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Abstract

Benchmark tests are employed when testing for racial discrimination by police. Neil and
Winship (2019) emphasize that such tests are threatened by Simpson’s paradox, but they
avoid analyzing the paradox causally. They consequently cannot elucidate the link between
statistical quantities and discrimination hypotheses. Simpson’s paradox reveals that the
statistics given by benchmark tests are not invariant to conditioning on additional variables.
On this basis, I argue that benchmark statistics should not by themselves be taken to provide
any evidence regarding discrimination, absent additional assumptions. Causal models can
represent these assumptions.

1 Introduction
Consider a study revealing that police in Pittsburgh, Pennsylvania, search minority
drivers at a higher rate than non-minority drivers. This would seemingly provide
evidence of discrimination. But there are other possible explanations. Perhaps police
make stops based on suspicious activities, and minority drivers disproportionately
engage in such activities. Assuming that (a) suspicious activity is a legitimate basis for
stops and (b) “suspicious” is not just a covert re-description of the driver’s race, the
searches might not be discriminatory. Yet the raw statistics concerning the racial
disparity in stops do not differentiate the discriminatory and non-discriminatory
explanations. Legal and empirical studies of discrimination therefore employ
benchmark tests, which involve conditioning on variables differentiating the relevant
groups to determine what the group stop-rate disparity would be without
discrimination. The idea is that once one accounts for the factors that legitimately
could explain the disparity, any remaining disparity is evidence of discrimination.

As Neil and Winship (2019) note, benchmark tests are threatened by Simpson’s
paradox (Simpson 1951; Sprenger and Weinberger 2021). To illustrate, it could be that
police stop minorities and non-minorities at the same rate in Pittsburgh as a whole,
but minorities are stopped at a higher rate within every district. Because probability
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theory permits such scenarios, statistical claims involving comparisons of relative
rates across populations-–-including benchmarks-–-will not be robust to conditioning
on additional variables. Although Neil and Winship illustrate the limitations of
benchmark tests, they say little about how to address the paradox systematically.
Doing so is important not only because the paradox is widely discussed in the
empirical discrimination literature (see, e.g., Bickel et al. 1975; Ross et al. 2018) but
also because it illuminates the role of causal assumptions in interpreting
discrimination statistics.

Here, I use Simpson’s paradox to argue that benchmark statistics by themselves
provide no evidence for or against discrimination, absent additional assumptions
about the modeled scenarios. Causal models provide a framework for representing
these assumptions. Whether they provide the best framework—and, if so, how they
should be incorporated into legal practice—are pressing topics for future research.

2 Neil and Winship on benchmark tests
Neil and Winship (2019) illustrate the shortcomings of benchmark tests using a
hypothetical population with 100,000 black individuals and 100,000 white individuals,
in which the criminality rate is higher among blacks (15,000 vs. 10,000). Police stop
10,000 black individuals and 5,000 white ones, making the stop rate for blacks twice as
high. Although one might suggest this reflects the higher criminality rate in the black
population, that rate is only 50% higher than the rate in the white population, and
thus it cannot account for the difference. This reasoning is captured by the criminal-
based benchmark test, which statistically adjusts for criminality by comparing stop
rates as a proportion of criminality rates in each population. Numerically:
10;000
15;000 :

5;000
10;000=1.33:1. Because this benchmark adjusts for the different criminality

rates—revealing that even after adjustment, the black stop rate is higher—it
plausibly provides evidence of discrimination. Yet Neil and Winship show that as one
specifies further details about this population, there may be either no discrimination
or a level of discrimination different from that suggested by this benchmark statistic.

Here’s an illustration of why benchmark statistics may mislead (Neil and Winship
2019, 79). Imagine police only stop people in public spaces and that the distribution of
public-space users consists of 40,000 blacks and 20,000 whites. Assuming police stop
all individuals at a rate of .25, regardless of race, the number of stops will match those
in the hypothetical population. But, by stipulation, police are not using race in
choosing whom to stop. Neil and Winship analyze discrimination using the “similarly
situated” criterion, which entails that when police do not differentiate among
individuals who are otherwise similar except for race, they are not discriminating.1

Accordingly, a benchmark statistic that might suggest discrimination no longer does
so after specifying additional information.

Neil and Winship’s (2019) analysis of this scenario reflects their general strategy
for criticizing benchmarks. After pointing out that the criminal-based benchmark
fails to reveal discrimination if black and white individuals are observed by police at
different rates, they claim that users of the benchmark falsely presuppose that
individuals of different races are observed at the same rates. More generally, they

1 See Kohler-Hausmann (2018) for a criticism of the similarly situated criterion.
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present scenarios in which the degree of discrimination diverges from that of the
benchmark, then fault those using the benchmark for assuming the scenario does not
obtain. Although they are correct that benchmarks are only justified given
substantive assumptions, their treatment of specific benchmarks as corresponding
to particular assumptions suggests that the assumptions in question are statistical.
Moreover, they deny that establishing discrimination requires causal inference (2019,
76). In what follows, I use Simpson’s paradox to illustrate why statistical assumptions
do not suffice.

3 The causal analysis of Simpson’s paradox
Simpson’s paradox refers to cases in which the probabilistic relationship between two
variables in a population differs from that in every subpopulation, where
subpopulations are derived by conditioning on values of a variable. For example,
in winter 2020, the fatality rate among COVID-19 cases was higher in Italy than in
China. But within every age group, the fatality rate was higher in China than in Italy
(von Kügelgen et al. 2021). Put differently, although learning that someone was
infected in Italy as opposed to China supports their being more likely to die, once one
learns the person’s age, this relationship reverses (no matter the age). Such cases are
consistent with probability theory. They are paradoxical in the sense of being
perplexing rather than impossible.

Simpson’s paradox is just one challenge Neil and Winship raise for benchmark
tests, but its proper analysis matters for all of them. Because benchmark tests
compare proportions within populations partitioned using a set of variables,
understanding how such proportions change as one conditions on additional
variables is essential to their interpretation. In cases of Simpson’s paradox, the
relationships in the population do not match those in the subpopulations. I now
present a standard causal analysis of the paradox, highlighting common
misunderstandings that also appear in Neil and Winship.

Table 1 compares the success rates of a medical treatment in different populations.
In the whole population, the success rate is the same in both the treatment and
control groups, so treatment (X) and success (Y) are uncorrelated. However, the
treatment raises the probability of success in both the male (M) and female (:M)
subpopulations (modeled as exhaustive). To see what is going on, first note that the

Table 1. The type of association at the population level (positive, negative, independent) changes at the level
of subpopulations. Numbers taken from Simpson’s (1951) original example

Full Population,
N= 52 Success

Men (M),
N= 20 Success

Women (:M),
N= 32 Success

Success
(Y)

Failure
(:Y) Rate Success Failure Rate Success Failure Rate

Treatment
(X)

20 20 50% 8 5 � 61% 12 15 �44%

Control
(:X)

6 6 50% 4 3 � 57% 2 3 �40%
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population has more females than males. Second, although the treatment raises the
probability of success in both subpopulations, men are more likely to recover than
females, even without the treatment.

Figure 1 causally represents the example. The arrows indicate that gender and
treatment are causes of success (the quantitative relationship is unspecified). The
dashed line between gender and treatment indicates a correlation, which is presumed
not to result from treatment causing gender.

Determining whether the treatment causes success involves disentangling two
ways that the former may be evidentially relevant to the latter. First, those receiving
the treatment may have a higher success rate because the treatment causes success.
Second, it may be merely that learning someone received the treatment provides
evidence of their gender (due to the correlation) and that gender predicts one’s
chance of recovery independent of whether they receive the treatment. Experiments
in which one intervenes to make the treatment uncorrelated with any potential
influence of success (e.g., gender) help disentangle causal from merely evidential
relevance. Formally, this distinction is marked by the operator do��, where
P�Yjdo X� �� indicates the probability distribution of Y that would result from
intervening on X (this may differ from the “observational” distribution P�YjX�).

The key concept for bridging causal and statistical assumptions is identifiability.
Identifiability relates (i) a probability distribution, (ii) a causal graph, and (iii) a causal
quantity (e.g., the magnitude of X’s effect on Y). A causal quantity is identifiable if and
only if (iff), given a graph, one can uniquely determine its value from the distribution. To
illustrate, the effect of treatment on success would not be identifiable if these variables
had an unmeasured common cause, because even given the probability distribution, one
could not determine the extent to which any correlation between treatment and success
results from the causal relationship as opposed to the common cause.

In contrast, in figure 1, the effect of treatment (X) on success (Y) is identified
conditional on gender (M), using the following formula:

P�Yjdo X� �� �
X

M

P�YjX;M� P M� �: (1)

This equation derives the effect of X on Y in the population from a weighted average of
the conditional probabilities in the male and female subpopulations. Its significance is
that although the noncausal conditional probability P�YjX� may differ arbitrarily from
P�YjX;M� and P�YjX;:M�, the causal conditional probability P�Yjdo X� �� averages over
conditional probabilities in the subpopulations (which here also correspond to the
subpopulation-specific effects). It is therefore impossible for X to causally raise Y’s
probability in the population, but not in any subpopulations.

Equation (1) applies only when X does not cause M. For a different case in which X
does cause M—perhaps M is a blood chemical via which the treatment is effective—one
should not condition on M when identifying the effect of X on Y. So whether one should

Figure 1. Causal graph for Simpson’s (1951) example.
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condition on M—and correspondingly, whether to consult the population or the
M-partitioned subpopulations—depends on the causal model. Note that the causal model
in figure 1 is statistically indistinguishable from one in which X causes M: any data
generated by one model could have been generated by the other. This highlights the
importance of causal information in determining whether to consider populations or
subpopulations.

As we will see, although one should not condition on intermediate variables
(“mediators”) in evaluating the total effect of X on Y along all paths, one does
condition on mediators (in particular ways) when evaluating X’s influence on Y along
particular paths.

After presenting examples involving Simpson’s paradox, Neil and Winship explain:

When the police behave differently across the strata of some variable, but a
researcher’s analysis uses data that ignores and aggregates across this
distribution, Simpson’s paradox threatens to give outcome statistics that are
inconsistent with reality : : : this problem can bias benchmark tests, as well as
the outcome test, for stops and searches. (2019, 85)

This comment reveals two common misconceptions about the paradox (Sprenger and
Weinberger 2021, §3.2). First, the paradox does not show that aggregation over
heterogeneous populations is problematic. Aggregation is not a problem when it results
in an average effect, and the solution to the paradox is not always to disaggregate because
one should not condition on mediators. Second, their comment regarding statistics that
are “inconsistent with reality” suggests a concern about objectivity. But if one relies on
conditional probabilities identifying genuine effects, Simpson’s paradox does not
threaten the objectivity of causation. The subpopulation effects derived from
conditioning can differ from the population effect, but this is because the subpopulations
have different distributions of background factors, and the effects are therefore
objectively different.

Finally, note the claim that the paradox can “bias” benchmark tests. To talk about a
measurement being biased, one needs to specify which quantity one aims to measure.
Neil and Winship (2019) do not do so. They write as if there is some comparison of stop
rates across the populations that would establish discrimination, and benchmarks
simply provide the wrong comparison. Figuring out which rates are the relevant ones is
treated as a statistical problem. But Simpson’s paradox reveals that comparisons of
rates or proportions across populations are not, in general, invariant to conditioning on
new variables, absent further assumptions. I will now show how causal models
represent those assumptions in discrimination contexts.

4 Using causal models to interpret statistics
Causal models should not be conceived as a substitute for normative theorizing about
which criteria police may use. Nevertheless, given an account specifying legitimate
search criteria, linking discrimination claims to effects in particular models enables
one to define one’s measurement target, as I now illustrate.

Let’s begin with the scenario in which whether someone is stopped only depends
on whether they are in public or in private. Panel A of figure 2 presents a plausible

Philosophy of Science 5

https://doi.org/10.1017/psa.2023.134 Published online by Cambridge University Press

https://doi.org/10.1017/psa.2023.134


model in which race is a correlated non-cause of public-space usage. If we link
discrimination here to whether race causes being stopped, the model indicates that
this effect is identified only when one conditions upon public-space usage.

Now suppose race does cause public-space usage. For example, perhaps race
influenced where individuals could get mortgages, and black families ended up in
urban neighborhoods where public-space use is more common. Public-space usage is
then a mediator between race and being stopped, as in panel B of figure 2. There are
two possible uses of this model for evaluating discrimination. One possibility is that
because race causes public-space usage, deciding to stop people in public spaces is
discriminatory. The correct measure of discrimination is then the total effect of race
on being stopped, and one should not condition upon the mediator (i.e., absent
common causes, P�stoppedjdo race� �� � P�stoppedjrace�). Alternatively, if the racial
distribution of public spaces did not influence policies regarding where to stop
people, one might link discrimination to the influence of race on being stopped along
the direct path. This is the natural direct effect (Pearl 2001), which is the change in the
probability of being stopped that would result if one were of a different race, but still
had the same public-space usage. For instance, would a black individual stopped in
public have been less likely to be stopped if they were white but still in public? If so,
there is a natural direct effect, providing evidence of discrimination.

Which of these models is appropriate is a subtle matter. Even if the correlation
between race and public-space usage results from a common cause (e.g., parental race),
using this correlation in choosing where to patrol could itself be discriminatory. If so,
the model in panel B of figure 2 seems to better account for the influence of race on
being stopped via public-space usage, even though panel A of figure 2 gives the data-
generating process. This tension between understanding causal models as representing
data-generating processes and as modeling decision making calls for its own article.

Here, the key point is that linking discrimination hypotheses to quantities in a
causal model enables one to specify which variables must (and must not) be
conditioned upon. Moreover, causal quantities come with a theoretical guarantee
against Simpson’s paradox. If one believes that race causally promotes being stopped
in a population, but it lowers the probability of being stopped in all subpopulations,
then either the subpopulation-specific probabilistic relationships do not identify
causal effects, or one erred in positing an effect in the population. Although
conditioning can certainly yield subpopulation-specific effects differing from the
population average, it cannot make a genuine effect disappear.

I have emphasized confounding due to common causes, but conditioning on a
common effect of two variables can also hinder identifiability. This phenomenon of
endogenous selection bias (Elwert and Winship 2014) is especially relevant to

Figure 2. Two possible models for the public-space scenario.
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discrimination contexts because sampling from a population that is homogeneous
with respect to a variable (e.g., public-space usage, being stopped by police [Knox
et al. 2020]) amounts to conditioning on it, and can thus bias an effect.2 Causal
assumptions are thus essential for evaluating the processes influencing one’s
statistical sample (Knox and Mummolo 2020).

Because Neil and Winship (2019) lack a framework for specifying which quantities
measure discrimination, they cannot spell out what makes a benchmark “biased.” They
are correct that benchmarks are only justified given additional assumptions about the
scenario, but their criticism of particular benchmarks as employing the “wrong
denominator” (2019, 79) in deciding what to condition upon suggests that the
assumptions can be read from the mathematical derivation of the statistical quantities.
One might suppose that Neil andWinship do give an account of themeasurement target
via the “similarly situated” criterion, which says that there is discrimination when
individuals are treated differently despite being similar in all respects except for race.
Statistically, this corresponds to grouping people based on a list of non-race variables,
then determining whether, within a particular homogeneous group, race influences the
probability of being stopped. But which non-race variables must be included? Without
additional assumptions, anything short of a maximal attribute set leaves open the
possibility that probabilistic relationships may disappear upon further partitioning.
Thus, the similarly situated criterion cannot be of practical use if interpreted
statistically; it further requires the assumptions supplied by causal models.

5 Evidence and assumptions
Pollock (1987) distinguishes between two ways evidence can undermine one’s belief in
some proposition P. Suppose that P is that it will rain tomorrow, which I believe based
on a colleague’s testimony. A rebutting defeater for P is evidence of its falsity. For
example, perhaps my weather app predicts no chance of rain. In contrast, an
undercutting defeater is evidence that my original evidence was unreliable. For
example, suppose I learn that my colleague was conducting a study in which she
randomly told people it would rain. I have no new evidence against P—I cannot infer
that it won’t rain—it’s just that my original justification is undermined.

Now imagine one observes that police stop minorities at the same rate as
nonminorities within a population and infers that there is no discrimination. One
then notices that within both the criminal and non-criminal subpopulations,
minorities are stopped at a higher rate and thus concludes that there is
discrimination. One might be inclined to describe this reasoning as follows. The
first observation provided prima facie evidence against discrimination, which was
then rebutted by the further information. I submit that we should reject this
description. Given Simpson’s paradox, statistics alone provide no reason to assume
that the probabilistic relationships among variables in a population will be preserved
upon partitioning. The subpopulation information does not rebut one’s initial belief
but rather reveals that one was never justified in holding it. Statistics only provide
evidence regarding discrimination when coupled with further assumptions, such as
those embedded in causal models.

2 Thanks to Clark Glymour for raising this point.
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The question of what counts as evidence for discrimination is not an idle concern.
Within the American legal system, a defendant claiming police discrimination must
bring evidence to advance to the “discovery” stage, enabling a more thorough
investigation. Following the U.S. Supreme Court decision United States v. Armstrong
(1996), this evidence must involve a “credible showing of different treatment of
similarly situated persons” (470) of another race. Siegler and Admussen (2020) argue
that this creates an insurmountable barrier to being granted discovery because police
need not disclose their selection criteria, and without these criteria, one cannot
determine who counts as “similarly situated.”

That the similarly situated criterion cannot be applied without knowing the police’s
selection criteria reinforces my point that it cannot be interpreted purely statistically.
What matters is not whether those who are and are not stopped are similar in all
respects, but rather whether, among those satisfying the purportedly legitimate criteria
employed by police, race makes any further difference. Yet requiring defendants to
present a well-established causal model to obtain discovery would be too high a bar,
because only through discovery can one obtain the required evidence. Siegler and
Admussen (2020) therefore defend a statistical basis for granting discovery:

Courts instead should look to whether the defendant has created a reasonable
inference that a disparity exists. If a defendant can show that the police are
targeting people of color at a rate greater than their representation in the
general population, judges should grant discovery. (1048)

Although I endorse Siegler and Admussen’s aim of lowering the evidential standard
required for obtaining discovery, a purely statistical standard remains problematic.
Disparities by themselves do not reveal discrimination, and one should avoid making
inferences from them absent background assumptions about the modeled scenario.
Rather than abandoning causal considerations, it would be better to allow the defense
to propose a causal model favoring their claim. The prosecution might then be allowed
to submit their own model specifying some of the selection criteria, and, if they abstain,
the defense would be entitled to their preferred model. Even if, however, the
prosecution submits their own model, this by itself is an improvement, because
currently, they have no incentive to disclose their selection criteria. This, of course, is
only a sketch of a procedure. The main takeaway is that because statistical evidence
alone cannot differentiate between discriminatory and nondiscriminatory explan-
ations, one should build causal assumptions into every evidentiary stage of the process.

6 Conclusion
Causal models are typically promoted as enabling one to predict the outcomes of
interventions. The discussion here highlights a distinct role. Even when interpreting
statistics, causal models help disentangle informative from non-informative
statistical quantities. Simpson’s paradox illuminates why this is so. Although a
correlation between two variables might be taken to suggest a substantive
relationship, the paradox reveals that probabilistic relationships will not in general
be invariant to partitioning based on additional variables. Instead of taking
probabilities as providing evidence regarding discrimination until proven otherwise,
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one should not draw any conclusions without some basis for believing that the
relationships are partition invariant. Causal models provide such a basis. Nothing in
this article proves that one must use causal models when interpreting discrimination
statistics. But statistics alone are not sufficient. They are only reliable given
assumptions about the scenario, and causal models provide a general, rigorous, and
flexible method for modeling these assumptions.
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