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Abstract. In this paper, we introduce the notions of almost upper semi-Fredholm
and strictly singular pairs of subspaces and show that the class of almost upper semi-
Fredholm pairs of subspaces is stable under strictly singular pairs perturbation. We
apply this perturbation result to investigate the stability of almost semi-Fredholm
multi-valued linear operators in normed spaces under strictly singular perturbation as
well as the behaviour of the index under perturbation.
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1. Introduction. We recall some basic definitions and properties of linear relations
in normed spaces following the notation and terminology of the book [7]. Let X, Y
and Z denote infinite dimensional normed spaces over � = � or �. A linear relation or
multi-valued linear operator T from X to Y is a mapping from a subspace D(T) = {x ∈
X : Tx �= ∅}, called the domain of T , into the collection of non-empty subsets of Y such
that T(αx1 + βx2) = αTx1 + βTx2 for all non-zero α, β scalars and x1, x2 ∈ D(T).
The class of such linear relations is denoted by LR(X, Y ). If T maps the points of
its domain to singletons, then T is said to be a single valued or simply an operator.
A linear relation T is uniquely determined by its graph, G(T), which is defined by
G(T) := {(x, y) ∈ X × Y : x ∈ D(T), y ∈ Tx}. It is easy to see that if T ∈ LR(X, Y )
then D(T) × Y = G(T) + ({0} × Y ) and {0} × T(0) = G(T) ∩ ({0} × Y ).

Let T ∈ LR(X, Y ). The inverse of T is the linear relation T−1 given by G(T−1) :=
{(y, x) : (x, y) ∈ G(T)}. The subspaces T−1(0) := N(T) and R(T) := T(D(T)) are called
the null space and the range of T , respectively. We say that T is injective if
N(T) = {0}. We note that D(T−1) = R(T), D(T) = R(T−1), T is single valued if and
only if the subspace T(0) coincides with {0} and y ∈ Tx if and only if Tx = y +
T(0). We write α(T) := dimN(T), β(T) := dimY/R(T), β(T) := dimY/R(T), k(T) :=
α(T) − β(T), provided α(T) and β(T) are not both infinite, and the topological index
of T is the quantity α(T) − β(T), provided both α(T) and β(T) are not infinite.

For S, T ∈ LR(X, Y ) and R ∈ LR(Y, Z) the sum S + T and the product or
composition RS are defined by G(S + T) := {(x, y1 + y2) : (x, y1) ∈ G(S), (x, y2) ∈
G(T)} and G(RS) := {(x, z) : (x, y) ∈ G(S), (y, z) ∈ G(R) for some y ∈ Y}.

Let M and N be subspaces of X and the dual space X ′ respectively. Then JM

denotes the natural injection map of M into X , M⊥ = {x′ ∈ X ′ : x′(M) = 0}, and if
M ∩ D(T) �= ∅, then T |M is given by G(T |M) := {(x, y) ∈ G(T) : x ∈ M} and N	 :=
{x ∈ X : N(x) = 0}. We observe that T |M �= TJM but T |M = TJM if T is single valued.
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The adjoint of T ∈ LR(X, Y ) is the linear relation T ′ defined by G(T ′) :=
G(−T−1)⊥ ⊂ Y ′ × X ′ and the reduced index of T is the quantity k(T) := α(T̃) − α(T ′),
provided both α(T̃) and α(T ′) are not infinite, where T̃ denotes the linear relation
defined by G(T̃) := ˜G(T) ⊂ X̃ × Ỹ and X̃ denotes the completion of X .

Let T ∈ LR(X, Y ). It is easy to see that if QT denotes the quotient map from Y onto
Y/T(0), then QT T is always a single-valued so that we may define ‖Tx‖:=‖QT Tx‖,
x ∈ D(T) and ‖T ‖:=‖QT T ‖ called the norm of Tx and of T respectively. It follows
from the definitions that ‖Tx‖= d(y, T(0)) for all y ∈ Tx. We say that T is continuous if
‖ T ‖< ∞, open if its inverse is continuous equivalently if γ (T) > 0, where γ (T) := ∞
if D(T) ⊂ N(T) and γ (T) := inf {‖Tx‖ /d(x, N(T)) : x ∈ D(T), x /∈ N(T)} otherwise,
almost open if λBR(T) ⊂ TBX for some λ > 0 equivalently if T ′ is open and T is called
closed if its graph is a closed subspace of X × Y . We note that T ′ is always a closed
linear relation, T is closed if and only if T−1 is closed, T(0) is a closed subspace if T
is closed and we have a Closed Graph Theorem, that is, if X and Y are complete and
T ∈ LR(X, Y ) is closed, then T is open if and only if R(T) is closed if and only if T ′ is
open if and only if R(T ′) is closed.

Let T ∈ LR(X, Y ). We say that T is pre-compact if QT TBX is totally bounded,
strictly singular, denoted by T ∈ SS(X, Y ) if there is no infinite dimensional subspace
M of D(T) for which T |M is injective and open, upper semi-Fredholm, denoted by
T ∈ F+(X, Y ) if there exists a finite co-dimensional subspace M of X such that T |M
is injective and open, and T is called lower semi-Fredholm, denoted by T ∈ F−(X, Y )
if T ′ ∈ F+(Y ′, X ′). We note the following useful properties:

T ∈ F+ ⇔ T ∈ F− and T ∈ F− ⇔ T ′ ∈ F+.

If X and Y are Banach spaces and T is closed then T ∈ F+ ⇔ T ∈ φ+ (that is,
R(T) is closed and α(T) < ∞) and T ∈ F− ⇔ T ∈ φ− (that is, R(T) is a closed finite
co-dimensional subspace of Y ).

(For the proofs see [7, Chapter V]).
Following [2, Definition 1] we say that T is almost upper semi-Fredholm, denoted

by T ∈ AUSF(X, Y ) if T is open with finite dimensional null space, almost lower semi-
Fredholm, denoted by T ∈ ALSF(X, Y ) if T is almost open and dimY/R(T) < ∞,
almost semi-Fredholm if T ∈ AUSF(X, Y ) ∪ ALSF(X, Y ) and T is called an almost
Fredholm linear relation if T ∈ AUSF(X, Y ) ∩ ALSF(X, Y ). We remark the following
useful facts:

AUSF ⊂ F+. In general, the inclusion is strict even for operators.
ALSF = F−.
The classes F+ (resp. F−) and φ+ (resp. φ−) are in general different even for

operators, but for closed linear relations between Banach spaces we have that AUSF =
F+ = φ+ and ALSF = F− = φ−.

Linear relations were introduced into Functional Analysis by von Neumann [19],
motivated by the need to consider adjoints of non-densely defined linear differential
operators, which are considered by Coddington and Dijksma [6] and Dikjsma et al.
[8], among others. One main reason why linear relations are more convenient than
operators is that one can define the inverse, the closure and the completion for a linear
relation. Interesting works on multi-valued linear operators include the treatise on
partial differential relations by Gromov [15], the application of multi-valued methods
to the solutions of differential equations by Favini and Yagi [9], the development of
fixed point theory for linear relations to the existence of mild solutions of quasi-linear
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differential inclusions of evolution and also to many problems of fuzzy theory (see,
for instance [1, 14, 18, 20]) and several papers on semi-Fredholm linear relations and
other classes related to them (see, for instance [3–5]).

The purpose of this work is to investigate the stability of the F+, AUSF, F− and
ALSF linear relations in normed spaces under strictly singular perturbations, as well as
the behaviour of the reduced index under perturbation. The results obtained generalize
some pioneering work due to Kato [16] in the case of closed operators in Banach spaces.

In [3, Proposition 10], Álvarez began the study of the perturbation problem of
closed F+ linear relations under strictly singular perturbation. More precisely, the
author proves that if T ∈ F+(X, Y ) is closed and S ∈ SS(X, Y ) is continuous such that
D(T) ⊂ D(S) and S(0) ⊂ T(0), then T + S is a closed upper semi-Fredholm linear
relation and k(T + S) = k(T). This result will be applied in this paper to deduce
the stability of closed lower semi-Fredholm linear relations under strictly singular
perturbation (Theorem 10(ii)).

In [2] the almost semi-Fredholm linear relations in normed spaces are introduced
and characterized in terms of nullity and deficiency. We note that two papers by
Gheorghe [10, 11] have been devoted to the study of the perturbation of almost
Fredholm linear relations under small and compact operator perturbations. In [11,
Theorem 1], the author obtains necessary and sufficient conditions for the stability of
the topological index of an almost Fredholm linear relation between normed spaces
under small perturbations with linear relations, while in [10, Theorem 1] the author
proves the following result.

THEOREM 1. Let X, Y be normed spaces such that Y is complete, and let T ∈
LR(X, Y ) be an almost Fredholm linear relation. If K is a bounded compact operator
from X to Y then dimN(T + K) < ∞, dimY/R(T + K) < ∞, and if T + K is open then
T + K and T have the same topological index.

In this paper we show that Theorem 1 remains valid if Y is an arbitrary normed
space, T is an almost semi-Fredholm linear relation and K is a continuous strictly
singular linear relation (Theorem 13). It is important to remark that the proofs of
the results of Gheorghe ([10, Theorem 1], [11, Theorem 1]) are obtained using some
techniques of the perturbation theory for quotient morphisms between normed spaces,
and our proof of Theorem 13 is based on the concept of pairs of subspaces of a
normed space. The method adopted here for the study of the perturbation of almost
semi-Fredholm relations in normed spaces by means of pairs of subspaces seems to be
new and emphasizes a strong connection between the perturbation theory of closed
linear relations and that of some operators.

The paper is organized as follows: In Section 2 we define the almost upper
semi-Fredholm and strictly singular pairs of subspaces and prove that the class of
almost upper semi-Fredholm pairs of subspaces is stable under strictly singular pairs
perturbation. This result is applied in Section 3 to analyse the perturbation of almost
semi-Fredholm linear relations with strictly singular linear relations.

2. Strictly singular perturbation of almost semi-Fredholm pairs of subspaces of a
normed space. The notions of classes of upper semi-Fredholm and strictly singular
pairs of subspaces of a Banach space due to González [13, Definition 2.1] are
generalized to normed spaces as follows.
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DEFINITION 2. Let M and N be closed subspaces of a normed space X . We say
that (M, N) ∈ AUSF (resp. (M, N) ∈ SS) if QNJM ∈ AUSF (resp. QNJM ∈ SS).

The aim of this section is to analyse the stability of the class of almost upper
semi-Fredholm pairs of subspaces under strictly singular perturbation as well as the
behaviour of the index under perturbation. For this end we need some auxiliary results

LEMMA 3. Let A be a closed subspace of X and let B ⊂ X be a subspace such that
A ⊂ B. Then B is closed if and only if B/A is closed.

LEMMA 4. ([17, Proposition 7]). Let T be an operator from X to Y with finite
dimensional null space. Then T is open if and only if for every closed finite co-dimensional
subspace M of D(T), TM is closed in R(T) and TJM has a continuous inverse if N(T) ∩
M = {0}.

LEMMA 5. ([7, Theorems V.1.6, V.2.4 and Corollary V.7.11]). Let T ∈ LR(X, Y ).
(i) T is not upper semi-Fredholm if and only if there is no closed finite co-dimensional

subspace M of X such that T |M is injective and open if and only if there exists an
infinite dimensional subspace M of D(T), (closed if T is closed) such that T |M
is precompact.

(ii) T is upper semi-Fredholm if and only if dim N(T + K) < ∞ whenever K ∈
LR(X, Y ) is precompact and dim K(0) < ∞.

(iii) If dim D(T) = ∞, then T is upper semi-Fredholm if and only if �(T) > 0, where
�(T) := inf {‖T |M ‖: M infinite dimensional subspace of D(T)}.

We have noted that AUSF ⊂ F+ and, in general, the inclusion is strict. However,
as a consequence of Lemmata 4 and 5 we obtain the following useful result.

LEMMA 6. Let M and N be closed subspaces of X. Then QNJM ∈ AUSF if and only
if QNJM ∈ F+.

Proof. Assume that QNJM ∈ F+. By Lemma 5 dimN(QNJM) = dim (M ∩ N) < ∞
and there exists a closed finite co-dimensional subspace A of D(T) such that QNJA has
a continuous inverse.

Let us consider two possibilities for QNJM :
Case 1: QNJM is open. In such a case, QNJM ∈ AUSF , as desired.
Case 2: QNJM is not open. Then by Lemma 4, R(QNJA) = N + A/N is not closed

in R(QNJM) and thus it follows from the hypothesis together with Lemma 3 that N + A
is not closed in X and equivalently A⊥ + N⊥ is not closed in X ′, so that applying again
Lemma 3 we infer that A⊥ + N⊥/A⊥ = R(QA⊥JN⊥ ) is not closed. But, since QNJA is
upper semi-Fredholm, we have that (QNJA)′ = QA⊥JN⊥ ∈ F− so that QA⊥JN⊥ ∈ φ−; in
particular, R(QA⊥JN⊥) is closed, a contradiction. �

COROLLARY 7. Let M and N be closed subspaces of X. Then dim M = dim N = ∞
if (M, N) /∈ AUSF.

Proof. Assume (M, N) /∈ AUSF . Then by Lemma 6, QNJM is not upper semi-
Fredholm. If dim M < ∞, then it is obvious that {0} is a closed finite co-dimensional
subspace of M and QNJ{0} is an isometry, and hence QNJM ∈ F+, which is a
contradiction with our assumption. If dim N < ∞, then QN is open with finite
dimensional null space, and thus by virtue of Lemma 5(iii) , �(QN) > 0, which implies
that �(QNJM) > 0 so that again applying Lemma 5(iii) we conclude that QNJM ∈ F+,
a contradiction. �
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PROPOSITION 8. Let M and N be closed subspaces of X.
(i) If (M, N) /∈ AUSF, then there exists a precompact operator K : X → X and an

infinite dimensional closed subspace L of M such that ‖ K ‖< 1 and (I − K)L ⊂
N.

(ii) If there exists an everywhere defined precompact operator K on X and an infinite
dimensional subspace A of M such that (I − K)A ⊂ N, then (M, N) /∈ AUSF.

Proof. (i) Assume (M, N) /∈ AUSF . In such a case dim M = dim N = ∞ by
Corollary 7, and by Lemma 5(i) there is no closed finite co-dimensional subspace
B of M, for which QNJB is injective and open. Then by the Hahn–Banach theorem, a
pair of sequences (xn) ⊂ M and (x′

n) ∈ X ′ can be constructed as follows:
Select x1 ∈ M and y1 ∈ N such that ‖x1 − y1 ‖< 1/2. Next, choose x′

1 ∈ X ′ such
that 1 =‖x1‖=‖x′

1‖= x′
1(x1).

Since N(x′
1) is closed and of co-dimension 1 in X , there exists x2 ∈ M1 := M ∩

N(x′
1) and y2 ∈ N such that ‖x2 ‖= 1 and ‖x2 − y2 ‖< 1/22. Next, choose x′

2 ∈ X ′ such
that 1 =‖x′

2 ‖= x′
2(x2).

Continuing in this way, we obtain

‖xk ‖=‖x′
k ‖= x′

k(xk) = 1, yk ∈ N, ‖xk − yk ‖< 1/2k, k ∈ �

and xk ∈ Mk := M ∩ N(x′
1) ∩ N(x′

2) ∩ ......N(x′
k−1) (so that x′

i(xk) = 0 if 1 ≤ i < k).
These properties ensures that the set {xn : n ∈ �} is linearly independent.
Let A denote the subspace generated by sequence (xn), and let Pn denote the

projection defined on M with range Mn and null space the subspace generated by
{x1, x2, . . . , xn}. Then Pn is continuous and by virtue of the Hahn–Banach theorem
we can find an element fn ∈ X ′ such that fn |M= x′

nPn−1, and moreover fn and x′
nPn−1

have the same norm. Hence, fn(xm) = δnm for all 1 ≤ n ≤ m and we can assume that
‖ fn ‖‖xn − yn ‖< 1/2n and ‖ fn ‖<‖Pn−1 ‖.

In this situation, we can consider the nuclear operator

K : x ∈ X → Kx :=
∞∑

n=1

fn(x)(xn − yn) ∈ X.

Clearly, K is precompact and ‖ K ‖< 1. Moreover, (I − K)xn = yn for each n ∈ �.
Thus, we can take as L the closure of A.

(ii) If there exists an everywhere defined precompact operator K on X and an
infinite dimensional subspace A of M such that (I − K)A ⊂ N, then QN(I − K)JA = 0
so that QNJA is precompact. Thus, the use of Lemmata 5(i) and 6 makes us conclude
that (M, N) /∈ AUSF . The proof is complete. �

Proposition 8 generalizes Proposition 2.4(i) in [13, Proposition 2.4].

THEOREM 9. Let L, M and N be closed subspaces of X. If (L, M) ∈ SS and (M, N) ∈
AUSF then (L, N) ∈ AUSF.

Proof. Suppose that (L, M) ∈ SS and (L, N) /∈ AUSF . By Proposition 8(i), there
exists a precompact operator Ko : X → X with ‖Ko ‖< 1 and an infinite dimensional
closed subspace Lo of L such that (I − Ko)Lo ⊂ N.

On the other hand, (L, M) ∈ SS so that (Lo, M) ∈ SS, and thus by
Lemma 5(i), (Lo, M) /∈ F+. Thus, we infer from Lemma 6 that (Lo, M) /∈ AUSF ,
and again Proposition 8(i) ensures that there exists an everywhere defined precompact
operator K1 on X with ‖K1 ‖< 1 and an infinite dimensional closed subspace L1 of
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Lo such that (I − K1) ⊂ M. Since ‖K1 ‖< 1, I − K1 has a continuous inverse (see, for
instance [12, Corollary V.1.3]) and so we can write (I − Ko)(I − K1)−1 := I − K , where
K is a bounded precompact operator on X .

Let us denote M1 := (I − K1)L1. Now, since (I − K)M1 = (I − Ko)L1 ⊂ N,
applying Proposition 8(ii), we get (M, N) /∈ AUSF , which contradicts our
assumption. �

This Theorem 9 will play a crucial role in the proof of the result concerning the
stability of the class AUSF under strictly singular perturbations (Theorem 13).

3. Strictly singular perturbation of F+, F−, AUSF and ALSF linear relations. We
start this section proving a result concerning the perturbation of closed F+ and F− linear
relations with strictly singular linear relations.

THEOREM 10. Let T ∈ LR(X, Y ) be closed and let S ∈ LR(X, Y ) be continuous such
that D(T) ⊂ D(S) and S(0) ⊂ T(0).

(i) If T ∈ F+(X, Y ) and S ∈ SS(X, Y ), then T + S is a closed F+-relation and
k(T + S) = k(T).

(ii) If T ∈ F−(X, Y ) and S′ ∈ SS(Y ′, X ′), then T + S is a closed F−-relation and
k(T + S) = k(T).

Proof. We first note that T + S is closed by [3, Lemma 7] and (T + S)′ = T ′ + S′

by [7, Proposition III.1.5].
(i) This statement was proved by Álvarez in [3, Proposition 10].
(ii) Since S is continuous so is S′ ([7, Corollary III.1.13]) and thus we infer from

[7, Propositions III.1.4 and III.4.6] that
D(T ′) ⊂ (D(T ′)	)⊥ = T(0)⊥ ⊂ S(0)⊥ = D(S′) and S′(0) = D(S)⊥ ⊂ D(T)⊥ =

T ′(0), that is, D(T ′) ⊂ D(S′) and S′(0) ⊂ T ′(0).
In this situation since T ′ is closed, we deduce from the part (i) applied to T ′ and

S′ that T ′ + S′ is a closed F+-relation and k(T ′) = k(T ′ + S′). The desired conclusion
now follows upon noting that k(T) = −k(T ′) and k(T + S) = −k((T + S)′) by virtue
of [7, Proposition V.15.3]. �

Our next objective is to investigate the stability of the almost semi-Fredholm linear
relations under strictly singular additive perturbation as well as the behaviour of the
index under perturbation. Our investigation uses Theorem 9 in conjunction with some
auxiliary properties.

LEMMA 11. Let S, T ∈ LR(X, Y ) be closed such that S is continuous, D(T) ⊂ D(S)
and S(0) ⊂ T(0). Then,

(i) the linear relation U defined by

G(U) := {(x, (x, y)) ∈ X × (X × Y ) : x ∈ D(T), (x, y) ∈ G(S)}
is continuous, injective and open.

(ii) The linear relation V : D(V ) := D(T) × Y/G(T) ⊂ X × Y/G(T) → Y/T(0)
defined by

V ((x, y) + G(T)) := y − b + T(0),

where b ∈ Y is arbitrarily chosen with the property (x, y) = (x, b) + (0, c) with
(x, b) ∈ G(T) is injective and open.

(iii) S − T = VQG(T)JG(S)U.
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Proof. (i) It follows from the definitions that U is an injective linear relation and
U(0) = {0} × S(0).

We claim that

‖Ux‖=‖ x ‖ + ‖Sx‖ forall x ∈ D(T). (1)

Indeed, let x ∈ D(T). Then for all (x, b) ∈ Ux we have that ‖Ux‖=
d((x, b), U(0)) = d((x, b), {0} × S(0)) =‖ x ‖ +d(b, S(0)) =‖ x ‖ + ‖Sx‖, and hence
(1) holds.

Now the property (1) combined with the continuity of S and the injectivity of U
leads to U is continuous and open.

(ii) We first show that V is unambiguously defined. Let (x, y) ∈ D(T) × Y ,
then (x, y) can be decomposed as (x, y) = (x, b1) + (0, c1) with (x, b1) ∈ G(T), and
moreover if (x, y) = (x, b2) + (0, c2) for some (x, b2) ∈ G(T), then y − b1 + T(0) =
y − b2 + T(0), as desired.

That V is injective follows trivially from the definitions, so that it only remains to
see that V is open. Let (x, y) ∈ D(V ). Then (x, y) = (x, b) + (0, c) with (x, b) ∈ G(T),
which implies that

‖ (x, y) + G(T)‖= d((x, y), G(T)) = d((0, c), G(T)) = d((0, y − b), G(T))

≤ d((0, y − b), {0} × T(0)) = d(y − b, T(0)) =‖V ((x, y) + G(T)‖ .

Therefore, V is open, as required.
(iii) Let (x, y) ∈ S − T . Then (x, y) = (x, y1 − y2) with (x, y1) ∈ G(S) and (x, y2) ∈

G(T) so that (x, y1) = (x, y2) + (0, y) and so we deduce from the definition of V that

V ((x, y1) + G(T)) = y + T(0). (2)

Furthermore, since (x, y1) ∈ G(S) and x ∈ D(T), we have that

QG(T)JG(S)(x, y1) = QG(T)(x, y1),

and thus by (2) we obtain that

y + T(0) = V ((x, y1) + G(T)) = VQG(T)JG(S)(x, y1).

Therefore, S − T ⊂ VQG(T)JG(S)U .
Conversely, let (x, y) ∈ VQG(T)JG(S)U . Then it is simple to show that there

exists (x, y1) ∈ G(S) such that y ∈ V ((x, y1) + G(T)) = y1 − y2 + T(0), where (x, y1) =
(x, y2) + (0, c) for (x, y2) ∈ G(T). Consequently, y ∈ y1 − y2 + T(0) with (x, y1) ∈ G(S)
equivalently Sx = y1 + S(0) and (x, y2) ∈ G(T) equivalently Tx = y2 + T(0) and since
S(0) ⊂ T(0), by hypothesis we conclude that (S − T)x = y1 − y2 + T(0) and hence
y ∈ (S − T)x, as required. �

LEMMA 12. Let T ∈ LR(X, Y ) be closed.
(i) If T ∈ AUSF, then (X × {0}, G(T)) ∈ AUSF.

(ii) If T ∈ SS, then (G(T), X × {0}) ∈ SS.

Proof. (i) Assume that T ∈ AUSF ; in particular, T is upper semi-Fredholm and
thus there is a closed finite co-dimensional subspace M of X for which T |M is injective
and open. Let L := M × {0}. It is clear that L is a closed finite co-dimensional subspace
of D(QG(T)JX×{0}) and QG(T)JL is injective. Hence, it only remains to verify that QG(T)JL

is open. For this, let z = (m, 0) ∈ L. We have by a direct computation that the norm
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of QG(T)JL(m, 0) coincides with the norm of Tm. Now the use of this last property
combined with the fact that T |M is injective and open makes us conclude that QG(T)JL

is open, as required.
(ii) Assume that (G(T), X × {0}) /∈ SS, that is, QX×{0}JG(T) is not strictly singular.

Then there exists an infinite dimensional subspace A of D(QX×{0}JG(T)) = G(T) for
which QX×{0}JA is injective and open. Let L := {x ∈ D(T) : (z, y) ∈ A for all y ∈ Tz}.
In order to show that T is not strictly singular, it is enough to establish that L is
an infinite dimensional subspace of D(T) such that T |L is injective and open. That
L is an infinite dimensional subspace of D(T) is obvious and that N(T |L) = {0}, it
follows observing that if z ∈ N(T |L) = N(T) ∩ L then 0 ∈ Tz with z ∈ L so that (z, 0) ∈
A ∩ X × {0} = N(QX×{0}JA) = {(0, 0)}. Finally, we shall prove that T |L is open. Let
z ∈ L and let y ∈ Tz be arbitrary but fixed. Then for all b ∈ T(0) we have that y − b ∈
Tz and (z, y − b) ∈ A so that η ‖ (z, y − b)‖≤‖QX×{0}(z, y − b)‖ for some η > 0 (as
QX×{0}JA is injective and open). In consequence, η ‖ z ‖≤ d(y, T(0)), which implies
that η ‖ z ‖≤‖Tz‖ for some η > 0, as desired. The proof is complete. �

We are now ready to give the fundamental result of this paper.

THEOREM 13. Let S, T ∈ LR(X, Y ) be closed such that S is continuous, D(T) ⊂ D(S)
and S(0) ⊂ T(0).

(i) If T ∈ AUSF(X, Y ) and S ∈ SS(X, Y ), then T + S is a closed, almost upper
semi-Fredholm linear relation and k(T + S) = k(T).

(ii) If T ∈ ALSF(X, Y ) and S′ ∈ SS(Y ′, X ′) then T + S is a closed, almost lower
semi-Fredholm linear relation and k(T + S) = k(T).

Proof. We first note that by [3, Lemma 7], T + S is closed. Furthermore, since
ALSF = F−, assertion (ii) is covered by Theorem 10(ii).

(i) By Lemma 12, (X × {0}, G(T)) ∈ AUSF and (G(S), X × {0}) ∈ SS. Then it
follows from Theorem 9 that the pair (G(S), G(T)) is almost upper semi-Fredholm,
that is, the operator QG(T)JG(S) is injective and open. Moreover,

α(VQG(T)JG(S)U) ≤ α(V ) + α(QG(T)JG(S)) + α(U) ([21, Lemma 5.1]) = 0 (Lemma 11)

and

γ (VQG(T)JG(S)U) ≥ γ (V )γ (QG(T)JG(S))γ (U) > 0 (by [7, Theorem II.3.11] and Lemma
11).

Now by Lemma 11(iii), we conclude that T + S is almost upper semi-Fredholm
so that T + S is upper semi-Fredholm and this implies, by the use of Theorem 10(i)
that k(T + S) = k(T). The proof is complete. �
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