INTERPOLATION AND INEQUALITIES FOR FUNCTIONS OF EXPONENTIAL TYPE: THE ARENS IRREGULARITY OF AN EXTREMAL ALGEBRA

by M. J. CRABB and C. M. McGREGOR

(Received 10 April, 1992)

For any compact convex set $K \subset \mathbb{C}$ there is a unital Banach algebra Ea(K) generated by an element h in which every polynomial in h attains its maximum norm over all Banach algebras subject to the numerical range V(h) being contained in K, [1]. In the case of K a line segment in \mathbb{R} , we show here that Ea(K) does not have Arens regular multiplication. We also show that ideas about Ea(K) give simple proofs of, and extend, two inequalities of C. Frappier [4].

For $K = [-\tau, \tau]$, $\tau > 0$, the generator h is Hermitian; equivalently, $||e^{ith}|| = 1$ ($t \in \mathbb{R}$), with $V(h) = \operatorname{Sp}(h) = [-\tau, \tau]$. For the inequalities we use the fact that the operator D of differentiation on B_{τ} , the space of entire functions f such that $|f(z)|e^{-\tau(\operatorname{Im}z)}$ is bounded for $z \in \mathbb{C}$, is i times a Hermitian, where we give $f \in B_{\tau}$ the norm $||f|| = \sup\{|f(x)| : x \in \mathbb{R}\}$. This is all we require here; in fact with h = -iD this gives a realization of $Ea[-\tau, \tau]$, [2].

We may assume, replacing h by $\alpha h + \beta$ for suitable $\alpha, \beta \in \mathbb{C}$, that $K = [-2\pi, 2\pi]$, so that h is Hermitian: that is, $||e^{ith}|| = 1$ $(t \in \mathbb{R})$. As in [2], any entire function f such that $|f(z)|\exp(-2\pi |\text{Im }z|)$ is bounded for $z \in \mathbb{C}$ gives a functional $\phi \in Ea(K)'$, by $\phi(e^{izh}) = f(z)$ $(z \in \mathbb{C})$. By [5] a Banach algebra A is Arens irregular if, for some bounded sequences a_m, b_n in A and ϕ in A', the two repeated limits of $\phi(a_m b_n)$ exist and differ.

Proposition 1. $Ea[-2\pi, 2\pi]$ is Arens irregular.

Proof. Let $0 < \beta < 1$ and define, for $z \in \mathbb{C}$,

$$f(z) = \frac{\pi^2}{[\Gamma(z)^2 \Gamma(1+\beta-z)\Gamma(1-\beta-z)]}.$$

Since $1/\Gamma$ is entire, so is f. By [3, p. 47(5)], for Re z > 0 and $\alpha \in \mathbb{C}$, $z^{\alpha}\Gamma(z)/\Gamma(z+\alpha) \to 1$ uniformly as $|z| \to \infty$. Hence $\Gamma(z-\beta)\Gamma(z+\beta)/\Gamma(z)^2 \to 1$, and so we obtain here $f(z)/[\sin \pi(z-\beta)\sin \pi(z+\beta)] \to 1$ as $|z| \to \infty$, Re z > 0. For Re z < 0 we find similarly that $f(z)/\sin^2 \pi z \to 1$ as $|z| \to \infty$. These imply that f satisfies the above mentioned conditions so that $\phi(e^{izh}) = f(z)$ defines $\phi \in Ea[-2\pi, 2\pi]'$.

Take $a_m = e^{imh}$ and $b_n = e^{-inh}(m, n \in \mathbb{N})$, so that $||a_m|| = ||b_n|| = 1$. Then $\phi(a_m b_n) = f(m-n)$. The limits involving f(z) give $\lim_{k \to \infty, k \in \mathbb{Z}} f(k) = -\sin^2 \pi \beta \neq 0 = \lim_{k \to -\infty, k \in \mathbb{Z}} f(k)$. Hence by Pym's criterion $Ea[-2\pi, 2\pi]$ is Arens irregular.

Turning to the inequalities, we rephrase theorem 3 of [4] equivalently as follows.

PROPOSITION 2. If all the zeros z_k of $p(z) = \alpha z^2 + \beta z + \gamma$ have $\text{Im } z_k \leq 0$, then for $f \in B_{\tau}$,

$$|\alpha f''(x) + \beta f'(x) + \gamma f(x)| \le |p(i\tau)| \sup\{|f(t)| : t \in \mathbb{R}\} \qquad (x \in \mathbb{R}).$$

Proof. Since the operator iD is Hermitian, with $Sp(D) = [-\tau i, \tau i]$, [6] gives that for any $\zeta \in \mathbb{C}$, $D - \zeta I$ has norm equal to spectral radius, and so $||D - \zeta I|| = \max\{|\zeta + \tau i|, |\zeta - \tau i|\}$. Hence $||D - z_k I|| = |\tau i - z_k|$ for each k, and so $||p(D)|| \le |p(\tau i)|$. Since $p(\tau i) \in Sp(p(D))$ we have $||p(D)|| - |p(\tau i)|$, which is the required result.

Glasgow Math. J. 35 (1993) 325-326.

This argument shows that the proposition holds for polynomials of any degree. The inequality of theorem 4 of [4] follows similarly: we restrict D to the subspace of B_{τ} of functions f with |f(z)| bounded for Im $z \ge 0$, which gives now $Sp(D) = [0, \tau i]$.

The Arens regularity problem when K has interior remains open. We are grateful to J. Duncan for useful discussions on this topic.

REFERENCES

- 1. M. J. Crabb, J. Duncan and C. M. McGregor, Some extremal problems in the theory of numerical ranges, *Acta Math.* 128 (1972), 123-42.
- 2. M. J. Crabb and C. M. McGregor, Polynomials in a Hermitian element, *Glasgow Math. J.* 30 (1988), 171-6.
 - 3. A. Erdelyi, Higher transcendental functions, Vol. 1 (McGraw-Hill, 1953).
- 4. C. Frappier, Inequalities for entire functions of exponential type, Canad. Math. Bull. 27 (1984) 463-71.
- 5. J. S. Pym, The convolution of functionals on spaces of bounded functions, *Proc. London Math. Soc.* (3) 15 (1965) 84–104.
- 6. A. M. Sinclair, The norm of a Hermitian element in a Banach algebra, *Proc. Amer. Math. Soc.* 28 (1971) 446-50.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF GLASGOW GLASGOW G12 8OW