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CRACK STIT TESSELLATIONS: CHARACTERIZATION
OF STATIONARY RANDOM TESSELLATIONS STABLE
WITH RESPECT TO ITERATION
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Abstract

Our main result is the proof of the existence of random stationary tessellations in d-
dimensional Euclidean space with the following stability property: their distribution
is invariant with respect to the operation of iteration (or nesting) of tessellations with
an appropriate rescaling. This operation means that the cells of a given tessellation
are individually and independently subdivided by independent, identically distributed
tessellations, resulting in a new tessellation. It is also shown that, for any stationary
tessellation, the sequence that is generated by repeated rescaled iteration converges
weakly to such a stable tessellation; thus, the class of all stable stationary tessellations is
fully characterized.
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1. Introduction

In this paper, we introduce a new model for random stationary tessellations (where by
‘stationary’ we mean that their distributions are translation invariant) in the d-dimensional
Euclidean space R

d , d ≥ 1. A mathematical motivation for these tessellations comes from the
consideration of iteration (or nesting) of tessellations. The operation of iteration generates a
new tessellation I (Y0, Y) from a ‘frame’ tessellation Y0 and a sequence Y = {Y1, Y2, . . . } of
independent, identically distributed (i.i.d.) tessellations by subdividing the ith cell, pi , of Y0
by intersecting it with the cells of Yi, i = 1, 2, . . . . This operation of iteration can be applied
repeatedly, and combined with an appropriate rescaling. The problem arises as to whether there
exists a limit tessellation when the number of repetitions goes to infinity. A further question is
how such limit tessellations can be described if they exist. This problem was posed to one of
the authors by R. V. Ambartzumian in the 1980s. A related question was stated in [3].

A key notion in the investigation of limits is that of stability with respect to an operation.
In a previous paper [10], the authors showed that a stationary tessellation can appear as a limit
(in the sense of weak convergence) of repeated rescaled iteration if and only if it is stable with
respect to iteration (STIT). We also listed some properties of STIT tessellations, but the main
problem of their existence remained open. (The ‘tentative construction’ described in Section 5
of [10] fails to demonstrate this.)
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In this paper, we describe a construction for all stationary random tessellations that are
STIT. Furthermore, it is shown that all sequences of rescaled repeated iterations of stationary
tessellations converge to a tessellation of the above-mentioned class. Thus, the domains of
attraction of the STIT tessellations are also characterized.

Concerning potential applications, these STIT tessellations can probably be good approx-
imations for real tessellations with ‘hierarchical’ structures, which can be observed in some
crack or fracture structures, e.g. the so-called craquelée on pottery surfaces (see [11]).

The definitions of iteration and of STIT tessellations are recalled in Section 3. In Section 2,
the model, referred to as a crack STIT tessellation, is introduced and its construction inside
a bounded window W is described in detail. A key property of this construction is given in
Lemma 2. This property looks rather technical, but provides the basis for the proof of the main
result, namely Theorem 2. Section 4 is devoted to the study of the capacity functional of the
random closed set of all boundary points of the cells of the crack STIT tessellation. These results
are of their own interest, but in the context of the present paper they serve as a useful basis for
several proofs. In particular, the limit of a sequence of capacity functionals corresponds to the
limit in the sense of weak convergence of random closed sets. Finally, in Section 6, the domains
of attraction of crack STIT tessellations are described as the sets of all stationary tessellations
in R

d that have the same parameters SV and R. For a stationary tessellation, the mean total
(d − 1)-volume of the set of boundary points of cells per unit d-volume is SV , and R is the
directional distribution (‘rose of directions’) of the cell boundaries at a typical point (see [15]
for exact definitions). The principal tool in the proof is a generalized version of Korolyuk’s
theorem, which is well known for point processes on the real axis. It is a consequence of this
result that the crack STIT tessellations described in Section 2 are the only stationary STIT
tessellations that exist.

2. Description of the model for crack tessellations in a bounded window

Let R
d denote the d-dimensional Euclidean space, N the set of natural numbers, and [H , H]

the measurable space of all hyperplanes in R
d , where the σ -algebra is induced by the Borel

σ -algebra on a parameter space for H . For a set A ⊂ R
d , we write

[A] = {g ∈ H : g ∩ A �= ∅}.
For a hyperplane g ∈ H , denote by g+1 and g−1 the two closed half-spaces that are generated
by g. Let � be a locally finite and translation-invariant measure on [H , H]. In order to guarantee
that tessellations with bounded cells are generated by the construction which is described later,
it is assumed that � is not concentrated in too few directions, i.e. we will assume that the
following condition holds in all sections of the paper.

Condition 1. There exist hyperplanes g1, . . . , gd ∈ H with linearly independent normal
directions and {g1, . . . , gd} ⊆ supp(�), where supp(�) denotes the support of �.

In this section, W ⊂ R
d is a fixed compact set, sometimes referred to as the window. (For the

sake of simplicity the reader may choose, e.g. W = [−l, l]d , l > 0.) An essential assumption
is that

0 < �([W ]) < ∞. (1)

We introduce the construction of the tessellations in such a bounded window; in Section 5, it
will be shown that their distribution does not depend on the choice of W .
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2.1. Intuitive ideas and description using an algorithm

The intuitive idea of the construction is as follows. The window W has an exponentially
distributed ‘lifetime’. At the end of this time interval a random hyperplane γ1 is introduced
into W , and divides W into two new ‘cells’. These two cells have independent and exponentially
distributed lifetimes until they are divided by further random hyperplanes. After any division,
the exponentially distributed lifetimes of the new cells begin, and they are independent of all
the other lifetimes. Special attention must be paid to the adjustment of the parameters of these
exponential distributions. Roughly speaking, these parameters are related to the size of the
respective cells such that smaller cells have stochastically longer lives than do larger ones. This
procedure of repeated cell division is stopped at a fixed time a > 0 and the state at this time is
interpreted as a realization of the tessellation R(a, W) as a set of random polytopes.

For a better understanding and picture of the construction of this tessellation, we start with a
description of R(a, W) as the output of an algorithm. In this algorithm, we use an auxiliary set,
T , of pairs (τ, W ′), where τ is the time that has already expired and W ′ ⊆ W is a set that has
still to be treated, i.e. which is probably subdivided further. An i.i.d. sequence {(τj , γj )}, j =
1, 2, . . . , of pairs of independent random variables is given. Here, τj is exponentially distributed
with parameter �([W ]) and γj is a random hyperplane with distribution �([W ])−1�(·∩ [W ]).
Algorithm (a, W, �). Initialize as follows: j = 0, T = {(0, W)}, R = ∅.

until T = ∅ for (τ, W ′) ∈ T do

(i) j = j + 1

(ii) if τ + τj ≤ a then

(a) if γj ∈ [W ′] then T = (T \{(τ, W ′)})∪{(τ +τj , W
′ ∩γ +1

j ), (τ +τj , W
′ ∩γ −1

j )}
(b) else T = (T \ {(τ, W ′)}) ∪ {(τ + τj , W

′)}
(iii) else T = T \ {(τ, W ′)}, R = R ∪ {W ′}
end

The output of the algorithm is R(a, W) ≡ R, which is a set of random convex polytopes in
W if W itself is a convex polytope. An example of a realization for d = 2 and a discrete measure
� that gives equal weights to the horizontal and vertical directions is shown in Figure 1.

For any two pairs (τ ′, W ′), (τ ′′, W ′′) ∈ T , we have (int W ′)∩(int W ′′) = ∅, i.e. the interiors
of W ′ and W ′′ are disjoint. Hence, the distribution of the output does not depend on the order
in which the elements of T are treated in the for-loop of the algorithm.

The algorithm corresponds to the following intuitive interpretation of the development of
R(a, W). Consider the τj to be the lengths of time intervals. The sets W ′ featuring in T have
exponentially distributed lifetimes until they are divided by a hyperplane γj . At the moment
of division, the independent lifetimes of the two new cells W ′ ∩ γ +1

j and W ′ ∩ γ −1
j begin.

Although the random variables τj are identically distributed, the rejection principle, expressed
by the condition ‘if γj ∈ [W ′]’, yields a lifetime for W ′ that, except for those W ′ which appear
in the resulting output R(a, W), i.e. when the time bound a is reached during the lifetime of a
cell, is exponentially distributed with parameter �([W ′]).
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Figure 1: An example (provided by Joachim Ohser) of a realization of the construction in algorithm
(a, W, �), where � is concentrated equally in the horizontal and vertical directions.

2.2. Formal description

We start the formal description with a sequence {(τj , γj )} of i.i.d. pairs of independent
random variables τj and γj , j = 1, 2, . . . , where the τj are exponentially distributed with
parameter �([W ]) and the γj are random hyperplanes with distribution �([W ])−1�(· ∩ [W ]).
For any a > 0, we will define a deterministic function that maps the sequence {(τj , γj )} to a
set of convex polytopes which intersect W .

For the sake of convenience, we will use the terminology of graph theory. For the definitions
of the following notions, see, e.g. [7] or [6]. Denote by B the following infinite-level binary
tree, in which all nodes have two children. The set of nodes is {(τj , γj , s(j)), j = 1, 2, . . . },
with s(j) ∈ {−1, +1} and the convention that the root of B is (τ1, γ1, 1). On the next level,
the ‘left-hand’ child is (τ2, γ2, −1) and the ‘right-hand’ child is (τ3, γ3, 1). In this canonical
way the nodes are denoted level by level and, on each level, from left to right. The nonrandom
parameter s(j) has the value −1 for all left-hand children and +1 for all right-hand children.

For a real a > 0, the random tree B(a) is defined as the (almost surely) finite subtree of B,
with the same root (τ1, γ1, 1), that has (τjk+1 , γjk+1 , s(jk+1)) as a leaf if and only if

k∑
i=1

τji
≤ a <

k+1∑
i=1

τji
(2)

for the path (τ1, γ1, 1), (τj2 , γj2 , s(j2)), . . . , (τjk+1 , γjk+1 , s(jk+1)). Here and in the following,
j1 = 1 and s(j1) = s(1) = 1. If τ1 > a then B(a) is the tree with the root (τ1, γ1, 1) as its
only node. We will typically write a path in B(a) from the root to a leaf in the abbreviated form
(s(j1), . . . , s(jk+1)), i.e. only indicating the indices along this path and whether the steps are
going to the left-hand or to the right-hand child. This is sufficient for the determination of a
path in a binary tree.

As in the algorithm above, we will interpret τji
as the time interval between the introductions

of the random hyperplanes γji−1 and γji
into the window W . The interval τ1 is the time elapsed

before the first hyperplane γ1 is introduced. Thus, the tree B(a) contains all paths which
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(1)

(2) (3)

(4) (5) (6) (7)

(12) (13) (14) (15)

(28) (29)

(58) (59)

Figure 2: An example of a subtree B(a) of B. The lengths of the paths from the root to the leaves are
determined by condition (2). Subtree B(a) corresponds to the structure given in Figure 3 and also to the

scheme in Figure 4 (see below).

characterize the development up to time a. An illustrative example is given in Figure 2. Denote
the set of all paths in B(a) from the root to the leaves by

β(a) = {(s(j1), . . . , s(jk+1)) ∈ {+1} × {−1, +1}k :
k ≥ 0, (s(j1), . . . , s(jk+1)) is a path to a leaf in B(a)}.

We will use the abbreviated notation γ s(ji+1) for γ
s(ji+1)

ji
. Notice that these half-spaces are

specified by γji
and the parameter s(ji+1) associated with the next node in the path. For an

a > 0, we define the set R(a, W) = {W } if β(a) = {(1)}, i.e. if τ1 > a; otherwise,

R(a, W) =
{( k⋂

i=1

γ s(ji+1)

)
∩ W : (s(j1), . . . , s(jk+1)) ∈ β(a)

}
\ {∅}. (3)

Note that there can occur paths (s(j1), . . . , s(jk+1)) ∈ β(a) with

γjl+1 �∈
[ l⋂

i=1

γ s(ji+1) ∩ W

]
, 1 ≤ l ≤ k − 1,

and, thus, γjl+1 does not divide the cell. Hence,

l⋂
i=1

γ s(ji+1) ∩ W ∩ γ s(jl+2)

is either empty or does not differ from the undivided previous cell
⋂l

i=1 γ s(ji+1) ∩ W . This
means that such a γjl+1 can be rejected or ignored in the construction; for the formalism in our
proofs, it is more convenient to include it in the description.

Obviously, R(a, W) is a random set of convex polytopes, intersected with W . We will typi-
cally understand a random tessellation as the random closed set of the union of the boundaries
of its polyhedral cells, exclusive of the boundary of W . Accordingly, for an a > 0, we introduce
the set

Y (a, W) = cl

(( ⋃
W ′∈R(a,W)

∂W ′
)

\ ∂W

)
, (4)

https://doi.org/10.1239/aap/1134587744 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1134587744


864 • SGSA W. NAGEL AND V. WEISS

γ29

γ2

γ6

γ3

γ14

γ1

γ7

Figure 3: A realization of Y (a, W) that corresponds to the tree B(a), shown in Figure 2. Note that not
necessarily all nodes of B(a) yield an edge: e.g. if γ14 fell to the left of γ1 then it would have to be
ignored. Consequently, in this case γ29 would extend from γ1 to the right-hand boundary of the window

W (dashed line).

where ∂W ′ denotes the boundary of the set W ′ and ‘cl’ the topological closure of a set. An
example is shown in Figure 3.

Later in the paper, we will provide relations between the tessellations for different values
of a. By convention, we choose a = 1.

Definition 1. The tessellation Y (1, W) is called the crack STIT tessellation for the measure �

in W .

Although in this definition the term ‘STIT’ is used, an exact definition of stability will be
postponed to Section 3, and it will be the main task of the following sections to prove that
Y (1, W) is indeed a tessellation stable with respect to iteration. Furthermore, we will show
that its distribution is consistent, i.e. that Y (1, W) can be understood as the restriction to W of
a stationary random tessellation of R

d . The set R(1, W) is the set of cells of Y (1, W).
Algorithm (a, W, �) can be related to the formal description with the help of binary trees, in

the following way. Follow all paths (s(j1), . . . , s(jk+1)) ∈ β(a) and perform the intersection
stepwise as

l⋂
i=1

γ s(ji+1) ∩ W

for l = 1, 2, . . . , k. If such an intersection is empty for some l, then this path is not followed
further since it will not contribute to the set of cells in R(a, W). At the end of those paths that
do not yield an empty intersection, the resulting polytopes occur. Since both the τj and the γj

are i.i.d., the order of indices which are used in the algorithm must not be the same as in the
tree B.

The union of boundaries Y (1, W), or the set of polytopes R(1, W), indeed represents a
tessellation in W since, according to (3), the elements of R(1, W) have disjoint interiors and
fill W , since in the tree B(1) a node either has both right-hand and left-hand children (with the
s-values +1 and −1, respectively) or is a leaf without children. This property can also be derived
from the algorithm. We now show that the tessellation is almost surely (a.s.) nondegenerate.

Lemma 1. If 0 < �([W ]) < ∞ then, for all a > 0, R(a, W) is a.s. finite.
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Proof. The process Xt = card(β(t)), t > 0, of the number of paths in β(t) is a Furry–Yule
or linear birth process (see [5] or [13]) with parameter �([W ]), i.e. with birth rates �([W ])Xt .
As is well known (see [5]), the random variable Xt has a geometric distribution with parameter
exp{−�([W ])t}, which implies that

P(Xt < ∞) = 1 for all t > 0.

The definition given in (3) yields card(R(a, W)) ≤ card(β(a)) and, thus,

P(card(R(a, W)) < ∞) ≥ P(card(β(a)) < ∞) = 1.

There is an obvious relation showing how the length, a, of the time interval and the intensity
commute. If τj is exponentially distributed with parameter �([W ]), then c−1τj is exponentially
distributed with parameter c�([W ]), for any c > 0. Since the above-defined distribution of
the hyperplanes γj is invariant with respect to constant prefactors c for �, we can immediately
derive that, for a given �, R�(a, W) := R(a, W) has the same distribution as Rc�(c−1a, W),
i.e. the construction with measure c� and time interval of length c−1a.

3. The crucial relation between the iteration of tessellations and the construction

For tessellations, the operation of iteration (also referred to in the literature as nesting) is
defined as follows. Let Y1, Y2, . . . be a sequence of i.i.d. stationary tessellations in R

d and write
Y = {Y1, Y2, . . . }. Furthermore, assume that Y0 is a stationary tessellation that is independent
of Y. For this definition, it is useful to consider the set of cells (which are convex polytopes),
C(Y ), of a tessellation Y . Assume that these cells are numbered and that C(Y0) = {p1, p2, . . . }.
The iteration of the tessellation Y0 and the sequence Y is defined as the tessellation

I (Y0, Y) = Y0 ∪
⋃

pi∈C(Y0)

(Yi ∩ pi). (5)

This formula describes the operation in terms of the boundaries of the cells. For the cells
themselves, it means that the cells pi of the so-called frame tessellation Y0 are independently
subdivided by the cells pik , k = 1, 2, . . . , (or faces) of the tessellations Yi that intersect the
interior of pi . A list of references concerning iteration can be found in [10].

For a real number r > 0, the tessellation rY is generated by transforming all points x ∈ Y

into rx. Accordingly, rY denotes the application of this transformation to all tessellations of
the sequence Y. Let SV be the mean total (d − 1)-volume of the set of boundary points of cells
per unit d-volume (surface intensity) of any of the tessellations Y0, Y1, . . . . Then I (Y0, Y) has
the surface intensity 2SV and I (2Y0, 2Y) has the surface intensity SV .

Let Y0 be a stationary tessellation and Y1,Y2, . . . a sequence of sequences of tessellations
such that the tessellations involved (includingY0) are i.i.d. Then the sequence I2(Y0),I3(Y0), . . .

of rescaled iterations is defined by (see [10])

I2(Y0) = I (2Y0, 2Y1),

Im(Y0) = I (mY0, mY1, . . . , mYm−1)

= I (I (mY0, mY1, . . . , mYm−2), mYm−1), m = 3, 4, . . . .

Here, m is the rescaling factor, which is chosen to keep the parameter SV of the tessellation
Im(Y0) constant for all m. Later, in Section 6, it will be shown that this also yields the
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convergence of Im(Y0), as m → ∞, to a nondegenerate tessellation. We use the abbreviation
Im(Y0) since it is assumed that all the other tessellations in the sequences Y1, Y2, . . . are
independent and have the same distribution as Y0.

The symbol ‘
d=’ is used to denote equality of distributions.

Definition 2. A stationary tessellation Y is said to be stable with respect to iteration (STIT) if

Y
d= Im(Y ) for all m = 2, 3, . . . ,

i.e. if its distribution is not changed by repeated rescaled iteration with sequences of tessellations
with the same distribution.

This stability concept is related to the stability of the union of random closed sets. The
operation of iteration, as defined in (5), is essentially a union of parts of (d − 1)-dimensional
mosaic faces. Hence, it can be seen, in close analogy to the results of [8, Proposition 3-5-1,
p. 67], that for STIT tessellations the scaling exponent is necessarily 1, i.e. m1 is essentially the
only scaling factor that guarantees convergence.

The crux of this section is (7), which provides a key property of the tessellations described in
Section 2: iteration of these tessellations commutes with the addition of time intervals for the
construction. This feature will allow us to give an elegant proof that the crack tessellations
are indeed STIT. The proof of Lemma 2 is essentially based on the ‘lack of memory’ of
the exponential distributions, which implies that (R(t, W))t>0 and (Y (t, W))t>0 are Markov
processes.

Here we denote the elements of R(a, W) by Wu, u ∈ N.

Lemma 2. Let R(a, W), R1(b, W), R2(b, W), . . . be independent random sets of polytopes
(intersected with W ) defined according to (3), with a, b > 0. Then

⋃
Wu∈R(a,W)

{Wu ∩ Wui : Wui ∈ Ru(b, W), int Wu ∩ int Wui �= ∅} d= R(a + b, W). (6)

For independent tessellations Y0(a, W), Y1(b, W), Y2(b, W), . . . , as defined in (4), and

Y(b, W) = {Y1(b, W), Y2(b, W), . . . },
we have

I (Y0(a, W), Y(b, W))
d= Y (a + b, W). (7)

Proof. Due to the independence of the τj andγj , j = 1, 2, . . . , and the lack of memory of the
exponential distribution, for all a > 0, t > 0, l = 0, 1, . . . , and all paths (s(j1), . . . , s(jl+1))

in B we have

P

( l+1∑
i=1

τji
> a + t

∣∣∣∣
l∑

i=1

τji
≤ a <

l+1∑
i=1

τji

)
= P(τ1 > t).

Write βp(b) for i.i.d. copies of β(b) indexed by p ∈ β(a). For a given path (s(j1), s(j2), . . . )

in B, denote by l(a) the random index for which

l(a)∑
i=1

τji
≤ a <

l(a)+1∑
i=1

τji
.
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Figure 4: The scheme of time intervals up to time a. This corresponds to the example of the tree B(a)

in Figure 2. Here the lengths of the horizontal segments are proportional to the τ -values.

Note that the cases k = 0 and τ1 > a, i.e. l(a) = 0, are also included in the following
considerations. We then have

R(a + b, W)

=
{( k⋂

i=1

γ s(ji+1)

)
∩ W : (s(j1), . . . , s(jl(a)), . . . , s(jk+1)) ∈ β(a + b)

}
\ {∅}

=
⋃

(s(j1),...,s(jl(a)+1))∈β(a)

{l(a)⋂
i=1

γ s(ji+1) ∩
k⋂

i=l(a)+1

γ s(ji+1) ∩ W :

(s(j1), . . . , s(jl(a)), . . . , s(jk+1)) ∈ β(a + b)

}
\ {∅}

d=
⋃

p=(s(j1),...,s(jl(a)+1))∈β(a)

{(l(a)⋂
i=1

γ s(ji+1) ∩ W

)
∩

k′⋂
i=1

γ s(j ′
i+1) :

(s(j ′
1), . . . , s(j

′
k′+1)) ∈ βp(b)

}
\ {∅}

=
⋃

Wu∈R(a,W)

{Wu ∩ Wui : Wui ∈ Ru(b, W), int Wu ∩ int Wui �= ∅}.

Thus, (6) holds.
An interpretation of the above derivation is as follows (see Figure 4 for an illustration).

Observe the process of construction at time a. On each path (of the tree B(a + b)) the time
interval from a to the introduction of the next hyperplane is

∑l(a)+1
i=1 τji

− a. This has the

https://doi.org/10.1239/aap/1134587744 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1134587744


868 • SGSA W. NAGEL AND V. WEISS

same distribution (exponential with parameter �([W ])) as τj ′
1

for any index j ′
1. Hence, the

distribution of the result is the same for both methods: either continue the construction at
time a with the ‘remainder’ of the lifetime of each cell, or at time a start a new lifetime τj ′

1
and

thus start the construction of a set Ru(b, W) ∩ Wu, where Wu is a polytope in R(a, W). In the
terminology of trees, this latter method means that, at each leaf u of B(a), an independent copy
Bu(b) of B(b) is appended by replacing this leaf by the root of Bu(b) but keeping the s-value
of u.

In order to prove (7), consider the boundaries of the polytopes in corresponding sets R.
Denote by Y0(a, W) and

Y(b, W) = (Y1(b, W), Y2(b, W), . . . )

independent copies of tessellations with the same distributions as Y (a, W) and Y (b, W),
respectively. Thus, using (5), we have

I (Y0(a, W), Y(b, W)) = Y0(a, W) ∪
⋃

Wu∈R(a,W)

(Yu(b, W) ∩ Wu)
d= Y (a + b, W).

In a preliminary manuscript for the present paper, the authors constructed a very detailed
proof of Lemma 2 by considering the joint distributions of paths of the trees described above.
There are no difficulties in it and it follows straightforwardly along the lines of the proof given
here.

4. Properties of the capacity functional of Y(a, W)

Let C denote the set of all compact subsets of R
d . The distribution of the random closed

set Y (a, W) is uniquely determined by its capacity functional TY(a,W) : C → [0, 1], which is
defined as

TY(a,W)(C) = P(Y (a, W) ∩ C �= ∅) for C ∈ C.

We will not give a general explicit formula for this capacity functional here, but will express
some of its features that are useful in the proofs in Sections 5 and 6.

Lemma 3. If C ∈ C is connected, with C ⊂ W , then, for a > 0,

1 − TY(a,W)(C) = P(Y (a, W) ∩ C = ∅) = e−a�([C]).

Proof. For k ≥ 1, with the i.i.d. assumption for the γj and the abbreviation

(k)∑
=

∑
(s(j1),...,s(jk+1))∈{1}×{−1,+1}k

,

first note that we obtain

(k)∑
P

(
C ⊂

k⋂
i=1

γ s(ji+1)

)
=

(k−1)∑
P

(
C ⊂

k−1⋂
i=1

γ s(ji+1)

)
P(γjk

�∈ [C])

= P(γ1 �∈ [C])k

=
(

�([W ]) − �([C])
�([W ])

)k
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by recursion. Recall the following well-known relation between the Poisson and exponential
distributions. For the given parameters it is written as

P

( k∑
i=1

τi ≤ a <

k+1∑
i=1

τi

)
= (a�([W ]))k

k! e−a�([W ]), k = 0, 1, . . . .

Thus, owing to the independence assumptions, for a connected set C ⊂ W we have

P(Y (a, W) ∩ C = ∅)

= P(R(a, W) = {W }) + P(R(a, W) �= {W }, Y (a, W) ∩ C = ∅)

= P(τ1 > a) + P

(
τ1 ≤ a and there exists a k ≥ 1 and a path

(s(j1), . . . , s(jk+1)) ∈ β(a) such that C ⊂
k⋂

i=1

γ s(ji+1)

)

= P(τ1 > a) +
∞∑

k=1

(k)∑
P

( k∑
i=1

τji
≤ a <

k+1∑
i=1

τji

)
P

(
C ⊂

k⋂
i=1

γ s(ji+1)

)

= e−a�([W ]) +
∞∑

k=1

(a�([W ]))k
k! e−a�([W ])

(
�([W ]) − �([C])

�([W ])
)k

= e−a�([C]).

Let C0 denote the set of all compact sets with finitely many connected components. For
C ∈ C0, which consists of more than one connected component, we now derive a recursion
formula. For C ∈ C0 with C = ⋃k

i=1 Ci , k ≥ 2, where the Ci ∈ C are connected and
Ci ∩ Cj = ∅ for i �= j , define the sets

{Z1, Z2} =
{⋃

i∈J1

Ci,
⋃

i∈{1,...,k}\J1

Ci

}
(8)

for all nonempty sets J1 ⊂ {1, . . . , k} with J1 �= {1, . . . , k}. In the notation for these sets we
omit reference to J1, and symbolically write

∑
Z1,Z2

for the sum over all such sets. (Notice
that these are not ordered pairs!) Denote by [Z1 | Z2] the set of all hyperplanes that separate
Z1 and Z2. By conv C we denote the convex hull of C.

Lemma 4. If C ∈ C0 has more than one connected component and C ⊂ W , then, for a > 0,

P(Y (a, W) ∩ C = ∅) = e−a�([conv C]) +
∑

Z1,Z2

a�([Z1 | Z2])
∫ 1

0
dte−ta�([conv C])

× P(Y (a(1 − t), W) ∩ Z1 = ∅) P(Y (a(1 − t), W) ∩ Z2 = ∅).

Proof. The sets Z1 and Z2, which are defined as in (8), are separated for the first time by
the hyperplane γjl

if there is a path (s(j1), . . . , s(jl+1)) in B(a) such that C = Z1 ∪ Z2 ⊂⋂l−1
i=1 γ s(ji+1), with

Z1 ⊂
l−1⋂
i=1

γ s(ji+1) ∩ γ s(jl+1), Z2 ⊂
l−1⋂
i=1

γ s(ji+1) ∩ γ (−s(jl+1)),

or if the same expressions hold with Z1 and Z2 interchanged.
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If we assume that such a path exists, we can focus our attention on the subtrees of B(a) with
the roots s(jl+1) and −s(jl+1). The subtree with the root s(jl+1) generates – according to (3)
and (4) – a tessellation inside

⋂l
i=1 γ s(ji+1) that has the same distribution as

Y

(
a −

l∑
i=1

τji
, W

)
∩

l⋂
i=1

γ s(ji+1).

With these preliminary considerations, we are able to prove the lemma. To do this, we
partition the event Y (a, W)∩C = ∅ with respect to all partitions {Z1, Z2} of C into two parts,
and with respect to the length l of the path in B(a) when Z1 and Z2 are separated for the first
time. When we use indices such as those in Y1(·, W) and Y2(·, W), we assume that these two
tessellations are independent. With the substitutions r = ∑l

i=1 ti and t = r/a, the formula for
the volume of an (l − 1)-dimensional simplex, and with the abbreviation

∑(l) as in the proof
of Lemma 3, this yields

P(Y (a, W) ∩ C = ∅)

= P(Y (a, W) ∩ conv C = ∅) + P(Y (a, W) ∩ conv C �= ∅, Y (a, W) ∩ C = ∅)

= e−a�([conv C])

+
∑

Z1,Z2

∞∑
l=1

(l)∑ ∫ a

0
dt1 · · ·

∫ a

0
dtl

{
(�([W ]))le−(�([W ]) ∑l

i=1 ti ) 1[0,a]
( l∑

i=1

ti

)

× P

(
conv C ⊂

l−1⋂
i=1

γ s(ji+1)

)
P(γjl

∈ [Z1 | Z2])

× P

(
Y

(
a −

l∑
i=1

tji
, W

)
∩ Z1 = ∅

)
P

(
Y

(
a −

l∑
i=1

tji
, W

)
∩ Z2 = ∅

)}

= e−a�([conv C])

+
∑

Z1,Z2

�([Z1 | Z2])
∫ a

0
dr

{
e−r�([W ])

× P(Y (a − r, W) ∩ Z1 = ∅) P(Y (a − r, W) ∩ Z2 = ∅)

×
∞∑
l=1

(�([W ]) − �([conv C]))l−1
∫ r

0
dt1 · · ·

∫ r

0
dtl−1 1[0,r]

( l−1∑
i=1

ti

)}

= e−a�([conv C])

+
∑

Z1,Z2

a�([Z1 | Z2])
∫ 1

0
dt{e−ta�([conv C])

× P(Y (a(1 − t), W) ∩ Z1 = ∅) P(Y (a(1 − t), W) ∩ Z2 = ∅)}.

Here, 1[·] is an indicator function.
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Lemmas 3 and 4 and a straightforward calculation yield the following corollary.

Corollary 1. If C = C1 ∪ C2 ∈ C0 has exactly two disjoint connected components, C1 and
C2, and C ⊂ W , then, for a > 0,

P(Y (a, W) ∩ C = ∅)

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

e−a�([conv C]) + �([C1 | C2])

×e−a�([conv C]) − e−a�([C1])e−a�([C2])

�([C1]) + �([C2]) − �([conv C]) if the denominator is nonzero,

e−a�([conv C]) + a�([C1 | C2])e−a�([C1])e−a�([C2]) otherwise.

Thus, the values of the capacity functional TY(a,W) can be calculated by recursion for all
C ∈ C0.

5. Consistency, stationarity, and STIT

The calculations in the previous section show that, for any window W and C ∈ C0 with
C ⊂ W , the value of the capacity functional TY(a,W)(C) is independent of W . This implies a
consistency property and, hence, the existence of a corresponding tessellation Y (a) of all of R

d .

Theorem 1. If the measure � on [H , H] is invariant with respect to translations of R
d and

Condition 1 holds, then, for any a > 0, there exists a random tessellation Y (a) of R
d such that

Y (a) ∩ W
d= Y (a, W) for all compact windows W satisfying (1).

Proof. Let a > 0 and Wl, l = 1, 2, . . . , be a sequence of windows Wl = [−l, l]d . For any
i ∈ N and l > i, we have

Y (a, Wl) ∩ Wi
d= Y (a, Wi)

since, due to Lemmas 3 and 4, for all C ∈ C0 with C ⊂ Wi ,

T(Y (a,Wl)∩Wi)(C) = TY(a,Wl)(C) = TY(a,Wi)(C).

Application of the consistency theorem Satz 2.3.1 of [15] reveals that there exists a random
closed set Y (a) in R

d such that

Y (a) ∩ Wl
d= Y (a, Wl) for all l ∈ N.

Now let W ⊂ R
d be an arbitrary compact set. There exists an l ∈ N such that Wl ⊃ W and,

hence,

Y (a) ∩ W = (Y (a) ∩ Wl) ∩ W
d= Y (a, Wl) ∩ W

d= Y (a, W).

Lemma 5. If the measure � on [H , H] is invariant with respect to translations of R
d and

Condition 1 holds, then, for a > 0 and the tessellation Y (a) of Theorem 1,

(i) Y (a) is stationary (i.e. its distribution is translation invariant), and

(ii) Y (a)
d= (1/a)Y (1).
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Proof. (i) For any C ∈ C0 and x ∈ R
d , there exists a compact window W ⊂ R

d with
C ∪ (C + x) ⊂ W . Hence, using Lemmas 3 and 4, we find that

TY(a)(C + x) = TY(a)∩W(C + x) = TY(a)∩W(C) = TY(a)(C).

(ii) The translation invariance of � implies a factorization analogous to that in (13), below, and
this yields �([aC]) = a�([C]) for C ∈ C0 and a > 0. There is a compact window W with
C ∪ aC ⊂ W and, hence, using Lemmas 3 and 4, we have

TY(a)(C) = TY(a)∩W(C) = TY(1)∩W(aC) = TY(1)(aC) = T(1/a)Y (1)(C).

Theorem 2. If the measure � on [H , H] is invariant with respect to translations of R
d and

Condition 1 holds, then the tessellation Y (1) of Theorem 1 is STIT.

Proof. Let Y (a) and Y(b) be (or contain) independent tessellations of the type involved in
Theorem 1, let a, b > 0 and C ∈ C0, and let W ⊃ C. Then, using Lemma 2 and (7), we have

TI (Y (a),Y(b))(C) = TI (Y (a),Y(b))∩W(C)

= TI (Y (a)∩W,Y(b)∩W)(C)

= TI (Y (a,W),Y(b,W))(C)

= TY(a+b,W)(C)

= TY(a+b)∩W(C)

= TY(a+b)(C).

Now, for any m ≥ 2 and a > 0, let Y (a), Y1(a), . . . , Ym−1(a) be i.i.d. sequences of
tessellations of the type involved in Theorem 1. Then

Im(Y (1)) = I (mY(1), mY1(1), . . . , mYm−1(1))

d= I

(
Y

(
1

m

)
, Y1

(
1

m

)
, . . . ,Ym−1

(
1

m

))

d= Y

(m−1∑
i=0

1

m

)

= Y (1).

It is obvious that, for all a > 0, the tessellation Y (a) is STIT. Also, in the case that a
translation-invariant measure � does not satisfy Condition 1, a STIT property can be stated for
the random closed set Y (1) (which is generated according to (4) or Algorithm (a, W, �)) if
iteration for hyperplane processes is defined in analogy to that for tessellations.

6. Domains of attraction

Up to now, we have described the crack STIT tessellations as a class of stationary STIT
tessellation. Using Theorem 2 of [10], we conclude that these tessellations can occur as weak
limits of repeated rescaled iterations of i.i.d. tessellations. We will now describe the domains
of attraction, i.e. those classes of stationary tessellation for which the limit of repeated iteration
is such a crack STIT tessellation.
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6.1. A generalization of Korolyuk’s theorem

Korolyuk’s theorem (see [4, Chapter 3, pp. 44–46]) is well known for stationary point
processes on the real axis. In [10], the authors proved a version of it for stationary segment
processes in the plane. On this foundation, it is now easy to generalize it to processes of facets
of cells of stationary tessellations in R

d . This result, which is given in Lemma 6, is essential in
our context, since it describes the asymptotic effect of rescaling the tessellations.

Let Fd−1 denote the set of all (d − 1)-dimensional (but not lower-dimensional) convex
polytopes in R

d , and Fd−1
0 the subset of all s ∈ Fd−1 that have the origin o as the center of

their circumscribed ball.
In Section 3, we introduced C(Y ), the set of all cells of tessellation Y . The process of all

(d − 1)-facets of its cells is defined as

�Y = {(x, s) ∈ R
d × Fd−1

0 : s + x ∈ {pi ∩ pj : pi, pj ∈ C(Y )} ∩ Fd−1}.
The definition of �Y requires particular attention since the cells are not necessarily ‘face-to-
face’ (‘seitentreu’ in the terminology of [15, p. 235]). If Y is a stationary tessellation then
�Y can be considered to be a stationary marked point process on R

d with mark space Fd−1
0 .

Stationarity implies that its intensity measure, � say, can be factorized, i.e. that there exist a
constant Nd−1 and a probability measure κ on Fd−1

0 (endowed with the standard σ -algebra)
such that, for all measurable functions

f : R
d × Fd−1

0 → [0, ∞),

we have ∫
�(d(x, s))f (x, s) = Nd−1

∫
dx

∫
κ(ds)f (x, s),

where dx denotes the element of the d-dimensional Lebesgue measure; see [1] or [15, Satz 3.4.1,
pp. 89–90, or Satz 4.2.2, pp. 121–122]. We assume that

0 < Nd−1 < ∞.

This Nd−1 is the mean number of (d − 1)-facets of Y per unit volume. The surface intensity
SV of Y , which was mentioned in Section 3, can be defined as

SV =
∫

�(d(x, s)) 1[0,1]d (x)V d−1(s) = Nd−1
∫

κ(ds)V d−1(s),

and V d−1(s) is the (d −1)-volume of s ∈ Fd−1
0 . Finally, the directional distribution R on Ld

1 ,
the set of all one-dimensional subspaces in R

d , is defined by
∫

R(du)g(u) = [V d−1]−1
∫

κ(ds)V d−1(s)g(u(s))

for all measurable functions g : Ld
1 → [0, ∞) and subspaces u(s) ∈ Ld

1 orthogonal to s ∈
Fd−1

0 , where

V d−1 =
∫

κ(ds)V d−1(s).

This yields
SV = Nd−1V d−1.
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For a set A ⊂ R
d , we write

〈A〉 = {(x, s) ∈ R
d × Fd−1

0 : (s + x) ∩ A �= ∅},
and by �Y (〈A〉) we denote the number of facets of Y that hit A.

Lemma 6. (Modified version of Korolyuk’s theorem.) Let Y be a stationary random tessella-
tion of R

d , d ≥ 2, with surface intensity SV , 0 < SV < ∞, and directional distribution R.
Then, for all C ∈ C,

lim
m→∞ m P

(
�Y

(〈
1

m
C

〉)
≥ 2

)
= 0 (9)

and

lim
m→∞ m P

(
Y ∩ 1

m
C �= ∅

)
= SV

∫
R(du)|
(C, u)|, (10)

where |
(C, u)| denotes the length of the orthogonal projection of C onto the one-dimensional
linear subspace u ∈ Ld

1 .

Proof. We start with some preliminary geometric considerations. We write V for the
d-dimensional volume and Br for the d-dimensional ball with radius r centered at the origin. For
pairs (xi, si) ∈ R

d × Fd−1
0 , we denote by hi ∈ H the hyperplane that contains si +xi, i = 1, 2.

Assume that
dim((s1 + x1) ∩ (s2 + x2)) ≤ d − 2.

If h1 and h2 are parallel and separated by a distance l > 0, then

(h1 ⊕ Br/m) ∩ (h2 ⊕ Br/m) = ∅

for m > 2r/ l. For the case h1 = h2, the assumption that

dim((s1 + x1) ∩ (s2 + x2)) ≤ d − 2

and the Steiner formula for parallel sets yield, for t > 0,

V (((s1 + x1) ⊕ Br/m) ∩ ((s2 + x2) ⊕ Br/m) ∩ Bt) ≤ κd−2π

(
r

m

)2

td−2 + o

(
1

m2

)
,

where κd−2 is the volume of the (d − 2)-dimensional unit ball. If h1 �= h2 and they are not
parallel, then

V ((h1 ⊕ Br/m) ∩ (h2 ⊕ Br/m) ∩ Bt) ≤ κd−2

(
r

m

)2

| sin � (h1, h2)|td−2.

Now, for a given C ∈ C, choose an r and a t such that C ⊂ Br and (s1 +x1)∪(s2 +x2) ⊂ Bt−r .
Then

lim
m→∞ mV

((
(s1 + x1) ⊕ 1

m
C

)
∩

(
(s2 + x2) ⊕ 1

m
C

))

≤ lim
m→∞ mV ((h1 ⊕ Br/m) ∩ (h2 ⊕ Br/m) ∩ Bt)

= 0. (11)
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Furthermore, for s ∈ Fd−1, a lower bound for V (s⊕(1/m)C) can be derived with an application
of Fubini’s theorem, which yields

V

((
s ⊕ 1

m
C

)
\ 1

m
C

)
≥ V d−1(s)

∣∣∣∣

(

1

m
C, u(s)

)∣∣∣∣.
An upper bound is given by the volume of the circumscribed body

[
s ⊕ 


(
1

m
conv C, u⊥(s)

)]
× 


(
1

m
C, u(s)

)
,

where u⊥(·) denotes the orthogonal complement of u(·). Hence,

V

(
1

m
C

)
+ V d−1(s)

∣∣∣∣

(

1

m
C, u(s)

)∣∣∣∣ ≤ V

(
s ⊕ 1

m
C

)

≤ V

(
s ⊕ 


(
1

m
conv C, u⊥(s)

)∣∣∣∣

(

1

m
C, u(s)

)∣∣∣∣
)

and, thus,

lim
m→∞ mV

(
s ⊕ 1

m
C

)
= V d−1(s)|
(C, u(s))|. (12)

Now, up to a few necessary changes in the notation, the remainder of the proof is the same as
that given in [10, p. 128]. By 1{·}, we denote the indicator function with the value 1 if the event
{·} occurs, and the value 0 otherwise. For s ∈ Fd−1

0 , we denote by Ps
0 the Palm distribution of

�Y with respect to the mark s. Then the refined Campbell theorem for marked point processes
(see [16, p. 125] or [15, p. 93]) yields

lim
m→∞ m

∫
P(dϕ)

∫
ϕ(ds) 1

{
s ∈

〈
1

m
C

〉}
1
{
ϕ

(〈
1

m
C

〉)
≥ 2

}

= lim
m→∞ mNd−1

∫
κ(ds)

∫
Ps

0(dϕ)

∫
dx 1

{
(s + x) ∈

〈
1

m
C

〉}
1
{
ϕ

(〈
1

m
C − x

〉)
≥ 2

}

≤ Nd−1
∫

κ(ds)

∫
Ps

0(dϕ) lim
m→∞ m

∑
s �=s′+x′

ϕ((x′,s′))=1

V

((
(−s) ⊕ 1

m
C

)
∩

(
(−s′ − x′) ⊕ 1

m
C

))

= 0,

since the number of terms in the sum that are different from 0 is a.s. finite and bounded for all
m, and for any of these terms we can apply (11). With this result, we obtain

lim
m→∞ m P

(
�Y

(〈
1

m
C

〉)
≥ 2

)

≤ lim
m→∞ m

∫
P(dϕ)

∫
ϕ(ds) 1

{
s ∈

〈
1

m
C

〉}
1
{
ϕ

(〈
1

m
C

〉)
≥ 2

}

= 0
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and, thus, (9). It was shown in [10] that

lim
m→∞ m| P(mY ∩ C �= ∅) − E[�mY (〈C〉)]| = 0.

Finally, the Campbell theorem and (12) yield

lim
m→∞ m E[�mY (〈C〉)]

= lim
m→∞ mNd−1V d−1

∫
κ(ds)

1

V d−1

∫
dx 1

{
s + x ∈

〈
1

m
C

〉}

= lim
m→∞ mSV

∫
κ(ds)

1

V d−1
V

(
1

m
C ⊕ s

)

= SV

∫
R(du)|
(C, u)|

and, thus, (10) follows.

6.2. Weak convergence of stationary tessellations to crack STIT tessellations

Now let Y be a stationary random tessellation in R
d with 0 < SV < ∞ and directional

distribution R. We will derive formulae for the limit of the capacity functional of repeated
rescaled iterations Im(Y ), as m → ∞, in order to compare it with the capacity functional of
the crack STIT tessellation Y (1). The parameters of the tessellation have to be related to the
measure �, which played a role in the construction of the crack tessellations.

We denote by
e : R × Ld

1 → H

the function that maps each pair (t, u) to the hyperplane e(t, u) orthogonal to u ∈ Ld
1 and at

distance |t | from the origin. For uniqueness, e(t, u) ∩ u is in the upper half-space if and only if
t > 0. For a given number SV and a directional distribution R, define a measure �(SV , R, ·)
on [H , H] by ∫

�(SV , R, dh)g(h) = SV

∫
dt

∫
R(du)g(e(t, u)) (13)

for all measurable functions g : H → [0, ∞). In particular, for C ∈ C this formula yields

�(SV , R, [C]) = SV

∫
R(du)|
(C, u)|. (14)

First, consider the capacity functional for a connected compact set C. Formula (10) yields
the following result.

Lemma 7. If C ∈ C is connected then

lim
m→∞(1 − TIm(Y )(C)) = e−�(SV ,R,[C]).

Theorem 3. If Y is a stationary random tessellation in R
d with 0 < SV < ∞ and directional

distribution R, then

lim
m→∞ TIm(Y )(C) = TY(1)(C) for all C ∈ C,
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where Y (1) is the crack STIT tessellation of Theorem 1 with

� = �(SV , R, ·).
This implies the weak convergence of the sequence Im(Y ) of tessellations to Y (1).

Proof. It is sufficient to consider the capacity functionals for sets C ∈ C0, i.e. for compact
sets with finitely many connected components (see [10, Lemma 1]). Thus, we can prove the
theorem by induction. In this proof, we always write � for �(SV , R, ·). For C ∈ C0, where

C =
k⋃

i=1

Ci

with Ci ∈ C connected and
Ci ∩ Ci′ = ∅

if i �= i′, i, i′ = 1, . . . , k, and a partition {J1, . . . , Jl} of the index set {1, . . . , k} into l nonempty
sets, let Z = {Z1, . . . , Zl} with

Zj =
⋃
i∈Jj

Ci, j = 1, . . . , l.

(In (8) this was introduced for the case l = 2.) Denote by Z(C) the set of all such partitions Z

of C with l ∈ {1, . . . , k}.
Later in the proof we will use the fact that, for all Z ∈ Z(C) and all but a finite number of

m ∈ N,
P(mY ∩ conv C = ∅) −

∏
S∈Z

P(mY ∩ conv S = ∅) �= 0. (15)

This can be shown as follows. For the typical cell mp0 of mY , we have

mp0 ⊃ conv S

if and only if
[mp0]conv S ⊃ conv S,

where [A]B is the morphological opening of a set A with a set B (see [14]). Thus, by the refined
Campbell theorem and the Steiner formula for the erosion of morphological open sets (again
see [14]), P(mY ∩ conv S = ∅) can be expressed as a polynomial in m (with mean mixed
volumes as coefficients). Thus, the expression in (15) is also a polynomial in m and has only
finitely many roots.

Furthermore, in this proof we restrict our attention to those C ∈ C0 for which

�([conv Zj ]) −
∑
S∈Z′

�([conv S]) �= 0 for all Zj ∈ Z ∈ Z(C) and all Z′ ∈ Z(Zj ). (16)

Any C ∈ C0 that does not satisfy (16) can be approximated by its parallel sets C ⊕ Bε, with
distance ε > 0. By (14), the value �([conv Zj ] ⊕ Bε) is linear in ε and, hence, there are only
finitely many ε for which (16) is not satisfied. Thus, by a continuity argument for the capacity
functional (which is continuous from above for sequences of compact sets; see [8] or [15]), we
conclude that this additional assumption can be made in this proof of weak convergence.
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We will show, by induction, that for all Z ∈ Z(C), C ∈ C0 satisfying (16), a > 0, and
almost all m ∈ N (i.e. with at most finitely many exceptions), there exist numbers dm(Z), d(Z),
qm(C), and c(C) such that

(i) P(Im(Y ) ∩ C = ∅) =
∑

Z∈Z(C)

dm(Z)
∏

Zj ∈Z

P(mY ∩ conv Zj = ∅)m + qm(C), (17)

dl

(
l

m
Z

)
= dm(Z) for l ∈ N, (18)

0 ≤ qm(C) ≤ c(C)m P(�mY (〈conv C〉) ≥ 2), (19)

c(rC) ≤ c(C) for 0 < r ≤ 1, (20)

(ii) P(Y (a) ∩ C = ∅) =
∑

Z∈Z(C)

d(Z)
∏

Zj ∈Z

e−a�([conv Zj ]), (21)

(iii) lim
m→∞ dm(Z) = d(Z), (22)

lim
m→∞ qm(C) = 0. (23)

Proof of (i) by induction over the number k of connected components of C. For k = 1,
i.e. C ∈ C0 is connected, (17) follows from the equation

lim
m→∞ P(Im(Y ) ∩ C = ∅) = lim

m→∞ P(mY ∩ C = ∅)m,

with
dm(Z) = dm({C}) = 1 and qm(C) = 0.

Let c(C) = 0 and note that

mY ∩ C = ∅ ⇔ mY ∩ conv C = ∅.

As the induction hypothesis, assume that (17), (18), (19), and (20) hold for all C ∈ C0 with at
most k connected components. Now consider a set C ∈ C0 with k + 1 connected components.
The event

{Im(Y ) ∩ C = ∅}
will be partitioned into the disjoint events that, first, conv C is not intersected by Y during the
first i, i = 0, . . . , m, iteration steps; second, in the (i + 1)th step C is separated by exactly one
facet of Y into {D1, D2} ∈ Z(C); and, third, D1 and D2 are not intersected in the remaining
m− i − 1 iteration steps. There is still a ‘residue’, namely the event that in the (i + 1)th step C

is separated by more than one facet of Y . The probability of this latter event will be denoted
by q ′

m(C). Notice that, according to the definition, the last m − i − 1 iteration steps with mY

have to be written as

Im−i−1

(
m

m − i − 1
Y

)
= m

m − i − 1
Im−i−1(Y ).
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Denote by {D1 � D2} the event that D1 and D2 are separated by a facet of Y . The sets D1 and
D2 have at most k connected components and, thus, the induction hypothesis can be applied to
either of them. Define

q ′
m(C) =

∑
Z∈Z(C)

m−1∑
i=0

P(mY ∩ conv C = ∅)i

× P(�mY (〈conv C〉) ≥ 2, mY ∩ C = ∅, mY generates partition Z)

×
∏

Di∈Z

P

(
Im−i−1

(
m

m − i − 1
Y

)
∩ Di = ∅

)

≤ card(Z(C))m P(�mY (〈conv C〉) ≥ 2).

Then

P(Im(Y ) ∩ C = ∅)

= P(mY ∩ conv C = ∅)m

+
∑

{D1,D2}∈Z(C)

m−1∑
i=0

P(mY ∩ conv C = ∅)i P(�mY (〈conv C〉) = 1, D1 � D2)

× P

(
Im−i−1

(
m

m − i − 1
Y

)
∩ D1 = ∅

)
P

(
Im−i−1

(
m

m − i − 1
Y

)
∩ D2 = ∅

)

+ q ′
m(C)

= P(mY ∩ conv C = ∅)m

+
∑

{D1,D2}∈Z(C)

∑
Z1∈Z(D1)

∑
Z2∈Z(D2)

dm(Z1)dm(Z2)

× P(�mY (〈conv C〉) = 1, D1 � D2)

P(mY ∩ conv C = ∅) − ∏
S∈Z1∪Z2

P(mY ∩ conv S = ∅)

×
[

P(mY ∩ conv C = ∅)m −
∏

S∈Z1∪Z2

P(mY ∩ conv S = ∅)m
]

+ qm(C) (24)

if the denominator is nonzero. By (15), there can be only finitely many m ∈ N such that
the denominator vanishes. A rearrangement in the sum in (24) yields the coefficients dm(Z),
Z ∈ Z(C), and also makes their property (18) obvious.

It remains to consider qm(C) and to prove the properties (19) and (20). For j = 1, 2, the
induction hypothesis yields, for Dj ,

qm−i−1

(
m − i − 1

m
Dj

)

≤ c

(
m − i − 1

m
Dj

)
(m − i − 1) P

(
�(m−i−1)Y

(〈
conv

m − i − 1

m
Dj

〉)
≥ 2

)

≤ c(Dj )m P(�mY (〈conv C〉) ≥ 2).
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Note that

∑
{D1,D2}∈Z(C)

m−1∑
i=0

P(mY ∩ conv C = ∅)i P(�mY (〈conv C〉) = 1, D1 � D2)

≤ m P(mY ∩ conv C �= ∅)

≤ m.

Since
∑m−1

i=0 P(mY ∩ conv C = ∅)i ≤ m and, from (17),

∑
Zj ∈Z(Dj )

dm−i−1

(
m − i − 1

m
Zj

) ∏
Sj ∈Zj

P(mY ∩ conv Sj = ∅)m−i−1 ≤ 1, j = 1, 2,

we obtain

qm(C) =
∑

{D1,D2}∈Z(C)

P(�mY (〈conv C〉) = 1, D1 � D2)

m−1∑
i=0

P(mY ∩ conv C = ∅)i

×
[ ∑

Z1∈Z(D1)

dm−i−1

(
m − i − 1

m
Z1

)

×
∏

S1∈Z1

P(mY ∩ conv S1 = ∅)m−i−1qm−i−1

(
m − i − 1

m
D2

)

+
∑

Z2∈Z(D2)

dm−i−1

(
m − i − 1

m
Z2

)

×
∏

S2∈Z2

P(mY ∩ conv S2 = ∅)m−i−1qm−i−1

(
m − i − 1

m
D1

)

+ qm−i−1

(
m − i − 1

m
D1

)
qm−i−1

(
m − i − 1

m
D2

)]
+ q ′

m(C)

≤
∑

{D1,D2}∈Z(C)

m P(�mY (〈conv C〉) ≥ 1, D1 � D2)

× [c(D2) + c(D1) + c(D1)c(D2)m P(�mY (〈conv C〉) ≥ 2)]
× m P(�mY (〈conv C〉) ≥ 2) + q ′

m(C)

≤ c(C)m P(�mY (〈conv C〉) ≥ 2),

with

c(C) = card(Z(C)) + max
m∈N

∑
{D1,D2}∈Z(C)

m P(�mY (〈conv C〉) ≥ 1, D1 � D2)

× [c(D2) + c(D1) + c(D1)c(D2)m P(�mY (〈conv C〉) ≥ 2)]. (25)

The existence of such an upper bound c(C), depending on C and Y but not m, is due to
Lemma 6, which implies that both m P(�mY (〈conv C〉) ≥ 2) and m P(�mY (〈conv C〉) ≥ 1)

have finite limits as m → ∞. Equation (20) follows from (25) and the stationarity of Y . Finally,
note that (19) and Lemma 6 in fact imply (23).
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Proof of (ii) by induction over k. For k = 1, (21) is the assertion of Lemma 3, since
[C] = [conv C]. As the induction hypothesis, assume that (21) is true for all those C ∈ C0 with
at most k connected components. Now consider a set C ∈ C0 with k+1 connected components
and assume that (16) holds. Lemma 4 with W ⊃ C and the induction hypothesis yield

P(Y (a) ∩ C = ∅)

= e−a�([conv C]) +
∑

{D1,D2}∈Z(C)

a�([D1 | D2])
∫ 1

0
dte−ta�([conv C])

×
∑

Z1∈Z(D1)

∑
Z2∈Z(D2)

d(Z1)d(Z2)
∏

S∈Z1∪Z2

e−(1−t)a�([conv S])

= e−a�([conv C])

+
∑

{D1,D2}∈Z(C)

∑
Z1∈Z(D1)

∑
Z2∈Z(D2)

�([D1 | D2])
−�([conv C]) + ∑

S∈Z1∪Z2
�([conv S])d(Z1)d(Z2)

×
(

e−a�([conv C]) − exp

{
−a

∑
S∈Z1∪Z2

�([conv S])
})

(26)

if all the denominators are nonzero, which is guaranteed by (16). A rearrangement of the items
yields (21).

Proof of (iii) by induction over k. For k = 1, (22) is obvious since at the beginning of the
proof of (i) it was observed that dm({C}) = 1, and from Lemma 3 we have d({C}) = 1. As the
induction hypothesis, assume that (22) is true for all those C ∈ C0 with at most k connected
components. Now consider a set C ∈ C0 with k+1 connected components and assume that (16)
holds. We make use of the analogous structures of (24) and (26) and compare coefficients. The
induction hypothesis yields limm→∞ dm(Zj ) = d(Zj ), j = 1, 2. It remains to consider the
limit of the ratio. From

P(mY ∩ conv S = ∅) = 1 − P(mY ∩ conv S �= ∅),

we obtain ∏
S∈Z1∪Z2

P(mY ∩ conv S = ∅) = 1 −
∑

S∈Z1∪Z2

P(mY ∩ conv S �= ∅) + r(m),

where r(m) is a sum of all terms containing at least two factors of the form P(mY ∩conv S �= ∅).
Thus, the version of Korolyuk’s theorem that is given in Lemma 6 yields

lim
m→∞

P(�mY (〈conv C〉) = 1, D1 � D2)

P(mY ∩ conv C = ∅) − ∏
S∈Z1∪Z2

P(mY ∩ conv S = ∅)

= lim
m→∞

m P(�mY (〈conv C〉) = 1, D1 � D2)

−m P(mY ∩ conv C �= ∅) + ∑
S∈Z1∪Z2

m P(mY ∩ conv S �= ∅) + o(1/m)

= �([D1 | D2])
−�([conv C]) + ∑

S∈Z1∪Z2
�([conv S]) .

Obviously, (23) is a consequence of Lemma 6 and (19).
This completes the proofs of (17) to (23), and the assertion of the theorem follows for a = 1

since, according to Lemma 7, we have

lim
m→∞ P(mY ∩ conv S = ∅)m = e−�([conv S]).
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As an immediate consequence of this theorem, we obtain the following uniqueness result
and, thus, a characterization of all stationary STIT tessellations.

Corollary 2. A stationary random tessellation Y in R
d with 0 < SV < ∞ and directional

distribution R is STIT if and only if

Y
d= Y (1),

where Y (1) is the crack STIT tessellation of Theorem 1 with � = �(SV , R, ·).

7. Notes and concluding remarks

In the present paper, the notion of stationarity has always been used in the sense of a spatial
homogeneity, i.e. the invariance of the distribution with respect to translations in space. Another
possibility is to consider the repeated rescaled iteration Im(Y ) of a certain tessellation Y as a
random process in discrete time m = 2, 3, . . . . Then the STIT property of the crack tessellation
Y (1) can be interpreted as stationarity of Im(Y (1)) with respect to time.

In an earlier paper [11], the authors studied an approximation of the tessellation Y (a, W)

(for d = 2 and a particular class of directional distributions) by a construction of tessellations in
which the exponential times τj are replaced by a geometrically distributed number of time steps.
The results given there support the assertions of the present paper from another perspective.

In [10] it was shown that any planar STIT tessellation necessarily has a Poisson typical
cell and a.s. only ‘T-shaped nodes’. These properties of the crack STIT tessellations allow the
derivation of formulae for several mean values and distributions of their parameters. This will
be done in a forthcoming paper [12]. Note that the Poisson typical cell property can also be
derived from Lemma 3.

Concerning stereology, it is obvious that the STIT property of a tessellation is inherited by
the tessellations that appear on lower-dimensional planar sections. Thus, the characterization of
all stationary STIT tessellations given in Section 6 is a basis for the derivation of stereological
formulae.

Miles and Mackisack [9], with reference to [2], were the first to construct classes of stationary
two-dimensional tessellations with Poisson typical cells and T-shaped nodes only. One can see
that those tessellations are not STIT; hence, the crack STIT tessellations form a new class with
the properties mentioned.

In 1984, Cowan [3] presented an idea for a tessellation that models the repeated division
of (biological) cells. He also proposed independent exponential lifetimes for the cells and
posed the problem of making an appropriate choice of parameters. Indeed, for the crack STIT
tessellations, the adjustment of the parameters of the exponential distributions was the key
problem to be solved.

There is a huge amount of literature with the keywords ‘crack structures’ or ‘fracture
structures’, and a variety of models have been studied. For several of these models, a theoretical
investigation is hard to perform. For some types of such structures, the crack STIT tessellations
can probably serve as reasonable approximate models, for example in cases in which the growth
of the structure can be imagined as a consecutive nesting of crack events, with later cracks ending
at earlier cracks. This yields some hierarchical structure, as can be observed on surfaces of
pottery such as Raku or Majolika (referred to as the craquelée effect); for an image see [11].

It is a common observation in statistics that the application of models with stability properties
can be fruitful. This is well known for the Boolean model, which is stable with respect to the
union of sets, and probably also true for crack STIT tessellations.
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