1 R i . _en the following

hold:
(i) ω(Γw(R)) ≥∏n

i=1 ω(Γw(R i)).
(ii) Let χ(Γw(R)) = χ and χ(Γw(R i)) = χ i for every i, 1 ≤ i ≤ n. If χ i is ûnite

for every i, 1 ≤ i ≤ n, then χ ≤ ∑J∈P∏i∈J χ i , where P is the set of all subsets of
{1, . . . , n}

Proof (i) Let C i be a clique in Γw(R i), for 1 ≤ i ≤ n. It is easy to see that C =
{(a1 , . . . , an) ∣ a i ∈ C i , 1 ≤ i ≤ n} is a clique in Γw(R). _is completes the proof.

(ii) First assume that n = 2 and (x , y) ∈ R. If x , y /= 0, then we deûne f ((x , y)) =
(χ1(x), χ2(y)). If x = 0 and y /= 0, then let f ((x , y)) = (0, χ2(y)). Otherwise, since
(x , y) /= 0, we conclude that x /= 0 and y = 0. In this case, suppose that f ((x , y)) =
(χ1(x), 0). Obviously, f is a proper vertex coloring for R∗. Hence, χ ≤ χ1 + χ2 + χ1 χ2.
Now, assume that n ≥ 3. By induction, one can easily prove that χ ≤ ∑J∈P∏i∈J χ i ,
where P is the set of all subsets of {1, . . . , n}.
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In the rest of this section we study the weakly nilpotent graph of a commutative
local ring.

_eorem 2.13 Let (R,m) be a local ring andm /= 0. _en the following hold:
(i) Ifm2 = 0, then ω(Γw(R)) = 2.
(ii) If R is a ûnite ring, then χ(Γw(R)) ≤ ∣m∣.

Proof (i) Let 0 /= x ∈ m. Clearly, {1, x} is a clique for Γw(R). _erefore,
ω(Γw(R)) ≥ 2. If C is a clique for Γw(R) with maximum cardinal, then C has at
most one unit element. Hence, ∣C ∩ U(R)∣ ≤ 1. On the other hand since m2 = 0,
∣C ∩m∣ ≤ 1. _us, ∣C∣ ≤ 2. _is completes the proof.

(ii) Suppose that m∗ = {x1 , . . . , x∣m∣−1}. We deûne f (x i) = i, for every i, 1 ≤ i ≤
∣m∣ − 1 and f (u) = ∣m∣, for every u ∈ U(R). Clearly, f is a proper vertex coloring for
V(Γw(R)). _erefore, χ(Γw(R)) ≤ ∣m∣.

Remark 2.14 _ere are some rings R and S such that Γw(R) = Γw(S) and R is not
isomorphic to S. For instance, Γw(Z4) = Γw(Z2[x]/(x2)).

_e next result gives some properties of Γw(S−1R), where S = R ∖ Z(R).

_eorem 2.15 Let R be a commutative ring and S = R ∖ Z(R). _en the following
hold:
(i) If x/s1— x/s2 is an edge of Γw(S−1R), then x ∈ N(R)∗.
(ii) If x1/s1— x2/s2 is an edge of Γw(S−1R), for some x1 /= x2, then x1— x2 is an edge

of Γw(R).
(iii) If x is an isolated vertex of Γw(R), then x/s is an isolated vertex of Γw(S−1R), for

every s ∈ S.
(iv) If x1— x2 is an edge of Γw(R), then x1/s1— x2/s2 is an edge of Γw(S−1R).
(v) Γw(R) is a subgraph of Γw(S−1R). Moreover, if Γw(S−1R) is a connected graph,

then Γw(R) is a connected graph and diam(Γw(R)) ≤ diam(Γw(S−1R)).

Proof (i) Since x/s1 is adjacent to x/s2, (x2/s1s2)n = 0, for some positive inte-
ger n. Hence, tx2n = 0, for some t ∈ S. Since t ∉ Z(R), x ∈ N(R)∗.

(ii) Since x1/s1 is adjacent to x2/s2, t(x1x2)n = 0, for some positive integer n and
some t ∈ S. We note that t ∉ Z(R). _erefore, x1x2 ∈ N(R)∗, and so x1 is adjacent to
x2.

(iii) By contradiction assume that x/s is adjacent to x1/s1. If x1 = x, then by (i),
x ∈ N(R)∗, and so x is adjacent to 1, a contradiction. If x1 /= x, then by (ii), x is
adjacent to x1, a contradiction.

(iv) Since x1 is adjacent to x2, (x1x2)n = 0, for some positive integer n. Obviously,
x1/s1 is adjacent to x2/s2.

(v) Suppose that Γw(S−1R) is a connected graph and x , y ∈ R∗. _en there exists
a path between x/1 and y/1. Let x1/s1 — x2/s2 — ⋅ ⋅ ⋅— xn/sn be the shortest path be-
tween x/1 and y/1, where x1 = x, s1 = 1, xn = y and sn = 1. If x i /= x j , for every i /= j,
then by (ii), we have x1 — x2 — ⋅ ⋅ ⋅— xn , and so d(x , y) ≤ d(x/1, y/1). We show that
x i /= x j , for i /= j. By contradiction, suppose that x i = x j . If 1 ≤ i < j ≤ n − 1, then by
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(i) we have that x i/s i is adjacent to x j+1/s j+1, a contradiction. If 1 < i < j = n, then
x i−1/s i−1 is adjacent to xn/sn , a contradiction. Now, suppose that i = 1 and j = n; then
we conclude that x = y, a contradiction. _us, diam(Γw(R)) ≤ diam(Γw(S−1R)).

Example 2.16 By (v) of the previous theorem, if gr(Γw(R)) < ∞, then
gr(Γw(S−1R)) < ∞. But there are some rings R, for which gr(Γw(S−1R)) < ∞ and
gr(Γw(R)) = ∞. For instance, gr(Γw(Z4)) = ∞ but gr(Γw(S−1Z4)) = 4, where
S = {1, 3}. We note that 1/1— 2/1— 3/1— 2/3— 1/1 is a 4-cycle of Γw(S−1Z4).

3 The Complement of the Weakly Nilpotent Graph of a
Commutative Ring

As wementioned in the introduction, the complement of the weakly nilpotent graph
of R, Γw(R), is a graph with the vertex set R∗ and two distinct vertices x and y in R∗,
are adjacent if and only if xy ∉ N(R)∗. Clearly, if R is a reduced ring, then N(R)∗ = ∅
and so Γw(R) is a complete graph. In this section,we determine diam(Γw(R)),where
R is an Artinian ring. We study the clique number and the girth of Γw(R). Among
other results, we characterize all commutative rings R for which Γw(R) is a cycle. We
start with the following theorem.

_eorem 3.1 If R is an Artinian ring. _en the following holds:
(i) If R is a local ring, then Γw(R)) is connected if and only if R is a ûeld.
(ii) If R is a non-local ring, then diam(Γw(R)) ≤ 4.

Proof (i) One side is clear. For the other side, assume that (R,m) is a local ring
and Γw(R)) is connected. If m /= 0, then there is not any path between a and u, for
every a ∈ m∗ and b ∈ U(R). _is yields that Γw(R)) is disconnected, a contradiction.

(ii) By [6,_eorem 8.7], we know that R ≅∏n
i=1 R i , where n ≥ 1 and (R i ,mi) is a

local ring, for every i, 1 ≤ i ≤ n. Let e i be the 1 × n vector whose i-th component is 1
and other components are 0. Let a = ∑n

i=1 a i e i , b = ∑n
i=1 b i e i ∈ V(Γw(R)). _ere are

three cases.

Case 1. a, b ∈ U(R). _en a is adjacent to b.

Case 2. a ∈ U(R) and b ∉ U(R). If b i ∈ mi , for every i, 1 ≤ i ≤ n, then b j /= 0, for
some j, 1 ≤ j ≤ n. Suppose that r is the least positive integer such that br

j = 0. Hence,
a— br−1

j a je j — b is a path. If b j ∈ U(R), for some j, 1 ≤ j ≤ n, then a is adjacent to
b.

Case 3. a, b ∉ U(R). Let

I = { i ∣ 1 ≤ i ≤ n, a i ∈ U(R i)} and J = { i ∣ 1 ≤ i ≤ n, b i ∈ U(R i)} .

If I ∩ J /= ∅, then let t ∈ I ∩ J. It is easy to see that a and b are adjacent to et . Now,
assume that I ∩ J = ∅. We have a—∑i∈I e i —∑n

i=1 e i —∑i∈J e i — b. _is completes
the proof.

Lemma 3.2 Let R be a commutative ring; then the following hold:
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(i) ω(Γw(R)) ≥ ∣U(R)∣.
(ii) ω(Γw(R)) = ∣U(R)∣ if and only R is a local ring with maximal ideal N(R)

Proof (i) If ∣U(R)∣ = 1, then it is clear that ω(Γw(R)) ≥ ∣U(R)∣. Now, let u, v ∈
U(R); then it is easy to see thatu is adjacent to v in Γw(R), and soω(Γw(R)) ≥ ∣U(R)∣.

(ii) First suppose that R is a local ring with maximal ideal N(R). If C is a clique
of Γw(R) and ∣C∣ = ω(Γw(R)), then C ⊆ U(R) or C ⊆ N(R). Since otherwise, u is
adjacent to x, for some u ∈ U(R) and x ∈ N(R), which is impossible. On the other
hand by [6, p. 10], 1 + N(R) ⊆ U(R). _is implies that ∣N(R)∣ ≤ ∣U(R)∣, and so
ω(Γw(R)) = ∣U(R)∣. Conversely, suppose that ω(Γw(R)) = ∣U(R)∣. Since U(R) is a
clique of Γw(R) and ω(Γw(R)) = ∣U(R)∣, u is not adjacent to x, for every u ∈ U(R)
and x ∈ R ∖ U(R). _is yields that x is a nilpotent element. _erefore R ∖ U(R) =
N(R), and so N(R) is amaximal ideal. _is shows that R is a local ringwithmaximal
ideal N(R).

Remark 3.3 Let R be a commutative ring. If gr(Γw(R)) =∞, then ∣U(R)∣ ≤ 2.

In the next theorem, we determine the girth of Γw(R).

_eorem 3.4 If R is a commutative ring, then gr(Γw(R)) ∈ {3,∞}.

Proof Assume that x1 — x2 — ⋅ ⋅ ⋅— xn — x1 is a cycle and n ≥ 4. If ∣U(R)∣ ≥ 3, then
by Lemma 3.2, gr(Γw(R)) = 3. _erefore, we can assume that ∣U(R)∣ ≤ 2. Now,
consider the following two cases.

Case 1. ∣U(R)∣ = 2. Let 1, u ∈ U(R). If 0 /= x ∈ R ∖ (N(R) ∪ {1, u}), then 1— u—
x— 1 is a 3-cycle of Γw(R) and so gr(Γw(R)) = 3. If R ∖ N(R) = {1, u}, then N(R)
is amaximal ideal of R. _is implies that R is a local ring with maximal ideal N(R).
Since by [6, p. 10], 1 + N(R) ⊆ U(R), ∣N(R)∣ ≤ 2. If ∣N(R)∣ = 1, then R ≅ Z2 ,Z3

and Γw(R)) = K1 and K2, respectively, a contradiction. If ∣N(R)∣ = 2, then by [3,
_eorem 2], R ≅ Z4 ,Z2(x)/(x2) and Γw(R) = K3, a contradiction.

Case 2. ∣U(R)∣ = 1. _en by [6, p. 10], 1 + N(R) ⊆ U(R), and so R is a reduced ring.
_is implies that 1 is adjacent to x1 and x2. Now, x1 — x2 — 1— x1 is a 3-cycle. _is
completes the proof.

In the next theorem, we characterize all commutative rings R for which Γw(R) is
a cycle.

_eorem 3.5 Let R be a commutative ring. _en Γw(R) is a cycle if and only if R is
a ûeld of order 4 or R ≅ Z2 ×Z2.

Proof Clearly, if R is a ûeld of order 4 or R ≅ Z2 ×Z2, then Γw(R) is a cycle.
Conversely, assume that Γw(R) is a cycle. _en by the previous theorem, Γw(R)

is a 3-cycle. _is implies that ∣R∣ = 4. If R is a local ring, then by [3, _eorem 3], R
is a ûeld or R ≅ Z4 ,Z2(x)/(x2). Obviously, gr(Γw(Z4)) = gr(Γw(Z2(x)/(x2))) =
∞. _erefore, R is a ûeld of order 4. Now, suppose that R is a non-local ring. By
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_eorem 2.15, Γw(R) is a 3-cycle, and so ∣R∣ = 4. Hence, by [6, _eorem 8.7], R ≅
Z2 ×Z2, as desired.
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