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This paper introduces a new operator relevant to input–output analysis of flows in a
statistically steady regime far from the steady base flow: the mean resolvent R0. It is
defined as the operator predicting, in the frequency domain, the mean linear response to
forcing of the time-varying base flow. As such, it provides the statistically optimal linear
time-invariant approximation of the input–output dynamics, which may be useful, for
instance, in flow control applications. Theory is developed for the periodic case. The poles
of the operator are shown to correspond to the Floquet exponents of the system, including
purely imaginary poles at multiples of the fundamental frequency. In general, evaluating
mean transfer functions from data requires averaging the response to many realizations
of the same input. However, in the specific case of harmonic forcings, we show that the
mean transfer functions may be identified without averaging: an observation referred to
as ‘dynamic linearity’ in the literature (Dahan et al., J. Fluid Mech., vol. 704, 2012, pp.
360–387). For incompressible flows in the weakly unsteady limit, i.e. when amplification
of perturbations by the unsteady part of the periodic Jacobian is small compared to
amplification by the mean Jacobian, the mean resolvent R0 is well-approximated by the
well-known resolvent operator about the mean flow. Although the theory presented in this
paper extends only to quasi-periodic flows, the definition of R0 remains meaningful for
flows with continuous or mixed spectra, including turbulent flows. Numerical evidence
supports the close connection between the two resolvent operators in quasi-periodic,
chaotic and stochastic two-dimensional incompressible flows.

Key words: shear-flow instability

1. Introduction

1.1. Existence of transfer functions for time-varying base flows?
In the early stages of ‘natural’ (i.e. caused by small-amplitude two-dimensional
Tollmien–Schlichting waves) laminar–turbulent transition of an incompressible flow on
a smooth flat plate, the flow may be safely assumed to respond to perturbations in a
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linear time-invariant (LTI) fashion. Otherwise, the response of open shear flows to external
excitations, even infinitesimal ones, is generally more complex. Turbulent flows certainly
are not time-invariant, but neither are idealistic two-dimensional flows like the ones behind
a backward-facing step or in the wake of one or a few cylinders at moderate Reynolds
numbers. Even at very low Reynolds number, unsteadiness may set in as a result of noise
amplification or intrinsic instability. Hence infinitesimal extrinsic perturbations interact
not with a steady base flow but with a time-evolving one.

However, for feedback control using modern robust control techniques, an LTI model of
the input–output dynamics is generally required. In the frequency domain, LTI dynamics
indicates the existence of transfer functions, hence the question: how can we define transfer
functions for time-varying, statistically steady base flows?

1.2. Option A: ‘dynamic linearity’, i.e. using small-amplitude harmonic forcings
Some authors have used harmonic forcings to identify transfer functions on simulations
of statistically steady flows (Dahan, Morgans & Lardeau 2012; Dalla Longa, Morgans
& Dahan 2017; Evstafyeva, Morgans & Dalla Longa 2017) that are either laminar or
turbulent, and possess either peaked or broadband spectra. For sufficiently low forcing
amplitude, the authors evaluate a frequency response by taking the ratio of the complex
amplitudes of the output and input at the forcing frequency (the concept of nonlinear
transfer function (Noiray et al. 2008) is not relevant here due to the choice of low amplitude
of the forcing). This observation hints at the existence of a transfer function in situations
where it should not exist theoretically, given the time-varying nature of the base flow. The
authors use the term ‘dynamic linearity’ to characterize this interesting behaviour, but no
theoretical arguments seem available currently to understand it.

1.3. Option B: linearizing about the mean flow
A second option consists in assuming that the linear response u to infinitesimal forcing f
is characterized by the Jacobian matrix JŪ evaluated about the mean flow Ū , i.e.

dtu = JŪ u + f . (1.1)

As should be clear from (1.1), we adopt in this paper (except in Appendix C) a spatially
discrete framework. The flow will be assumed incompressible and discretized over N
degrees of freedom. The resolvent operator about the mean flow,

RŪ (s) = (sI − JŪ )−1, (1.2)

then describes an LTI input–output dynamics in the frequency domain (s being the Laplace
variable), and has been used successfully for open-loop (Moarref & Jovanović 2012;
Luhar, Sharma & McKeon 2014; Toedtli, Luhar & McKeon 2019; Yeh & Taira 2019; Liu
et al. 2021) and closed-loop (Leclercq et al. 2019) control of statistically steady flows.
However, such an input–output model remains only empirically validated so far, and there
is no clear justification for its use, since the mean flow is not an invariant solution of the
nonlinear unforced system. The use of such a model is, however, motivated by a large
body of literature devoted to linear analysis about a time-averaged mean flow, with clear
predictive power.

Indeed, modal analysis of JŪ yields accurate predictions of both the dominant
oscillation frequency in the wake of a cylinder (Hammond & Redekopp 1997; Pier
2002; Barkley 2006; Sipp & Lebedev 2007; Mittal 2008) and the associated coherent
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vortical structures. The growth rate of the leading eigenvalue, whose real part predicts the
frequency, is nearly neutral, a property often called real zero imaginary frequency (RZIF;
Turton, Tuckerman & Barkley 2015; Bengana & Tuckerman 2019, 2021; Bengana et al.
2019), in a context that is now broader than just cylinder wake flow. This powerful property
has been used to build self-consistent models (Mantič-Lugo, Arratia & Gallaire 2014,
2015; Meliga 2017; Bengana & Tuckerman 2021) successfully mimicking the nonlinear
flow with the simplest ingredients. The idea of marginal stability of the mean flow is
not recent (Malkus 1956) but may be justified only under specific conditions, i.e. weak
nonlinearity (Noack et al. 2003; Sipp & Lebedev 2007), monochromatic oscillations
(Mezić (2013), criterion (b) of § 3.5; Turton et al. 2015) or weak unsteadiness relative
to the mean flow (Mezić (2013), criterion (a) of § 3.5).

In the case of linearly stable flows, or noise-amplifiers, the resolvent operator about
the turbulent mean flow has been used extensively to predict second-order statistics
(Jovanovic & Bamieh 2001; Jovanovic & Georgiou 2010; Moarref et al. 2014; Beneddine
et al. 2016; Zare, Jovanović & Georgiou 2017; Towne, Lozano-Durán & Yang 2020)
and in particular coherent flow structures characterized by spectral proper orthogonal
decomposition (POD) modes (Semeraro et al. 2016a,b; Beneddine et al. 2016; Schmidt
et al. 2018; Towne, Schmidt & Colonius 2018). The resolvent operator has also been used
to obtain deterministic reduced-order models of unsteady flows from measurements of the
mean flow and a few local probes (Gómez et al. 2016; Beneddine et al. 2017; Symon, Sipp
& McKeon 2019). The input–output framework is also particularly fruitful for elucidating
receptivity mechanisms through the analysis of the optimal forcing modes associated with
the resolvent modes (Hwang & Cossu 2010; Garnaud et al. 2013; Sartor, Mettot & Sipp
2015; Jeun, Nichols & Jovanović 2016; Semeraro et al. 2016b).

The intuition that coherent structures must extract their energy from the mean flow
dates back to the contributions of Lee, Kim & Moin (1990), Butler & Farrell (1993),
Del Álamo & Jimenez (2006), Cossu, Pujals & Depardon (2009), Pujals et al. (2009)
and McKeon & Sharma (2010) among others. However, despite the unchallenged efficacy
of resolvent and modal analyses about the mean flow for modelling purposes, a clear
justification for these procedures is still lacking (Beneddine et al. 2016; Jovanović 2021).
As said already, the first difficulty in terms of interpretation arises from linearizing about
a quantity, the mean flow, that is not an invariant solution of the governing equations.
In the input–output framework of McKeon & Sharma (2010), the resolvent operator RŪ
is forced by a finite-amplitude internal forcing arising from nonlinear interactions of the
perturbations. Although this framework is an exact reformulation of the Navier–Stokes
equations, with no approximation involved, the procedure remains ad hoc in the sense that
alternative formulations may be obtained by decomposing the flow about any alternative
reference state, for instance the steady base flow. One practical reason for the popularity
of this particular formulation is the recurrent observation that for energetic frequencies of
the flow, the matrix RŪ (iω) is often nearly rank 1, and the leading spectral POD mode
is often well-approximated by the leading resolvent mode (Beneddine et al. 2016; Towne
et al. 2018). The clear advantage in this situation is that coherent flow structures may be
predicted without having to consider the unknown nonlinear forcing term.

However, it is also increasingly clear that incorporating information about the nonlinear
forcing into the linear operator, either in the form of an eddy viscosity (Illingworth,
Monty & Marusic 2018; Morra et al. 2019; Madhusudanan, Illingworth & Marusic
2019; Pickering et al. 2021; Symon et al. 2019), or through a low-rank state-feedback
operator (Zare et al. 2017), may significantly enhance its predictive power. For instance,
the alignment between the leading resolvent mode and leading spectral POD mode may
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increase from 0.4 to nearly 0.9 by tuning the effective viscosity above the molecular
viscosity (Pickering et al. 2021). All these recent contributions confirm that RŪ is a useful,
yet suboptimal linear input–output representation. Worse still, (Karban et al. 2020) showed
recently that resolvent analysis about a mean flow is in general ill-posed as the poles of the
operator depend on an arbitrary choice of formulation for the governing equations. In the
case of a supersonic heated jet, discrepancies of up to 40 % were noted in the optimal gain
at energetic frequencies, depending on the choice between the use of conservative versus
primitive variables.

All these observations motivate the search for a new input–output operator, (i)
incorporating information about the nonlinear forcings, (ii) which should be optimal in
some sense, and (iii) which definition should be intrinsic. As we will see, the new operator
will help us to understand the ‘dynamic linearity’ phenomenon and provide a physical
interpretation to RŪ . Its poles will also exactly verify the RZIF property in the periodic
case, whereas RŪ does so only approximately.

1.4. Option C: averaging the time-varying linear response
In this paper, we will not make the ad hoc hypothesis of linearity about the mean flow.
We will keep only the assumption of linearity, which remains valid as long as the forcing
amplitude is low enough, but now the base flow is an exact time-varying solution of the
Navier–Stokes equations. Until § 4, the base flow will be assumed to be periodic with
period T corresponding to a fundamental angular frequency ω0 := 2π/T . We represent in
figure 1 the response u to an infinitesimal forcing signal f started at time τ0 relative to an
arbitrary origin of time τ = 0 on the base flow trajectory Ũ(τ ). Because the base flow is
not steady but periodic, the linear response to forcing is not unique but parametrized by
the phase 0 � φ < 2π of the limit cycle when the forcing starts. This key parameter for
our analysis is defined such that

ω0τ0 = φ mod 2π. (1.3)

Indeed, the input–output dynamics is now characterized by a linear time-periodic (LTP)
system

dtu = J(t;φ) u + f , J(t + T;φ) = J(t;φ), (1.4a,b)

with a periodic Jacobian itself parametrized by the phase φ through the base flow
U(t;φ) = Ũ(τ = t + τ0). For φ distributed uniformly in [0, 2π), there is in fact a
distribution of time series u(t;φ) corresponding to a given input f (t). The statistically
optimal LTI approximation of this LTP system should predict a single output v(t)
minimizing the mean error with respect to u(t;φ), i.e.

v(t) = argminṽ(t) lim
T ′→∞

1
T ′

∫ T ′

0
〈‖u(t;φ) − ṽ(t)‖2〉φ dt, (1.5)

where 〈·〉φ denotes an ensemble average with respect to φ. This output is obviously the
mean response v(t) = 〈u(t)〉φ . We define the mean resolvent operator R0 (the notation
will become clear in § C.2) as the operator predicting the mean response, in the frequency
domain, for any given input:

mean resolvent R0 : f (s) �→ 〈u(s)〉φ . (1.6)

This transfer function is well-defined because the relationship between the input f and the
output 〈u〉φ is by construction causal, linear and time-invariant (i.e. independent of φ).
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t = τ – τ0
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t = τ – τ0
2

t

Period T = 2π/ω0

τ0
1 τ0

2 τ0
3

Ũ(τ)

U(t; φi) = Ũ (τ = t + τ0
i )

U(t; φ1) + u(t; φ1)

U(t; φ2) + u(t; φ2)

U(t; φ3) + u(t; φ3)

ω0τ0
i = φi mod 2π

f(t)

f(t)

f(t)

f(t)

τ

(b)

(a)

(c)

Figure 1. (a) Periodic base flow Ũ(τ ) for an arbitrarily defined origin of time τ = 0. (b) Linear responses
u(t;φi) to the same infinitesimal forcing f (t) started at different instants τ = τ i

0. Like the underlying base
flow U(t;φi) = Ũ(τ = t + τ i

0), the responses are parametrized by the phase φ = φi of the periodic base flow
at t = 0, such that ω0τ0 = φ mod 2π. (c) The response to linear forcing being a distribution, the statistically
optimal LTI model is obtained by computing the mean response 〈u(t)〉φ .

We see that in option C, the order of operations is reversed compared to option B: we
linearize then average instead of averaging then linearizing. In option A, linearization is
involved as well, but there is no averaging at all. Instead, a very specific form of input is
chosen, which is harmonic in time. The three options are summarized in figure 2.
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Linearize Average

Average Linearize RŪ (s) f (s)

〈u(s)〉φ = R0(s) f (s)

Option B: Resolvent about mean flow RŪ

Option C: Mean resolvent R0

Linearize

Option A: ‘Dynamic linearity’

Harmonic forcings+ Output(s)

f (s)

Figure 2. Three ways of defining an LTI operator for a periodic base flow.

1.5. Goal and outline of the paper
The aim of this paper is to investigate option C and establish connections with options A
and B. In particular, we will show that option A is a specific way to evaluate R0, while RŪ
is a (reduced-order) approximation of R0, under appropriate conditions.

In §§ 2 and 3, we will continue to focus on incompressible periodic base flows. In § 2,
we will perform a numerical experiment on the fluidic pinball in a periodic regime of
oscillations at Re = 100, in order to compare options B and C, namely mean resolvent
versus resolvent about the mean flow. In § 3, we will study the properties of the mean
resolvent operator, with the goal to elucidate the observations made in § 2 and draw
connections with the resolvent operator about the mean flow and ‘dynamic linearity’.
Connections with the Koopman operator (§ 3.3), the RZIF property (§ 3.6) and model
reduction (§ 3.5) will also be made. In § 4, we perform the same numerical experiment
as in § 2 but for more complex base flows, i.e. quasi-periodic, chaotic and stochastic. We
will consider the fluidic pinball at Re = 110 and Re = 120 as well as the backward-facing
step flow (with exogenous stochastic forcing) at Re = 500. The goal is to stress the
strong connection between mean resolvent and resolvent about the mean flow in all these
dynamically distinct cases. No computations are done in a compressible case, but in
§ 4.3 we indicate the implications of our theoretical analysis in § 3 to such situations. A
theoretical extension of § 3 is proposed for the quasi-periodic case in Appendix D. We
summarize our findings in § 5.

2. Resolvent about the mean flow versus mean resolvent: fluidic pinball at Re = 100

In this section, we perform a numerical experiment on the case of the incompressible
two-dimensional fluidic pinball in a periodic regime at Re = 100. The goal is to compare
transfer functions based on options B and C, i.e. average then linearize versus linearize
then average. The precise configuration consists in the the numerical setting of Deng
et al. (2020). We define the unit length to be the diameter D of each cylinder, and
the (convective) time unit to be D/U∞, where U∞ is the upstream velocity norm. The
Reynolds number is defined as Re := U∞D/ν, where ν is the kinematic viscosity. The
centres of the ‘front’, ‘top’ and ‘bottom’ triangles are respectively located at (xf , yf ) =
(−1.5 cos(π/6), 0), (xt, yt) = (0, 0.75) and (xb, yb) = (0, −0.75), hence forming an
equilateral triangle of side length 1.5. Instead of measuring the full input–output relation
between N-dimensional inputs and outputs, we will focus in this section on the single-input
single-output (SISO) transfer between an actuator signal u and a measurement y such that

f (t) = B u(t), y(t;φ) = CT u(t;φ). (2.1a,b)
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0

0.5
1.5

1.0

0
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–2

0

2

0 2 4
x

y

B
a b c

6 8 10 –0.2 –0.1 0 0.1

Yc

Yb

(b)(a)

Figure 3. Fluidic pinball at Re = 100, periodic behaviour: (a) mean velocity norm and streamlines, and
(b) phase portraits using y velocity sensors Yb and Yc.

The SISO viewpoint is more practical for the numerical experiment that we perform, and
it is also relevant in the context of flow control. More specifically, we will consider three
probes C extracting the y velocity component in the wake of the ‘top’ cylinder at y = yt and
respectively x = 2, 4, 8 (white dots in figure 3). Measurements of the periodic base flow
will be denoted Y = CTU . When necessary, the index a, b or c will be used to specify
which sensor we are referring to. The quantity B is a discretized Gaussian volume force
field B(x, y; x0, y0, σx, σy) located at the ‘top’ of the ‘top’ cylinder:

B(x, y; x0, y0, σx, σy) =
[

0, exp

(
−(x − x0)

2

2σ 2
x

− ( y − y0)
2

2σ 2
y

)]T

, (2.2)

with σx = 0.01, σy = 0.1, and the centre (x0, y0) of the Gaussian (white triangle in
figure 3) relative to the centre (xt, yt) of the cylinder being given by (x0 − xt, y0 − yt) =
(0, 0.55).

Numerical discretization details (computational domain, mesh, spatial and temporal
schemes) are provided in Appendix A.

2.1. Unsteady base flow
In figure 3(a), we plot the streamlines and isocontours of velocity norm for the mean flow.
We notice that it is asymmetric, as noted by Deng et al. (2020). In figure 3(b), we plot
the phase portrait of the flow, using the vertical velocity probes ‘b’ and ‘c’: it is a closed
curve, which confirms the periodic nature of the dynamics at Re = 100. Fourier spectra
are shown in row (i) of figure 5 for the three sensors (a–c) located in the wake of the
cylinders. These spectra confirm the periodic nature of the flow since they are discrete
with a single fundamental frequency at ω0 = 0.73 and harmonics. Higher frequencies are
more energetic in the far wake than in the near wake. Indeed, perturbations amplify while
being convected, causing stronger nonlinear energy transfers downstream.

2.2. Estimating mean transfer functions from input-output data
The resolvent operator about the mean flow RŪ and the mean resolvent operator R0
are both multiple-input multiple-output (MIMO) transfer functions with N-dimensional
inputs and outputs. SISO transfer functions between any time-invariant actuator-sensor
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3
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Figure 4. Geometric interpretation of the ratio η for the three cases (a) η 	 1, (b) 1 < η <
√

Ns and
(c)

√
Ns 	 η of table 1; see main text for description.

pair (C, B) may be derived from these operators using

GŪ (s) := CTRŪ (s) B and 〈G(s)〉φ := CTR0(s) B. (2.3a,b)

In order to estimate the mean transfer function 〈G(s)〉φ from input–output data, we
introduce ‘frequency response realizations’

G(s;φ, u) := y(s;φ)

u(s)
, (2.4)

which are obtained by taking the ratio between the Laplace transforms of the input u
and the output y. The quantity G is not associated directly with a transfer function since
the linear response to forcing about a time-varying base flow is not time-invariant; hence
the dependence on the phase φ and the input signal u. However, upon averaging with
respect to φ (we recall that φ is assumed to be uniformly distributed in [0, 2π)), the linear
input–output dynamics becomes time-invariant, and the dependence disappears. We then
recover the mean transfer function based on the mean resolvent

〈G(s)〉φ = 〈G(s;φ, u)〉φ. (2.5)

For any complex frequency s and input signal u, the variance Varφ G(s; u) of the
complex random variable G(s;φ, u) may be computed as

Varφ G := 〈|G − 〈G〉φ|2〉φ
= 〈|G|2〉φ − |〈G〉φ|2, (2.6)

and the ratio

η(s; u) :=
√

Varφ G
|〈G〉φ| (2.7)

may be interpreted as the inverse of a ‘signal-to-noise’ ratio, allowing us to quantify the
validity of the time invariance hypothesis. The system is nearly LTI at a given frequency s
if η 	 1 for any choice of u. A geometric interpretation of η will be proposed in figure 4.

The ratio η is also useful to evaluate the convergence of the mean estimate 〈G〉φ,Ns to
the true mean 〈G〉φ , using Ns � 1 realizations of G. Since all realizations are independent
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and identically distributed random variables of variance Varφ G, the mean estimate is, by
the central limit theorem, a normal random variable of variance

Varφ 〈G〉φ,Ns = Varφ G
Ns

. (2.8)

The convergence criterion
√

Varφ 〈G〉φ,Ns 	 |〈G〉φ| for the mean estimate therefore
translates into the condition η 	 √

Ns for the given choice of u and s.

2.3. Procedure
The nonlinear simulation is initialized at τ = 0 with the steady base flow (fixed point)
perturbed by B (to quickly reach the limit cycle). After an initial transient of more than
1000 convective time units, the flow converges to a periodic regime of self-sustained
oscillations.

This periodic base flow is then perturbed linearly using impulsive forcings u(t) = δ(t) by
simply initializing the perturbation field with the actuator, i.e. u(0) = B. Other choices of
input signals may be made for estimating mean transfer functions, which will be discussed
later, in §§ 3.2.2 and 3.2.3. Following impulsive forcing, both nonlinear (for the periodic
base flow) and linear (for the perturbation) simulations are run for over more than 1000
convective time units. We compute Ns = 140 impulse responses, by uniformly distributing
the relative initial time τ0 over a period T = 8.64 of the underlying limit cycle, i.e. 	τ0 =
T/Ns. This amounts to uniformly distributing the initial phase φ over [0, 2π), as required.

Note that since impulse responses never decay, we can compute only frequency
responses shifted in the right half-plane, i.e. obtained for s = iω + σ with σ > 0. This
is indeed mandatory for convergence of the Laplace transform. The value σ = 0.01 is
chosen such that the mean impulse response modulated by e−σ t reaches negligible values
towards the end of the time window of 1000 convective time units. The Fourier transform
of the exponentially modulated signal, estimated via the discrete Fourier transform, then
yields the Laplace transform of the impulse over the shifted imaginary axis. The frequency
response over iR (minus the singularities) may then be retrieved by analytic continuation,
but this is not done here.

The present analysis may remind the reader of the work by Yeh & Taira (2019), who
performed resolvent analysis about the mean flow on a shifted imaginary axis with σ > 0.

2.4. Results
First, a geometric interpretation of the ratio η is proposed in figure 4, where three
cases are considered: (a) η 	 1, (b) 1 � η <

√
Ns and (c)

√
Ns 	 η, corresponding to

the {probe, frequency} pairs of table 1. For a given value of s, the locus of G(s;φ) is
represented by a closed blue curve in the complex plane as φ varies between 0 and 2π.
The red dot indicates the barycentre of the curve, which is the estimated mean transfer
〈G〉φ,Ns . The length of the red arrow approximates |〈G〉φ|. There are two dashed circles
centred on the red dot: a black circle with radius approximating

√
VarφG (length of black

arrow), and a green circle with radius equal to
√

Varφ〈G〉φ,Ns (length of green arrow).
In figure 4(a), the radius of the black circle is much smaller compared to the red arrow,
and the entire blue distribution may therefore be approximated by its red barycentre: the
dynamics is quasi-time-invariant for that {probe, frequency} pair. In figure 4(b), the black
arrow is twice the size of the red arrow, hence replacing the entire blue distribution by
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C. Leclercq and D. Sipp

Probe Frequency s η

a 0.01 + 8.00i 0.0554
a 0.01 + 0.813i 2.06
c 0.01 + 4.00i 73.6

Table 1. Values of the ratio η evaluated from Ns = 140 impulses for three {probe, frequency} pairs.

the single red dot is a very crude approximation: the dynamics is not quasi-time-invariant.
However, the green arrow is still much smaller than the red arrow (see inset), which means
that the estimation of the mean transfer function is converged. But in figure 4(c), not only
is the black arrow much larger than the red arrow (dynamics not time-invariant), but the
green arrow is also much larger than the red arrow (see inset), so there are not enough
samples to estimate confidently the mean transfer function. We finally recall that only the
exact mean 〈G〉φ is independent from the forcing signal, while all other quantities (blue
curve and its variance, mean transfer estimate and its variance) depend on the specific
choice of u(t).

We then proceed to a more systematic examination of η for u(t) = δ(t) in row (ii) of
figure 5, for the three probes (a–c) over the frequency range 0 � ω � 10. The threshold
η = 1 is indicated with a dashed black line, while the ratio η = √

Ns is indicated with a
green dashed line. The value of η with respect to these two critical values is also indicated
in the Bode diagrams of the mean transfer function 〈G〉φ represented in rows (iii) and (iv),
for the gain and phase, respectively. No shading corresponds to a frequency range where
η < 1, i.e. the dynamics is quasi-LTI; light-grey shading corresponds to 1 � η <

√
Ns,

i.e. dynamics not LTI but mean estimate converged; and dark-grey shading corresponds to√
Ns � η, i.e. mean estimate not even converged.
The first remark is that the ratio η becomes larger as the probe moves downstream.

As a result, converging the mean transfer estimate requires more samples downstream
than upstream (see greater extent of dark-grey regions). Correlatively, the frequency range
of validity of the quasi-time-invariant region shrinks as the probe moves downstream.
Both observations seem correlated with the fact that the unsteady fluctuations are more
energetic downstream than upstream (see power spectra in row (i) of figure 5). The ratio η

is also greater near resonance frequencies for the same reason: the base flow fluctuations
are greater near these frequencies. It is interesting to note, however, that for all probe
positions, the LTI approximation is valid in some frequency range near the maximum gain
(but excluding resonances).

Whether or not η is small compared to 1, we always observe a qualitative agreement
between the Bode diagrams of GŪ and 〈G〉φ , as long as the mean estimate is converged.
For probe a, the two diagrams are nearly indistinguishable from one another, and the
deviation remains very small for probe b as well, except near resonant frequencies kω0.
For probe c, though, the deviation becomes noticeable, even when η < 1.

Only the fundamental frequency leads to a resonance peak in GŪ , whereas higher-order
harmonics are also visible in 〈G〉φ . These extra peaks are indicative of the presence of
poles at s = ikω0 in the mean transfer function, but the amplitude of the peaks decreases
rapidly with k and as the probe moves upstream.
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Figure 5. Fluidic pinball in the periodic regime at Re = 100. The labels (a)–(c) correspond to the three sensor
positions. (i) Fourier spectrum of measurement Y of the periodic base flow. The spectrum is discrete and no
averaging is done, so a single Hann window is applied over the entire signal of more than 1000 time units.
(ii) Ratio η (defined in (2.7)) for Ns = 140 impulsive forcings u(t) = δ(t). The black dashed line indicates
the threshold η = 1 far below which the system is nearly LTI (with respect to u = δ). The green dashed line
indicates the threshold η = √

Ns far below which the estimate of the mean transfer function is converged.
Gain (iii) and phase (iv) of mean frequency response 〈G〉φ,Ns (solid blue) and frequency response about the
mean flow GŪ (dashed red). Light-grey shading indicates frequency ranges where 1 < η <

√
Ns, and dark-grey

shading corresponds to η �
√

Ns. In the phase plots, the two black-dotted curves indicate a shift of +/ − π

with respect to the phase of GŪ . For rows (ii), (iii) and (iv), all quantities are evaluated on the shifted imaginary
axis σ + iω, with σ = 0.01.

In § 3, we will attempt to elucidate the aforementioned observations. (i) Why are
〈G〉φ and GŪ generally so similar? (ii) Why does the quality of the LTI approximation
deteriorate downstream? (iii) Why are there poles at s = ikω0 in the mean transfer
function? (iv) Why are higher-order resonances weaker and noticeable only downstream?
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3. Theory for incompressible periodic base flows

In this theoretical section, we come back to the more general MIMO viewpoint between
an N-dimensional forcing f (t) and an N-dimensional response u(t;φ).

3.1. Phase-dependent frequency response of an LTP system
Denote by Φ(t, t′;φ) the propagator from t′ to t of the linear time-periodic system (1.4a,b),
such that

u(t;φ) = Φ(t, 0;φ) u0 +
∫ t

0
Φ(t, t′;φ) f (t′) dt′, (3.1)

where u0 is the initial condition on u, regardless of φ. By Floquet’s theorem
(Magruder, Gugercin & Beattie 2018), we know that there exists a real T-periodic
matrix P(t;φ), invertible at all times t, and a constant complex matrix K such that
Φ(t, t′;φ) = P(t;φ) eK(t−t′) P−1(t′;φ). There are multiple possible determinations of the
matrix K = (1/T) log(Φ(T, 0)) depending on the definition of the logarithm. Assuming
K to be diagonalizable, K = SΛS−1, and choosing the principal determination for the
logarithm, all the eigenvalues fall into the fundamental strip −ω0/2 < Im(λi) � ω0/2,
i = 1, . . . , N. These are called the principal Floquet exponents, and they may be
ranked in decreasing order of growth rate, i.e. Re(λ1) � Re(λ2) � · · · � Re(λN). Other
determinations of the logarithm lead to eigenvalues sij = λi + ijω0 which are Floquet
exponents as well, located in complementary strips ω0(j − 1/2) < Im(sij) � ω0(j + 1/2)

in the complex plane. The direct Floquet modes vi are the columns of the T-periodic
complex matrix V (t;φ) := P(t;φ)S. The adjoint Floquet modes wi, such that (wi, v j) =
δij for the canonical inner product (a, b) = 1/T

∫ T
0 aHb dt on the space of periodic

functions in CN (where H denotes the complex transpose), are the columns of the matrix
W (t;φ) such that W HV = I at all times (and phases φ). Using this eigendecomposition,
the propagator reads

Φ(t, t′;φ) = V (t;φ) eΛ(t−t′) W H(t′;φ). (3.2)

We may now expand the direct and adjoint Floquet modes as Fourier series. If the jth
Fourier coefficient of V is proportional to eijφ , then so is the jth Fourier coefficient of W
since W HV = I at all times. Therefore, we can write the following Fourier series:

V (t;φ) =
∑

j

V̂ j exp(ij(ω0t + φ)), W (t′;φ) =
∑

j

Ŵ j exp(ij(ω0t′ + φ)). (3.3a,b)

Injecting (3.2) and (3.3a,b) in (3.1) and assuming u0 = 0, we have

u(t;φ)

=
∫ t

0
V (t;φ) exp(Λ(t − t′)) W H(t′;φ) f (t′) dt′

=
∫ t

0

⎡
⎣∑

j

V̂ j exp(ij(ω0t +φ))

⎤
⎦ exp(Λ(t − t′))

[∑
l

Ŵ H
l exp(−il(ω0t′ +φ))

]
f (t′) dt′
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Mean resolvent operator of a statistically steady flow

=
∑
j,l

exp(i(j − l)φ)

∫ t

0

[
V̂ j exp((Λ + ijω0I)(t − t′)) Ŵ H

l

] [
exp(i(j − l)ω0t′) f (t′)

]
dt′

=
∑

n

exp(inφ)

∫ t

0

⎡
⎣∑

j

V̂ j exp((Λ + ijω0I)(t − t′)) Ŵ H
j−n

⎤
⎦[exp(inω0t′) f (t′)

]
dt′.

(3.4)

We recognize convolution products of causal functions on the right-hand side, hence it is
easy to take the Laplace transform, yielding the linear time-periodic input–output relation

u(s;φ) =
∑

n

einφ Rn(s) f (s − inω0) , (3.5)

with the operators

Rn(s) =
∑

j

N∑
k=1

v̂k
j (ŵ

k
j−n)

H

s − (λk + ijω0)
, (3.6)

where v̂k
j and ŵk

j designate the kth columns of V̂ j and Ŵ j. Unlike in LTI systems, the output
at frequency s depends on the input at an infinite number of frequencies s − inω0. The
output depends explicitly on the phase φ through the cross-frequency transfers einφ Rn(s)
for n /= 0. The poles of the Rn are exactly the Floquet exponents of the LTP system.
The adjoint Floquet modes characterize receptivity to forcing of the corresponding direct
Floquet modes.

3.2. Mean resolvent operator
We now seek the operator that predicts the mean output 〈u(s)〉φ for a given input f (s), by
averaging (3.5) with respect to φ. By doing so, all the cross-frequency transfers vanish,
and the only remaining transfer is R0:

〈u(s)〉φ = R0(s) f (s) , (3.7)

which is consistent with our initial choice of notation for the mean resolvent in the
Introduction.

3.2.1. Resonances at natural frequencies
Next, we note that since the periodic base flow U(t) is self-sustained (no external forcing
is required), there is a zero Floquet exponent in the LTP system with associated Floquet
mode equal to dtU (see Appendix B). If we restrict our attention to the case where the
periodic base flow is linearly stable, then the zero Floquet exponent is the leading one, i.e.
λ1 = 0 and v1 = dtU (in case of instability λ1 > 0 but there is still a zero exponent λj = 0
for some j > 1), so that v̂1

j = ijω0Û j, where Û j denotes the jth harmonic of the Fourier
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decomposition of U(t). Therefore, using expression (3.6), the mean resolvent reads

R0(s) =
∑
j /= 0

ijω0 Û j(ŵ1
j )

H

s − ijω0
+
∑

j

N∑
k=2

v̂k
j (ŵ

k
j )

H

s − (λk + ijω0)
. (3.8)

We see immediately that there are purely imaginary poles at s = ijω0, as expected from the
numerical experiment on the fluidic pinball. The coefficients associated with these poles
in the expansion, also called the residuals

Resijω0 R0(s) = ijω0 Û j(ŵ1
j )

H, (3.9)

tend very rapidly to 0 in the operator norm as |j| → ∞, because the jth Fourier harmonics
of both U and w1 are involved (the decay is o(1/jm) for any integer m if we consider
C∞ periodic structures). This explains why resonance peaks caused by imaginary poles
in figure 5(ii) become decreasingly visible as |j| increases. The fact that the residuals
depend on Û j also explains why resonances at high frequencies are, however, more visible
downstream than upstream. Indeed, larger oscillation amplitude in the far wake causes
more pronounced nonlinear energy transfers to higher harmonics (see base flow spectra in
figure 5(i)), hence a better observability |CTÛ j| of high-order harmonics Û j as the sensor
moves downstream.

3.2.2. System identification using frequency-rich inputs
The upside of using frequency-rich signals for system identification is that it allows us to
identify the dynamics for multiple frequencies at once. The downside, though, is that many
realizations of the same input signal may be necessary to converge the mean response prior
to identification, as we have seen in § 2 (in particular row (iv) in figure 5). The number of
realizations necessary to converge the mean is very dependent on the input signal chosen.
This dependence can be made explicit, using (3.5) and the definition of the variance:

Varφ u(s) =
∑
n /= 0

‖f (s − inω0)‖2
RH

n Rn
, (3.10)

where ‖a‖M = (aHMa)1/2 is the norm induced by the positive-definite matrix M . A
convenient choice of input signal is one that minimizes the variance, allowing for a
minimal amount of realizations. Clearly, an input signal with a broadband spectrum like
an impulse f (t) = B δ(t) (for which δ(s) = 1 for all s) is likely to generate a lot of output
variance and is not necessarily a favourable choice for identification. An alternative to
frequency-rich inputs is to use non-resonant harmonic forcings for identification, as we
will see in the next subsubsection.

Another advantage of using a broadband input signal for identification is that if the
ratio η is very small compared to 1 for such an input signal, then the ratio is likely to be
very small for any input signal, hence the LTI approximation based on the mean response
is likely to be meaningful. Expression (3.10) also explains why the quality of the LTI
approximation deteriorates as the sensor moves downstream in figure 5(iv) for u(t) = δ(t).
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Mean resolvent operator of a statistically steady flow

Indeed,
Varφ G(s; u = δ) =

∑
n /= 0

|CTRn(s) B|2, (3.11)

which, according to (3.6), increases downstream since the observability |CT v̂k
j | of the

Floquet modes probably grows downstream (this is obvious for the first Floquet mode
since v̂1

j = ijω0Û j).

3.2.3. System identification using harmonic inputs: ‘dynamic linearity’
The Laplace transform of harmonic forcings of the form f (t) = B eiωt is given by

f (s) = B
s − iω

. (3.12)

Plugging this expression into the input–output relation (3.5) leads to

u(s;φ) =
∑

n

einφ Rn(s) B
s − i(ω + nω0)

. (3.13)

The temporal response may now be evaluated by inverting the Laplace transform. For
the linearly stable limit cycle considered here, the decaying Floquet exponents lead to a
transient response, while all the purely imaginary poles in the right-hand side of (3.13),
in either the transfer operators or the forcing, lead to a permanent contribution. For
non-resonant forcing frequencies ω /= nω0, we have

u(t;φ) = transient

+ R0(iω) B exp(iωt) +
∑
j /= 0

ijω0 Û j(ŵ1
j )

HB exp(ijω0t)

+
∑
n /= 0

exp(inφ)

⎡
⎣Rn(i(ω + nω0)) B exp(i(ω + nω0)t)

+
∑
j /= 0

ijω0 Û j(ŵ1
j−n)

HB exp(ijω0t)

⎤
⎦ . (3.14)

The first line of (3.14) collects the transient contributions, and the second line gathers
terms that are phase-independent, while the third line is phase-dependent and vanishes
upon averaging. However, the point here is not to take an average but to notice that the
Fourier coefficient at the forcing frequency, which may be obtained using a harmonic
average

û(ω;φ) = lim
T ′→∞

1
T ′

∫ T ′

0
u(t;φ) e−iωt dt, (3.15)

is phase-independent and given exactly by the product of the input amplitude f̂ (ω) = B
by the mean resolvent operator evaluated at s = iω:

û(ω) = R0(iω) f̂ (ω) . (3.16)

In other terms, using small-amplitude harmonic forcings, it is possible to obtain
frequency samples of the mean transfer function 〈G〉φ = CTR0B without the need to
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carry out an ensemble average over several realizations. This is in essence the ‘dynamic
linearity’ phenomenon described by Dahan et al. (2012), Dalla Longa et al. (2017) and
Evstafyeva et al. (2017), and used therein for LTI system identification on time-varying
base flows.

In principle, using a superposition of harmonic forcings

f (t) = B(A1 eiω1t + A2 eiω2t + · · · ), (3.17)

it should even be possible to sample the mean transfer function at all input frequencies
at once, using a single input realization, as long as ωi − ωj /= nω0 and ωi /= nω0 for any
i, j > 0.

3.3. Connection with the Koopman operator
The propagator from t′ = 0 to t,

Φ(t, t′ = 0;φ) =
∑

j

N∑
k=1

v̂k
j exp((λk + ijω0)t) exp(ijφ) (wk(0;φ))H, (3.18)

corresponds to the Koopman operator associated with the full-state observable u in the
case of linear dynamics about the time-periodic base flow (Mezić & Surana 2016). The v̂k

j
are the Koopman modes, the Floquet exponents λk + ijω0 are the Koopman eigenvalues,
and u0 �→ eijφ(wk(0;φ))Hu0 are the phase-dependent Koopman eigenfunctions.

Averaging the propagator with respect to φ leads to the mean propagator

〈Φ(t, 0)〉φ =
∑

j

N∑
k=1

v̂k
j exp((λk + ijω0)t) (ŵk

j )
H (3.19)

based on the phase-averaged Koopman eigenfunctions u0 �→ 〈eijφ(wk(0;φ))Hu0〉φ =
(ŵk

j )
Hu0.

By comparing (3.19) and (3.6) for n = 0, we see that the mean resolvent operator is
the frequency domain representation of the mean propagator from 0 to t, i.e. of the mean
Koopman operator for the full-state observable of the LTP system

R0(s) = L[〈Φ(t, 0)〉φ] , (3.20)

where L[·] denotes the Laplace transform.
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Mean resolvent operator of a statistically steady flow

3.4. Connection with LTI dynamics about the mean flow

3.4.1. Connection with the harmonic transfer operator
Evaluating (3.5) at various output frequencies s + ikω0, it is possible to introduce the
harmonic transfer operator H(s;φ) such that⎛

⎜⎜⎜⎜⎜⎝

...

u(s − iω0)
u(s)

u(s + iω0)
...

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
u(s;φ)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
. . .

. . .

. . . R0(s − iω0) R−1(s − iω0) e−iφ R−2(s − iω0) e−2iφ . . .

. . . R1(s) eiφ R0(s) R−1(s) e−iφ . . .

. . . R2(s + iω0) e2iφ R1(s + iω0) eiφ R0(s + iω0)
. . .

. . .
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
H(s;φ)

×

⎛
⎜⎜⎜⎜⎜⎝

...

f (s − iω0)
f (s)

f (s + iω0)
...

⎞
⎟⎟⎟⎟⎟⎠

︸ ︷︷ ︸
f (s)

. (3.21)

The block H jk of this infinite matrix operator characterizes the transfer from the frequency
s + ikω0 of the input f to the frequency s + ijω0 of the output u (Wereley & Hall 1990,
1991; Zhou & Hagiwara 2002; Zhou 2008). The mean resolvent operator appears along
the diagonal of the harmonic transfer operator, as it characterizes the phase-independent
transfer from any frequency of the input to the same frequency at the output. In particular,
we have

R0(s) = H00(s) . (3.22)

3.4.2. The harmonic transfer operator as a feedback loop
Decompose the Jacobian as a mean J̄ and a periodic perturbation J ′(t;φ), which we
expand as a Fourier series

J(t;φ) = J̄ +
∑

j

Ĵ ′
j exp(ij(ω0t + φ))

︸ ︷︷ ︸
J ′(t;φ)

. (3.23)

Because J ′(t;φ) is real, the harmonics have Hermitian symmetry, i.e. Ĵ ′
−j = Ĵ ′∗

j , where
(·)∗ denotes the complex conjugate (not the conjugate transpose (·)H). Moreover, we
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also obviously have Ĵ ′
0 = 0. Since we are considering the incompressible Navier–Stokes

equations, the nonlinearity is quadratic, hence the mean Jacobian is equal to the Jacobian
operator about the mean flow:

J̄ = JŪ . (3.24)

Assuming u0 = 0, taking the Laplace transform of (1.4a,b) and plugging (3.23)-(3.24)
yields

s u(s;φ) = JŪ u(s;φ) +
∑

j

Ĵ ′
j eijφu(s − ijω0;φ) + f (s), (3.25)

which in turn leads, through harmonic balance (Khalil 2002), to an alternative form of the
harmonic transfer operator, also referred to as the harmonic resolvent operator (Padovan,
Otto & Rowley 2020; Franceschini et al. 2022):

H(s;φ) = (D(s) − T (φ))−1. (3.26)

The infinite matrix D(s) is block-diagonal, while T (φ) is block-Laurent (Kumar &
Kulkarni 2015) with zero blocks on the diagonal:

D(s) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
. . .

. . .

. . . (s − iω0)I − JŪ 0 0
. . .

. . . 0 sI − JŪ 0
. . .

. . . 0 0 (s + iω0)I − JŪ
. . .

. . .
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.27)

T (φ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
. . .

. . .
. . .

. . .

. . . 0 Ĵ ′∗
1 e−iφ Ĵ ′∗

2 e−2iφ . . .

. . . Ĵ ′
1 eiφ 0 Ĵ ′∗

1 e−iφ . . .

. . . Ĵ ′
2 e2iφ Ĵ ′

1 eiφ 0
. . .

. . .
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.28)

By recasting (3.26) in the form

H(s;φ) = (I − D−1(s) T (φ))−1 D−1(s), (3.29)

the operator may be interpreted as a feedback loop between the two blocks D−1(s) and
T (φ), as illustrated in figure 6.

A parallel may be drawn with the describing function methodology (Gelb & Vander
Velde 1968), which applies to oscillating systems composed of an LTI block in feedback
loop with a nonlinear time-invariant block, instead of a linear time-varying one as
here. The describing function methodology may be used to obtain transfer functions
parametrized by the forcing amplitude (Noiray et al. 2008), whereas the present
methodology yields transfer functions parametrized by the phase φ. The two approaches
are not mutually exclusive, and one may extend the present framework by adding a
nonlinear time-invariant block as well to consider the effect of forcing amplitude for
harmonic inputs.
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Harmonics

T (φ)

Mean flow
f (s)

H(s; φ)

u(s; φ)
D–1(s)

F
o
rc

in
g

R
esp

o
n
se

+

Figure 6. Block representation of the harmonic transfer operator H(s;φ) as a feedback loop between two
blocks: D−1(s) accounts for interactions with the mean flow, and T (φ) accounts for interactions with the
harmonics of the periodic Jacobian.

The operator D−1(s) is block-diagonal hence does not transfer energy from one
frequency to another. Physically, this block represents interactions of the perturbation with
the mean flow, and this process is independent of the phase φ. This block takes a forcing
at the input and delivers a velocity at the output. The feedback block does the opposite and
corresponds to interactions with the fluctuating part of the periodic base flow. It contains
only off-diagonal terms associated to the various harmonics of the periodic perturbation
flow U ′, meaning that it can only transfer energy from one frequency to another, and
this process is phase-dependent. This alternative interpretation of the harmonic transfer
operator is key to understanding the connection of the mean resolvent operator to the
resolvent operator about the mean flow, as we will see next.

3.4.3. The resolvent about the mean flow approximates the mean resolvent
The inverse (I − D−1(s) T (φ))−1 in (3.29) may be expanded as a Neumann series∑

k�0(D
−1(s) T (φ))k such that

H(s;φ) = D−1(s)︸ ︷︷ ︸
H0(s)

+ D−1(s) T (φ) D−1(s)︸ ︷︷ ︸
H1(s;φ)

+ D−1(s) T (φ) D−1(s) T (φ) D−1(s)︸ ︷︷ ︸
H2(s;φ)

+ · · · .

(3.30)

The series converges if ‖D−1(s) T (φ)‖2 < 1 (here, ‖ · ‖2 denotes the spectral norm, i.e.
maximum singular value, not the H2 norm.). Assume Im(s) =: σ > σmax, where σmax � 0
is the maximum growth rate among the poles of D−1 and H . Then the series converges if
(a) base flow unsteadiness is sufficiently weak or (b) σ is sufficiently large (see § C.1).
Each contribution H i(s;φ) corresponds to going i times around the loop, i.e. interacting i
times with the unsteady part of the base flow.

Expansion (3.30) on the harmonic transfer operator leads to a similar expansion on the
mean resolvent operator since the latter operator is a sub-block of the former according to
(3.22), i.e.

R0 = H0
00 + H1

00 + H2
00 + · · · . (3.31)

This expansion may be interpreted in the following way: H i
00 collects contributions of H ,

which deliver an output at the same frequency as the input, after interacting i times with
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the fluctuating part of the base flow. Using the general terms

D−1
jk (s) := RŪ (s + ijω0)δjk, (3.32)

T jk(φ) := Ĵ ′
j−k ei(j−k)φ, (3.33)

we find

H0
00 = RŪ , (3.34)

H1
00 = 0, (3.35)

H2
00 =

∑
j

RŪ (s) Ĵ ′∗
j RŪ (s + ijω0) Ĵ ′

j RŪ (s), (3.36)

H3
00 =

∑
j,k

RŪ (s) Ĵ ′∗
j RŪ (s + ijω0) Ĵ ′

j−k RŪ (s + ikω0) Ĵ ′
k RŪ (s), (3.37)

...

The order 0 term is equal to the resolvent operator about the mean flow, which corresponds
to interacting 0 times with the fluctuating Jacobian. The order 1 term is exactly 0, because
it is impossible to interact just once with the fluctuating Jacobian and come out of the loop
at the same frequency as the input. The first correction to the resolvent operator about the
mean flow then arises at order 2, when successive interactions with Ĵ ′

k and its complex
conjugate Ĵ ′∗

k = Ĵ ′
−k occur, allowing the output to be at the same frequency as the input.

Expansion (3.31) may be used to bound the absolute and relative differences between
R0 and RŪ . Introduce the system norm

‖G‖∞,σ := sup
ω∈R

‖G(σ + iω)‖2, (3.38)

and, for σ > σmax, the small parameter

εσ :=
∑

k

‖RŪ Ĵ ′
k‖∞,σ , (3.39)

characterizing the (σ -dependent) loop gain associated with the feedback interconnection
of D−1(s) and T (φ), averaged with respect to φ. Using (3.31) and the definition (3.39) of
εσ , we may write

‖R0 − RŪ‖2(s) � ‖RŪ‖2(s) (ε2
σ + ε3

σ + · · · )

= ‖RŪ‖2(s)
ε2
σ

1 − εσ

. (3.40)

The geometric series
∑∞

k=0 εk
σ converges to (1 − εσ )−1 if and only if εσ < 1, which occurs

if either (a) base flow unsteadiness is sufficiently weak or (b) σ is large enough (see § C.2).
Since ‖RŪ‖2(s) → 0 as either σ → ∞ at fixed ω or |ω| → ∞ at fixed σ , the absolute
difference in (3.40) also tends to zero in these limits, i.e. ‖R0 − RŪ‖2(s) → 0. Moreover,
the relative error at fixed s,

‖R0 − RŪ‖2(s)
‖RŪ‖2(s)

= O(ε2
σ ) , (3.41)

is order 2, hence vanishes very quickly with the small parameter εσ . As said already, there
are two independent ways to make εσ small. Taking large σ (option (b)) allows for low
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relative difference between the two operators even in strongly unsteady base flows. But in
this case, using an LTI approximation of the input–output dynamics becomes insufficient
(see ratio η introduced in § 2.2). Therefore, we argue that the key reason why RŪ is a
physically relevant operator in incompressible flows is because it approximates R0 when
base flow unsteadiness is weak (option (a)). The fact that the relative error is order 2 with
respect to base flow unsteadiness may explain the robust agreement observed between the
two operators. In the case of the fluidic pinball (see Bode diagrams in figures 5(iii,iv)),
agreement was observed for a low value of σ = 0.01, indicating small amplification of the
perturbations by the unsteady part of the base flow.

It is interesting to note that the small correction to RŪ involves the unsteady part of
the Jacobian operator, which indirectly incorporates information about the endogenous
nonlinear forcings of McKeon & Sharma (2010) into the linear operator R0. Indeed, the
fluctuating part of the Jacobian is aware of the harmonic balance between the various
Fourier components of the nonlinear base flow. In this regard, the present work may be
seen as an extension of the recent contributions seeking to incorporate information about
nonlinear forcings into the linear operator through either a turbulent viscosity (Morra et al.
2019; Pickering et al. 2021) or a state-feedback operator (Zare et al. 2017).

3.5. Reduced-order models of the mean resolvent
Another way to write the mean resolvent is in the form

R0(s) = C(sI − Λ)−1B , (3.42)

where

C = [. . . , V̂−1, V̂ 0, V̂ 1 . . . ], (3.43)

B = [. . . , Ŵ−1, Ŵ 0, Ŵ 1 . . . ]H, (3.44)

I jk = Iδjk, (3.45)

Λjk = (Λ + ijω0I)δjk. (3.46)

The input (resp. output) matrix B (resp. C) has N columns (resp. rows) and an infinite
number of rows (resp. columns), while the diagonal state matrix Λ is infinite-dimensional.
Expression (3.42) is associated with a state space representation

dtx = Λ x + B f , (3.47)

〈u〉φ = C x, (3.48)

where the internal state x = [. . . , x−1, x0, x1, . . . ]T is an infinite column vector, even
though the input f and the output 〈u〉φ both have a finite dimension N. However, for large
enough |j|, the residuals of the poles λk + ijω0 in Λ become negligible, as they involve the
Fourier coefficients Ŵ j in B, and V̂ j in C (for C∞ functions, the decay is o(1/jm) for any
positive integer m). Hence the infinite-dimensional state vector x may be projected onto a
finite-dimensional one by simply eliminating high-frequency poles based on some cutoff
value for the residual norm.

The resolvent operator about the mean flow approximates R0 and it has only N poles; it
may therefore be interpreted as a reduced-order model of order N of the mean resolvent.
Even though the approximation is good for weakly unsteady flows, the operator RŪ does
not take into account the fluctuating part of the Jacobian, hence the model may not be
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optimal for the fixed order N. Moreover, there is no reason a priori to choose a model order
equal to N; in model reduction, the order is fixed by the minimal number of poles necessary
to capture the input–output dynamics up to a given precision. The appropriate order may
therefore be chosen smaller or greater than N depending on the desired precision.

3.6. The RZIF property
We recall that λ1 = 0 (see § 3.2.1 and Appendix B), therefore s = ijω0 are Koopman
eigenvalues of the mean propagator satisfying exactly the so-called RZIF property
discussed originally in the context of mean flow stability analysis (Turton et al. 2015).
Since v1 = dtU , the associated Koopman modes v̂1

j = ijω0Û j are parallel to the Fourier

components Û j of the periodic base flow. This is only approximately true in the case
of eigenvectors of the mean Jacobian associated with RZIF eigenvalues, unless the
oscillations of the periodic base flow are monochromatic (Mezić 2013; Turton et al. 2015),
or the dynamics is weakly nonlinear (Noack et al. 2003; Sipp & Lebedev 2007) or weakly
unsteady Mezić (2013). Therefore, the proposed framework appears to be more generic
than linear analysis about a mean flow, as the poles of R0 and associated modes satisfy the
RZIF property exactly, while this is only approximately true for RŪ .

Finally, we add that the RZIF property is also verified for unstable periodic base flows,
but in this case the zero Floquet exponent does not correspond to the leading one, i.e.
λ1 /= 0, which has a strictly positive growth rate (see Appendix B).

4. Towards more complex base flows

The previous sections were concerned with only periodic base flows, but the definition
(1.6) of the mean resolvent R0 may be generalized easily to any other statistically steady
base flow. Instead of taking the mean output with respect to the phase φ, more generally
we may take the mean output with respect to the relative time τ0 at which the forcing signal
is released:

mean resolvent R0 : f (s) �→ 〈u(s)〉τ0 . (4.1)

For such a definition to hold, we assume that the single trajectory Ũ(τ ) of the unsteady
base flow, about which we linearize the dynamics, covers the entire dynamical attractor.
Otherwise, an average over multiple base flow realizations also needs to be performed.

We start by performing numerical experiments similar to those in § 2, but for more
complex incompressible two-dimensional base flows. The numerical procedure explained
in § 2.3 is repeated, but now varying the time τ0 at which the impulse is triggered, rather
than the phase φ, which is no longer defined. The definitions introduced in § 2.2 are
extended by replacing 〈·〉φ with 〈·〉τ0 , since now ‘frequency response realizations’ are
parametrized by τ0.

In § 4.1, we consider the fluidic pinball in the quasi-periodic and chaotic regimes by
increasing the Reynolds number to respectively Re = 110 and Re = 120 (Deng et al.
2020). For the quasi-periodic case, an extension of the periodic theory is possible
and reported in Appendix D. Next, in § 4.2, we consider the stochastic flow past a
backward-facing step at Re = 500, as in Hervé et al. (2012). Two values are considered
for the variance σw of the stochastic forcing needed to sustain unsteadiness in the base
flow.

By considering these extra cases, we cover all possible signs of the maximum Lyapunov
exponent (MLE), which is the maximal growth rate associated with the linearized
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Figure 7. Fluidic pinball in different regimes: (i) quasi-periodic at Re = 110, and (ii) chaotic at Re = 120.
(a) Mean velocity norm and streamlines. (b) Phase portraits using y velocity sensors Yb and Yc.

dynamics about a statistically steady base flow. The MLE may be estimated from the mean
impulse response according to

MLE = lim
t→∞

1
t

ln
‖〈u(t)〉τ0‖
‖〈u(0)〉τ0‖

. (4.2)

In the periodic case, it is equivalent to take the ensemble average with respect to τ0 or φ,
and the MLE corresponds to Re(λ1) = 0. In the quasi-periodic case, we also have MLE =
0, for the chaotic regime MLE > 0, and for the stochastic regime MLE < 0 (results of
these computations are reported in Appendix E). The goal is to provide numerical evidence
of the strong connection between the mean resolvent and the resolvent about the mean flow
in all these cases, even though our theory applies to only the periodic and quasi-periodic
cases.

Finally, in § 4.3, we discuss implications of our previous theoretical analysis for the case
of compressible flows.

4.1. Quasi-periodic and chaotic flows: fluidic pinball at Re = 110 and Re = 120
The numerical set-up is identical to that of § 2 (with more details in Appendix A) for
Re = 100.

4.1.1. Unsteady base flow
In figure 7(a), we plot the streamlines and velocity norm isocontours for the mean flow in
the quasi-periodic case and chaotic cases. We notice that the mean flow is asymmetric in
the quasi-periodic case, but symmetric in the chaotic case. The recirculation zone is more
extended downstream in the latter case.

In figure 7(b), we plot the phase portrait of the flow, using the vertical velocity probes
2 and 3. The amplitude of the fluctuations increases with the Reynolds number. The
phase portrait is well-structured in the quasi-periodic case, but it is impossible to infer
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the dimensionality of the torus from this two-dimensional projection of the attractor. The
complex structure of the phase portrait in figure 7(b-ii) is typical of chaotic dynamics.

Fourier spectra are shown in row (i) of figures 8 and 9 for each flow at each probe
location (a–c). These confirm the qualitatively different dynamics of the flows: the
spectrum is discrete in the quasi-periodic case, while it is continuous in the chaotic case,
despite the apparent presence of peaks. In the latter case, the peaks possess an intrinsic
non-zero bandwidth, unlike in the periodic and quasi-periodic cases, where the ‘thickness’
of the peak arises only from the estimation error of the discrete Fourier transform. It
is not possible to infer directly the number of basic incommensurate frequencies in the
quasi-periodic case by examining the spectra, but clearly there is energy in a much greater
number of frequencies compared to the periodic case (see figure 5(i) for comparison).

4.1.2. Procedure
In both the quasi-periodic and chaotic cases, Ns = 204 impulse responses are computed
over more than 1000 convective time units, each starting 2 convective time units after
the preceding one, i.e. 	τ0 = 2. We assumed that this procedure allowed us to sample
a representative part of these attractors with a single realization of Ũ(τ ). We recall that
σ > MLE is necessary for convergence of the Laplace transform of the linear impulse
response. In the quasi-periodic case, the shifted frequency response is evaluated for σ =
0.01 since MLE = 0. For the chaotic case, we choose σ = 0.03 since MLE = 0.02 (see
Appendix E).

4.1.3. Results
Results are reported respectively in figures 8 and 9 for Re = 110 and 120, and they are
qualitatively very similar to the periodic case in figure 5. The ratio η increases as the probe
moves downstream, and as a consequence, the assumption of time-invariant input–output
dynamics is quite poor for probes b and c, whereas it is quite good for probe a. Unlike for
Re = 100, the ratio η is never smaller than 1 for probe c at Re = 110 and 120, even when
the mean estimate is converged. The convergence of the mean estimate is also slower
downstream than upstream, and the number of samples Ns = 204 is insufficient at almost
all frequencies for probe c using impulsive forcings u(t) = δ(t).

Good overall agreement between the Bode diagrams of GŪ and 〈G〉τ0 is observed for
the two flow regimes. For probe a, the Bode diagrams of the two transfer functions are
nearly undistinguishable from one another in both cases, except in the vicinity of some
energetic peaks in the power spectrum of the base flow (see row (i)). For some high enough
frequencies ω > 4, there are also noticeable differences between the two transfer functions
at probes b and c, even when η <

√
Ns. However, mean estimate convergence is ensured

only when η 	 √
Ns, so it is difficult to conclude on these deviations.

In the quasi-periodic case, we notice the presence of resonance peaks in the mean
transfer functions, at natural frequencies of the unsteady base flow, which are not visible
in GŪ . Resonances at high frequencies are not visible in the near wake and manifest only
at sensors b and c in the far wake. The observations made for the quasi-periodic case are
similar to the periodic case, and the same justification may be provided in both cases (see
Appendix D for an extension of the theory developed in § 3 to the quasi-periodic case).
It is interesting to note that the close agreement between 〈G〉τ0 and GŪ carries over to
the chaotic regime, even though we do not have a theory for base flows with a continuous
power spectrum.
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Figure 8. Fluidic pinball in the quasi-periodic regime at Re = 110. The labels (a)–(c) correspond to the three
sensor positions. (i) Fourier spectrum of measurement of the unsteady base flow Y . The spectrum is discrete,
and no averaging is done, so a single Hann window is applied over the entire signal of more than 1000 time
units. (ii) Ratio η (defined in (2.7)) for Ns = 204 impulsive forcings u(t) = δ(t). The black dashed line indicates
the threshold η = 1 far below which the system is nearly LTI (with respect to u = δ). The green dashed line
indicates the threshold η = √

Ns far below which the estimate of the mean transfer function is converged. Gain
(iii) and phase (iv) of mean frequency response estimate 〈G〉τ0,Ns (solid blue) and frequency response about the
mean flow GŪ (dashed red). Light-grey shading indicates frequency ranges where 1 < η <

√
Ns, and dark-grey

shading corresponds to η �
√

Ns. In the phase plots, the two black-dotted curves indicate a shift of +/ − π

with respect to the phase of GŪ . For rows (ii), (iii) and (iv), all quantities are evaluated on the shifted imaginary
axis σ + iω, with σ = 0.01.

4.2. Stochastic flow: backward-facing step at Re = 500
The numerical set-up and code for the nonlinear flow are identical to that of Hervé et al.
(2012) and Sipp & Schmid (2016). The mesh has 63 902 triangles, 32 792 vertices and N =
258 970 velocity degrees of freedom. The length unit corresponds to the height h of the
step, while the (convective) time unit corresponds to h/U∞. The time step is dt = 0.002.
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Figure 9. Same as figure 8 for the chaotic regime at Re = 120, with Ns = 204 samples and σ = 0.03.

The main difference compared with the fluidic pinball is that the steady base flow is
linearly stable hence requires constant forcing in order to reach a statistically stationary
unsteady state. The forcing is chosen to be of the form F (t) = Bw w(t), with w a Gaussian
white noise, and Bw a discretized Gaussian volume force B(x, y; x0, y0, σx, σy) with
(x0, y0) = (−0.5, 0.25) and σx = σy = 0.1 (see (2.2) for the definition of B and the white
squares centred at (x0, y0) in figures 10a,b). Two noise variances are considered: σw =√

10 and σw = 10, respectively representing weakly and strongly nonlinear dynamics as in
Hervé et al. (2012).

Linear perturbations about the time-varying base flow are solved in a similar fashion
to the case of the fluidic pinball (see Appendix A). Note that the forcing F produces the
nonlinear base flow Ũ and should not be confused with f = Bu, which produces the
linear response u about Ũ . The actuator B is a discretized version of B with (x0, y0) =
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Figure 10. Isocontours of mean velocity norm and streamlines for the backward-facing step flow at Re = 500:
(a) σw = √

10, (b) σw = 10, where σw is the root-mean-square of the amplitude w(t) multiplying the external
noise field Bw (white square), such that F (t) = Bww(t). The actuator is B (white triangle), and y velocity probes
are placed at locations a and b in the shear layer (white dots), while a friction measurement (white rectangle)
is taken at c. (c) Time series of Ya for σw = √

10 (dashed black line) and σw = 10 (blue solid line).

(−0.05, 0.01) and (σx, σy) = (0.01, 0.1) (see the white triangles in figures 10a,b). We
again use three probes to monitor the flow response: two y velocity probes in the shear
layer at (2.5, 0) and (5, 0), and a friction sensor at 12.5 � x � 12.9 on the lower wall,
behind reattachment (see the white dots and rectangles in figures 10a,b). The perturbation
and base flow measurements will also be denoted y = CTu and Y = CTU , with index a,
b or c when necessary.

4.2.1. Unsteady base flow
The effect of the noise variance on the mean flow is quite visible in figure 10(a) for
σw = √

10 and figure 10(b) for σw = 10. For stronger perturbations, the recirculation
region shrinks, with a reattachment point at x = 10.7 in the first case, and x = 8.3 in
the second case. Time series of sensor a are also shown in figure 10(c): the signals are
clearly stochastic, and the fluctuation amplitude is consistent with σw. The Fourier spectra
are shown in row (i) of figures 11 and 12 for the two values of σw and the three probes
(a–c). The spectra are broadband, and there is more perturbation energy at higher σw, as
expected. Also, perturbation energy increases further downstream, from sensor a to sensor
c. At sensor a, the spectrum for σw = 10 is roughly equal to that for σw = √

10, multiplied
by a frequency-independent factor of

√
10, which is indicative of quasi-linear behaviour.

The signature of strong nonlinear effects is visible downstream, as the spectra for both
values of σw no longer have the same overall shape: saturation occurs at ω ≈ 1, where
linear amplification mechanisms dominate.

4.2.2. Procedure
Again, we use a single realization of Ũ(τ ) corresponding to a single random time series
w(τ ), but vary the relative time τ0 of linear impulsive forcing to obtain various impulse
responses. The nonlinear flow is initialized with the steady base solution (fixed point),
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Figure 11. Same as figure 5 for the backward-facing step flow at σw = √
10 (low-noise case), with Ns = 308

samples. Unlike for the fluidic pinball, the frequency response is on the imaginary axis, with no shift since
MLE < 0. The continuous power spectrum is obtained by averaging over Hann windows of 86 convective
times each, with 50 % overlap, for a total signal length of 860 time units.

and after a transient of more than 150 time units, it is considered statistically stationary
and linear impulses are then performed. The time lag 	τ0 between two impulses is of
2 convective time units, as in the quasi-periodic and chaotic flows. We run Ns = 308
linearized impulse responses, over 220 time units only. Indeed, while impulse responses
never decay for the fluidic pinball since MLE � 0, they do for the backward-facing step
flow since MLE < 0 (see Appendix E), and reach negligible amplitude over that period of
time, making shorter integration possible. Since MLE < 0, the Laplace transform may be
evaluated directly on the imaginary axis.
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Figure 12. Same as figure 11 for the high-noise case σw = 10, with Ns = 308 samples.

4.2.3. Results
Results for the stochastic case are presented in figures 11 and 12, respectively
corresponding to low σw = √

10 and high σw = 10 noise variance. Interestingly, the results
are qualitatively very similar to those for the fluidic pinball, even though the nature of the
dynamics is quite different. The main difference is that there are no longer sharp variations
in the gain and phase at very specific frequencies, in accordance with the absence of
resonance peak in the base flow spectrum (see row (i)).

The value of η increases downstream, slowing down the convergence of the mean
estimate, and progressively invalidating the time-invariant approximation. This is
correlated to spatial perturbation growth in the streamwise direction. Similarly, increasing
the noise variance σw has a negative impact on η, as unsteady perturbations become
stronger. For probes a and b, there is a region where the time-invariant approximation
is satisfactory, i.e. η < 1, which is located around the maximum gain, for both values
of σw. The frequency of maximum linear amplification of u coincides with that of
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maximum nonlinear amplification of the white noise w (see the base flow power spectrum
in row (i)).

4.3. Strongly compressible flows
It was pointed out recently by Karban et al. (2020) that resolvent analysis about the mean
flow is ill-posed in the case of strongly compressible flows, where large discrepancies
in the optimal gains are observed depending on the formulation of the Navier–Stokes
equations, whether in primitive or conservative variables. The inconsistency was attributed
to the fact that the mean flow eigenvalues are not conserved under a nonlinear coordinate
change. Numerical experiments have not been carried out here for compressible cases,
but we wish to highlight the potential of the mean resolvent to resolve this issue, since
we showed that the poles of the operator correspond to Floquet exponents (and Koopman
eigenvalues) of the system in the LTP case (see §§ 3.1 and 3.3), which are invariant under
a nonlinear coordinate change (see Appendix F).

Another point that we want to stress is the assumption (3.24) that we made early on
in § 3.4 that the mean Jacobian is equal to the Jacobian operator about the mean flow.
This is no longer true for cubic nonlinearities found in the compressible Navier–Stokes
equations written in either primitive or conservative formulation. However, we may still
use expansion (3.34)–(3.37) if we replace RŪ with

RJ̄(s) = (sI − J̄)−1, (4.3)

which we may call the resolvent operator about the mean Jacobian. Alternatively, a
quadratic formulation of the compressible Navier–Stokes equations may be used (Vigo
1998; Iollo, Lanteri & Désidéri 2000), even though this form may not handle shock
discontinuities easily due to its non-conservative form.

5. Conclusions and outlook

This paper is concerned with the definition of a time-invariant operator best characterizing
linear input–output behaviour in statistically steady flows. Rather than making the ad
hoc assumption that the governing equations should be linearized about a time-invariant
mean flow, we force the time-varying tangent system about unsteady trajectories on
the attractor and collect the responses to the same input signal for various realizations
of the unsteady base flow (this is done by varying the relative time τ0 at which the
input is triggered on a single base flow trajectory). We then consider the ensemble
average of responses produced by the given input to obtain a mean transfer function. By
considering two-dimensional incompressible configurations, the fluidic pinball and the
backward-facing step flow, we investigated four possible dynamical regimes: periodic,
quasi-periodic, chaotic and stochastic. Inverting the order between the linearization and
averaging steps led to interesting findings.

First, our framework allows us to quantify the validity of the time-invariant hypothesis
for a given input signal and probe, frequency by frequency. The ratio η between the
standard deviation and the module of the mean quantifies the uncertainty associated
with the mean frequency response and may be used for robust controller design. In all
flows considered, the frequency response based on RŪ appears to approximate the mean
frequency response very well, but the two objects are not identical. In particular, for the
periodic case, extra resonance peaks at exact multiples of the fundamental frequency (or
frequencies) are visible in the mean transfer function.
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We were able to explain these observations in the periodic and quasi-periodic cases,
by averaging the harmonic transfer operator (Wereley & Hall 1990, 1991; Padovan et al.
2020; Franceschini et al. 2022) with respect to the relative initial time of forcing τ0, or
simply phase ω0τ0 = φ mod 2π in the periodic case. Mean transfer functions based on the
resulting mean resolvent operator R0, may be identified from input–output data without
the need for averaging over several input realizations if harmonic forcings are used, even
though the linearized system is not time-invariant. This justifies the principle of ‘dynamic
linearity’ put forward by Dahan et al. (2012), Dalla Longa et al. (2017) and Evstafyeva
et al. (2017) in the context of flow control.

We then showed that the poles of R0 correspond to (quasi-)Floquet exponents of the
LT(Q)P system, which may also be interpreted as Koopman eigenvalues. As a result, these
poles are invariant under a nonlinear coordinate change, i.e. do not depend on an arbitrary
choice of formulation for the Navier–Stokes equation. This strong property may help to
solve the ambiguity of classical resolvent analysis about a mean flow noted recently by
Karban et al. (2020), which is particularly noticeable in strongly compressible flows. There
is also a set of marginally stable poles at multiples of the fundamental frequency, which
causes the resonance peaks in the mean transfer functions. This so-called RZIF property
(Turton et al. 2015), which is only approximate when considering the poles of RŪ , appears
to be exact when considering the poles of R0.

Next, we further investigated the connection between RŪ and R0, and found that the
former operator approximates the latter in the incompressible case (the link is lost for cubic
nonlinearities) within the weakly unsteady limit, where amplification by the unsteady part
of the base flow is small compared to amplification due to the mean flow. The relative
difference between the two operators also vanishes for large positive growth rates (and the
absolute difference vanishes for large frequencies). There are, however, two key differences
between the two operators. One is that R0 indirectly incorporates information about the
endogenous nonlinear forcing term of McKeon & Sharma (2010), which is not taken into
account by RŪ , unless turbulent viscosity (Morra et al. 2019; Pickering et al. 2021) or
state-feedback (Zare et al. 2017) is introduced. The missing information is embedded in
the fluctuating part of the Jacobian, which is aware of the nonlinear equilibrium between
the various Fourier components of the base flow. The other difference is that R0 has
an infinite-dimensional internal state, while RŪ has a finite-dimensional one. However,
only a finite number of poles make a significant contribution to R0, explaining why a
finite-dimensional approximation of this operator, in terms of internal state, is possible.

The definition of a new resolvent operator R0 is intended to extend that of the usual
resolvent operator RŪ about the mean flow, therefore any analysis that may be done with
RŪ (reduced-order modelling, data assimilation of second-order statistics, input–output
analysis, flow control, etc.) may, in principle, also be done with (improved) R0, using yet
to be defined numerical methods. For instance, a compelling prospect would be to compute
the singular modes of R0 and compare them with the spectral POD modes to see if they
align better than the singular modes of RŪ . It is hoped that the new operator may help us
to understand and overcome the observed shortcomings of the classical resolvent operator,
i.e. modelling of nonlinear forcings and compressibility effects. However, it is important
to note that the present paper does not address turbulent or compressible flows directly,
and future work needs to be done to confirm the relevance of R0 to these flows.

From a theoretical standpoint, an interesting perspective would be to extend the present
formalism to the case of continuous or mixed spectra characteristic of chaotic, stochastic
and turbulent flows. Koopman operator theory may be key to this endeavour (Črnjarić-Žic,
Maćešić & Mezić 2020). From a methodological standpoint, a key question would be to
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M1 M2 M3 M4

No. of triangles 19 628 66 668 78 538 102 965
No. of vertices 10 041 33 739 39 725 52 005
CL asymmetric base flow Re = 75 0.0383305 0.0381093 0.0381902 0.0381794
CL asymmetric base flow Re = 100 0.0610811 0.0608825 0.0609652 0.0609484
CD asymmetric base flow Re = 75 3.91464 3.91629 3.91598 3.91634
CD asymmetric base flow Re = 100 3.66636 3.66776 3.66721 3.66758

Table 2. Resolution tests on lift and drag coefficients CL and CD for asymmetric base flow at Re = 75
and Re = 100.

find an optimal way to compress the infinite state of the mean resolvent operator into a
finite one. Since the mean resolvent is related to the mean Koopman operator, this problem
may perhaps be tackled using extensions of the dynamic mode decomposition method
(Schmid 2010; Williams, Kevrekidis & Rowley 2015; Herrmann et al. 2021). Recent papers
enhancing the predictive power of RŪ using optimization techniques (Zare et al. 2017;
Pickering et al. 2021) may possibly bear connections with this compression problem.

Declaration of interests. The authors report no conflict of interest.
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Appendix A. Fluidic pinball: discretization and numerical methods

As in Deng et al. (2020), the computational domain extends over −6 � x � 20 and −6 �
y � 6, with the same Dirichlet boundary condition Ũ = (1, 0) at the inflow x = −6, ‘top’
y = 6 and ‘bottom’ y = −6 boundary conditions. A standard outflow boundary condition
P̃n − Re−1 ∇Ũ · n = 0 is used at x = 20, which is similar to the stress-free boundary
condition of Deng et al. (2020). The boundary condition on the cylinders is obviously
no-slip and impermeability, i.e. Ũ = 0. The freely available software FreeFem++ (Hecht
2012) is used to time march the incompressible Navier–Stokes equations discretized on
Taylor–Hood finite elements, with P2 for velocity components and forcings, and P1 for
pressure. The mesh comprises 66 668 triangles and 33 739 vertices, and the total number
of velocity degrees of freedom, including both components, is N = 268 296.

In order to validate spatial resolution, we produce four meshes, M1–M4, of variable
refinement, and compute the lift and drag coefficients for the asymmetric steady base flow
at Re = 75 and Re = 100. The coefficients are based on the total force by unit length
exerted on all three cylinders normalized by 1/2ρU2∞D, where ρ denotes density. The
results are given in table 2 and justify our choice of mesh M2 for the present study.
Note that the values provided here do not match those of Deng et al. (2020) as the
authors did not include the viscous contribution to the forces (private communication).
For completeness, we provide in figure 13 the temporal evolution of the lift coefficient in
the periodic regimes at Re = 6 875 100 analysed by Deng et al. (2020), using the usual
definition of the coefficients. This may be useful for validation purposes in future studies
on this configuration.

The solvers are based on a sequential open-source code without time splitting
(https://github.com/denissipp/AMR_Sipp_Schmid_2016; Sipp & Schmid 2016). Code
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Figure 13. Time-delay embedded plot of lift coefficient for the periodic regimes at (a) Re = 68, (b) Re = 75,
and (c) Re = 100.
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Figure 14. Realization of linear impulse response about quasi-periodic flow at Re = 110 for dt = 0.01 (solid
red), dt = 0.005 (dashed blue) and dt = 0.0025 (dotted black), on all three probes (a–c).

parallelization was found unnecessary for this study, which requires multiple realizations
of impulsive forcings that can be run in parallel indeed. The nonlinear problem is solved
in perturbative form with respect to the time-invariant base flow Ũb (i.e. fixed point),
after computing the latter using a Newton method. The time stepping is semi-implicit:
the diffusion term and interaction of the perturbation Ũ ′′ := Ũ − Ũb with Ũb are
implicit, while the interaction of Ũ ′′ with itself is explicit (Adams–Bashforth). The linear
non-autonomous problem about the time-varying base flow is also solved semi-implicitly:
the diffusion term and interaction of the perturbation u with Ũb are implicit, while the
interaction of u with Ũ ′′ is explicit (also Adams–Bashforth). The time stepping scheme is
second order for both problems; however, we found the latter to be more sensitive to step
size than the former. Temporal resolution tests were carried out for linear impulses about
the quasi-periodic flow at Re = 110. Figure 14 shows a portion of an impulse response
for the three values dt = 0.01, 0.05, 0.0025, indicating convergence for the lower value
dt = 0.0025 on all three probes. Finally, the linearized time stepping code was validated
by computing the impulse response about the time-averaged mean flow. The corresponding
‘frequency response realization’ (shifted in the right half-plane, as specified in § 2.3) was
obtained by taking the Laplace transform of the impulse response and then compared with
frequency samples computed using the resolvent operator about the mean flow (on the
same shifted axis).

Appendix B. Marginal Floquet exponents for self-sustained periodic base flow

We find it useful to include a proof of this classical result. The periodic base flow U is
a solution of the unforced discretized incompressible Navier–Stokes equations projected
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onto the space of solenoidal velocity fields,

dtU = F (U), (B1)

and by differentiating with respect to time

dt(dtU) = ∇U(t)F︸ ︷︷ ︸
J(t)

dtU . (B2)

Since dtU is a solution of the unforced LTP system, its evolution from t′ to t is governed
by the propagator

dtU(t) = Φ(t, t′) dtU(t′)

= V (t) eΛ(t−t′) W H(t′) dtU(t′). (B3)

For t′ = t − T , using the periodicity of dtU(t) and the Floquet modes, we have

[I − V (t)eΛTW H(t)]dtU(t) = 0, ∀t. (B4)

Clearly, dtU(t) is a Floquet mode associated with the fundamental Floquet exponent 0 (and
copies ijω0 in complementary strips). Since the periodic base flow is stable and Floquet
exponents are ranked in decreasing order of growth rate, we have λ1 = 0 and v1 = dtU .
Note that if the base flow is an unstable periodic orbit of the unforced system, then there
is still a zero Floquet exponent, but it will no longer be the leading one since the MLE has
to be strictly positive.

Appendix C. Convergence of operator expansions

In this appendix, we consider operators acting on continuous functions of space, and
replace fonts accordingly; for instance, the Jacobian matrix Ĵ ′

i is replaced by the operator
Ĵ ′

i . For simplicity, we will consider the specific case of spatially periodic C∞ functions in
an infinite one-dimensional domain with period L, such that

RŪ(s) =
[
sI − (−Ū∂x + Re−1 ∂2

xx)
]−1

, (C1)

Ĵ ′
i = −Û′

i∂x, (C2)

where Ū and Û′
i are scalar constants (homogeneous base flow along x) and I is the

identity. The fundamental wavenumber 2π/L is denoted kL. In this functional space,
Fourier modes {en : x �→ einkLx, n ∈ Z} form an orthonormal basis for the canonical inner
product (a, b)H := (1/L)

∫ L
0 a∗(x) b(x) dx.

C.1. Harmonic transfer operator
The continuous-in-space version of series (3.30) converges if and only if the spectral
radius ρ(L) of the operator L(s;φ) := D−1(s)T (φ) is strictly less than 1 (Suzuki
1976). The operator L is an infinite matrix of operators L = (Ljl)j,l∈Z, where Ljl =
RŪ(s + ijω0)Ĵ ′

j−l exp(i(j − l)φ). Introduce en, the infinite diagonal matrix of operators
such that en

j,l = enδjl. The columns of this matrix are orthonormal with respect to the
inner product [a, b] = ∑

j(aj, bj)H . The operator L is said to be block-diagonal because
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it leaves invariant the subspaces Vn generated by the columns of en (and these subspaces
are in a direct sum). More specifically, for every n, we may represent the operator L|Vn
as an infinite matrix Ln, i.e. Len = enLn, where (for values of s that do not cancel the
denominator; it suffices that σ = Im(s) > 0)

Ln
jl = −

Û′
j−l ei(j−l)φ inkL

s + ijω0 + ŪinkL + Re−1 n2k2
L
, (C3)

therefore the operator norm is
‖L‖ = sup

n
‖Ln‖ (C4)

(see Conway 1990, p. 30). Moreover, ρ(L) � ‖L‖ so it is sufficient to show that
supn ‖Ln‖ < 1 in appropriate conditions. For any given n, we have Ln = inkL rn(s) u′,
where

rn
jl(s) = (s + ijω0 + ŪinkL + Re−1 n2k2

L)−1δjl, (C5)

u′
jl = Û′

j−l ei(j−l)φ, (C6)

are respectively a diagonal matrix and a Laurent matrix of Fourier coefficients of U′(t;φ).
The operator norm being submultiplicative, we have ‖Ln‖ � |n| kL ‖rn‖ ‖u′‖. For σ >

0, we have ‖rn(s)‖ � (σ + Re−1 n2k2
L)−1. Moreover, ‖u′‖ � ‖U′‖∞ = maxt |U′(t)| (see

chapter III in Gohberg, Kaashoek & Spitkovsky 2003), therefore

‖L(s)‖ � kL ‖U′‖∞ max
n

n

σ + Re−1 n2k2
L

(C7)

� ‖U′‖∞
2kL

√
Re
σ

(C8)

(evaluating the maximum over the set of real numbers). Interestingly, there are two
independent ways to make the norm of L(s) small: either (a) weak base flow unsteadiness
‖U′‖∞, or (b) large σ .

To check the bound (C8) numerically, we choose U′(t;φ) := 2
∑∞

j=1 e−j cos[j(ω0t +
φ)] such that Û′

j = e−|j| and ‖U′‖∞ = 2/(e − 1) ≈ 1.16. We also choose Re = kL = Ū =
1 and ω0 = π. For each value of n, we define the finite-dimensional approximation Ln,m :=
(Ln)−m�i,j�m of Ln. We may then approximate the operator L by the finite block-diagonal
matrix Lm := blkdiag[L−m,m, . . . , L0,m, . . . , Lm,m]. For such finite-dimensional matrices,
we simply have ρ(Lm) = maxn ρ(Ln,m) and ‖Lm‖2 = maxn ‖Ln,m‖2. The results are
plotted in figure 15(a) where we fix s = 0.1 + 1i and vary 0 � m � 250, and in
figure 15(b) where we fix m = 250 and ω = 1, and vary −1 � log10(σ ) � 4. Figure 15(a)
confirms that m = 250 is large enough to converge the spectral radius and norm of L(s) for
the s considered (we verified that this the case for all values of σ in figure 15(b) as well).
Figure 15(b) confirms expression (C8) for the bound and the decrease of the spectral norm
as O(σ−1/2), which guarantees that the Neumann series (3.30) converges at any ω for large
enough σ > 0.

C.2. Mean resolvent operator
Since the mean resolvent is a sub-block of the harmonic transfer operator, the convergence
of the Neumann series (3.30) implies the convergence of expansion (3.31) for the mean
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Figure 15. (a) Evolution of the spectral norm/radius of the finite-dimensional approximation Lm of L(s)
with m for s = 0.1 + i. (b) Evolution of the spectral norm/radius of L250 for s = σ + i versus σ , with bound
from (C8).

resolvent. Moreover, similarly to (C8), it may be shown that for any integer j,

‖RŪJ ′
j ‖∞,σ �

|Û′
j|

2kL

√
Re
σ

, (C9)

where ‖ · ‖∞,σ is the maximum value of the operator norm over all real frequencies ω, for a
given value of σ > 0. Since U′(t) is C∞, Û′

j = o(1/jm) for any integer m, and in particular

for m � 2, therefore the quantity
∑

j |Û′
j| is well-defined, and so is εσ := ∑

j ‖RŪĴ ′
j ‖∞,σ

(continuous version of definition (3.39)).
Again, it is interesting to note that there are two independent ways to make εσ small: (a)

by reducing
∑

j |Û′
j|, which is a measure of base flow unsteadiness; (b) by increasing σ .

Appendix D. Extension of theory to quasi-periodic flows

The theory presented in § 3 appears to extend to quasi-periodic flows. Indeed, m-tori
possess m basic incommensurate frequencies Ω = [ω0, ω1, . . . , ωm−1]T, hence their
discrete Fourier spectrum is indexed by Zm instead of Z. By simply introducing a bijection
b from Z to Zm such that b(0) = (0, . . . , 0), it seems that we can reuse the same formalism
as in § 3.4.2. Using this bijection, the Fourier expansion of the quasi-periodic Jacobian
reads

J(t; τ0) = JŪ +
∑

k

Ĵ ′
k exp(i b(k) · Ω(t + τ0)), (D1)

and the random phase φ ∈ [0, 2π) is now replaced with a random relative initial time τ0
at which point the linear forcing is switched on. The hatted quantities are now defined as
harmonic averages (Arbabi & Mezić 2017):

Ĵ ′
k := lim

T→∞
1
T

∫ T

0
J ′(t; τ0) exp(−i b(k) · Ω(t + τ0)) dt. (D2)

In general, b is not odd, i.e. b(k) /=−b(−k) for k /= 0, hence we do not have Hermitian
symmetry, i.e. Ĵ ′

−k /= Ĵ ′∗
k . However, since J ′ is real, for all k /= 0 there must exist p such

that Ĵ ′
p = Ĵ

′∗
k . We now provide an example of a bijection from Z to Zm. Cantor’s pairing

function π(α1, α2) := 1
2(α1 + α2)(1 + α1 + α2) + α2 defines a well-known bijection
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from N2 to N. It may be generalized by recurrence over m � 2, using πm(α1, . . . , αm) :=
π(πm−1(α1, . . . , αm−1), αm) and π1 := Id; the πm are called Cantor tuple functions and
represent bijections from Nm to N. A well-known bijection from Z to N is provided by the
function f such that f (α) = 2α if α � 0, and f (α) = −2α − 1 otherwise. By composing
f and πm, a bijection b from Z to Zm may be formed, which satisfies the condition
b(0) = (0, . . . , 0).

Using this bijection, we recover an equivalent of the harmonic transfer operator in the
quasi-periodic regime. The block H jk maps the input f at frequency s + i b(k) · Ω to the
output u at frequency s + i b(j) · Ω . For j, k ∈ Z, the general terms of the two infinite
block matrices D(s) and T (φ) simply change to

Djk(s) := [(s + i b(j) · Ω)I − JŪ ]δjk, (D3)

T jk(τ0) := Ĵ ′
j−k exp(i(b(j) − b(k)) · Ωτ0). (D4)

We conclude, as in the periodic case, that the resolvent operator RŪ about the mean
Jacobian approximates the mean resolvent operator R0, and that corrective terms are of
order 2 with respect to εσ .

Following Mezić (2020), an equivalent to Floquet’s theorem in the quasi-periodic
regime, due to Sell (1978), may also be formulated: under appropriate conditions, there
exists a quasi-periodic transformation P(t; τ0) and a constant matrix K such that the system
(1.4a,b) admits a propagator of the form Φ(t, t′; τ0) = P(t; τ0) eK(t−t′) P−1(t′; τ0). Direct
and adjoint quasi-Floquet modes V (t; τ0) and W (t; τ0) may be defined in the same way as
before, but they are now quasi-periodic instead of periodic, and adjoint with respect to the
inner product (a, b) := limT→∞(1/T)

∫ T
0 aHb dt. The propagator may then be written as

Φ(t, t′; τ0) = V (t; τ0) exp(Λ(t − t′)) W H(t′; τ0), (D5)

with

V (t; τ0) =
∑

k

V̂ k exp(i b(k) · Ω(t + τ0)), W (t; τ0) =
∑

k

Ŵ k exp(i b(k) · Ω(t + τ0)),

(D6a,b)
and Λ a diagonal matrix of quasi-Floquet exponents. We therefore arrive at an expression
similar to (3.5):

u(s;φ) =
∑

n

exp(i b(n) · Ωτ0) Rn(s) f (s − i b(n) · Ω), (D7)

with the operators

Rn(s) =
∑

j

N∑
k=1

v̂k
j (ŵ

k
j−n)

H

s − (λk + i b(j) · Ω)
. (D8)

Just as before,

〈u(s)〉τ0 = R0(s) f (s). (D9)
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Figure 16. Estimation of MLE for the five simulations, based on the mean impulse response:
(a) backward-facing step flow for (a-i) σw = √

10 and (a-ii) σw = 10; fluidic pinball at (b-i) Re = 100,
(b-ii) Re = 110 and (c-ii) Re = 120.

Appendix E. Maximum Lyapunov exponent in various configurations

The MLE (4.2) is evaluated from the partial-state measurement y = [ya, yb, yc]T as

MLE = lim
t→∞

1
t

ln
‖〈y(t)〉τ0‖
‖〈y(0)〉τ0‖

. (E1)

In the periodic case, taking an ensemble average with respect to τ0 is equivalent to taking
an ensemble average with respect to φ. Results are shown in figure 16 for the five cases
considered. Even though the time series are not long enough to reach full convergence of
the MLE, they clearly demonstrate the three sought behaviours: (a) MLE < 0, (b) MLE =
0, (c) MLE > 0. The noise amplifier has negative MLE that depends on the noise intensity:
the larger σw, the larger |MLE|. Both the periodic and quasi-periodic regimes have null
MLE. In the quasi-periodic case, the number of zero Lyapunov exponents provides the
dimensionality of the torus (Oteski et al. 2015), i.e. the number of basic incommensurate
frequencies, but here we computed only the maximum one. In the chaotic case (fluidic
pinball at Re = 120), we find MLE ≈ 0.02.

Appendix F. Invariance of the Floquet exponents to a coordinate change

Consider the bijective nonlinear coordinate change h on the base flow

Uh = h(U). (F1)

The invertible periodic matrix

N(t;φ) = ∇U(t;φ)h (F2)

characterizes the change of coordinate of the linear variables

uh = N(t;φ) u, f h = N(t;φ) f . (F3a,b)
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The propagator of the LTP system for the new input–output variables is simply given by

Φh(t, t′;φ) = V h(t;φ) exp(Λ(t − t′)) W H
h (t′;φ), (F4)

where direct/adjoint Floquet modes change basis

V h(t;φ) = N(t;φ) V (t;φ), W h(t′;φ) = N(t′;φ) W (t′;φ), (F5a,b)

but Floquet exponents in the fundamental strip remain characterized by the same
matrix Λ.
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