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Conservation laws that relate the local time-rate-of-change of the spatial integral of a
density function to the divergence of its flux through the boundaries of the integration
domain provide integral constraints on the spatio-temporal development of a field. Here
we show that a new type of conserved quantity exists that does not require integration
over a particular domain but which holds locally at any point in the field. This is derived
for the pseudo-energy density of non-divergent Rossby waves where local invariance is
obtained for (i) a single plane wave, and (ii) waves produced by an impulsive point source
of vorticity. The definition of pseudo-energy used here consists of a conventional kinetic
part, as well as an unconventional pseudo-potential part, proposed by Buchwald (Proc. R.
Soc. Lond. A, vol. 328, issue 1572, 1972, pp. 37–48). The anisotropic nature of the energy
flux that appears in response to the point source further clarifies the role of the beta plane
in the observed western intensification of ocean currents.
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1. Introduction

Conservation laws play a role in constraining the evolution of a partial differential equation
Lψ = s, say (Vanneste & Shepherd 1998). Here L defines a spatio-temporal differential
operator and s a given spatio-temporal source field. For a single dependent field variable
ψ(x, t), varying in space x and time t, conservation laws take the form

∂E(ψ)
∂t

+ ∇ · F (ψ) = 0, (1.1)
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where E(ψ) represents a density function and F (ψ) a corresponding flux that depend
on ψ and its derivatives. These conservation laws imply the existence of an invariant,
Ē ≡ ∫

D E dx. This invariant is obtained by integrating the conservation law over a fixed
spatial domain D. Using Gauss’ law, the domain integral of the divergence of the flux can
be written as a boundary integral

∮
∂D F · dn of the flux’s normal component across the

boundary ∂D. Provided there is no net flux across this boundary, the domain-integrated
density is time-invariant. To contrast this type of invariant with another type, obtained
in the subsequent part of this paper, we will refer to this as a global Eulerian invariant.
Note that this global invariant is only loosely related to space. It pertains to the domain
over which the integration is performed, chosen such that there is no net flux through the
boundary.

In this paper, we show that for the barotropic, non-divergent Rossby wave equation
solutions exist for which the time derivative of the wave’s total pseudo-energy, E, vanishes
identically. This happens at any location in the field, ∂E(ψ(x, t))/∂t = 0, so that spatial
integration and an appeal to Gauss’ law become unnecessary. In other words, despite the
fact that the underlying field ψ(x, t) varies in space and time, E(ψ(x, t)) becomes a local
Eulerian invariant. Obviously, as local invariance implies global invariance, the presence
of a local Eulerian invariant provides a stronger constraint than its global counterpart.
For a local Eulerian invariant, the conservation law reduces to a continuity equation,
∇ · F (ψ) = 0, implying that the flux vector F is incompressible (solenoidal). The first
example we discuss is the trivial monochromatic plane Rossby wave. The second example,
however, is the complicated Rossby wave response to an impulsive (instantaneous),
infinitely concentrated forcing.

Non-divergent Rossby waves, the simplest type of waves carried by a non-uniformly
rotating fluid, considered here, are usually described as possessing only kinetic energy.
The potential energy of a Rossby wave is commonly related to work performed by
or against gravity. This results from vertical displacements of a non-rigid surface, in
which case the Rossby waves are divergent. Buchwald (1972), however, proposed that
some form of Rossby wave potential energy (spin energy) may still be defined, even
for non-divergent waves (Thomson 1973; LeBlond & Mysak 1978). Slightly rewriting
Buchwald’s definition, this spin energy can be written as a quadratic functional of the
streamfuntion with which non-divergent Rossby waves are described. Owing to its unusual
character as potential energy and an ongoing debate whether it may qualify as a physical
form of potential energy, as well as to its appearance in the Lagrangian in a variational
derivation of the non-divergent Rossby wave equation (§ 2), we here refer to this as the
wave’s pseudo-potential energy.

In § 2, we discuss conservation laws for free non-divergent Rossby waves and show
that for a plane monochromatic non-divergent Rossby wave, the sum of kinetic T and
pseudo-potential energy V , the pseudo-energy E = T + V , is conserved at any location
and in any phase of the wave, i.e. ∂E/∂t = 0. Section 3 discusses the non-trivial response
– the Green’s function – to an impulsive point source, as well as its near- and far-field
limits. The Green’s function shows that the response evolves from initially circular into
a well-known series of ‘banana’-shaped structures that have their opening towards the
west (Veronis 1958; Longuet-Higgins 1965; Dickinson 1978) and that continuously reduce
their scale, see figure 1. A detailed description and derivation of this exact solution to
the forced Rossby wave equation is in Kloosterziel & Maas (2017). In § 4, the kinetic
and pseudo-potential energy distributions of the Green’s function are shown to also
complement each other at any moment in time, although the initial response is entirely
kinetic in the form of a circular potential flow. As for the plane monochromatic wave,
we find that the spatial distribution of the total pseudo-energy E is invariant in time
913 A46-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

17
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2021.17


Rossby wave energy: a local Eulerian isotropic invariant

and isotropic in space, showing that energy is locally conserved yet displaying a flux of
energy towards infinity. Section 5 discusses the outward-directed, anisotropic energy flux
due to the impulsive point source. We summarize our findings in § 6, discussing also its
implication for western intensification of ocean currents.

2. Linear Rossby wave theory

The simplest description of a planetary Rossby wave on a beta plane for a rigid-lid,
homogeneous-density ocean or atmosphere is in linear approximation given by

∂tq + βv = curl τ . (2.1)

Throughout this paper we set density ρ = 1 for convenience. Here, relative vorticity q =
∂xv − ∂yu is created by south-north advection of planetary vorticity and by τ = {τx, τy}
the wind-stress vector, see e.g. Veronis (1958) and Pedlosky (1987). As usual, t is time,
x longitude, y latitude and βv is the advection of planetary vorticity by the latitudinal
(south-north) velocity component v, where β represents the magnitude of the northward
directed planetary vorticity gradient.

Incompressibility, ∇ · u = 0, allows introducing a streamfunctionψ , so that the velocity
components are u = −∂yψ, v = ∂xψ and q = ∇2ψ , with ∇2 = (∂2

x + ∂2
y ). ‘Free’ Rossby

waves are governed by (2.1) with curl τ = 0 on the right-hand side:

∂t∇2ψ + β∂xψ = 0. (2.2)

Multiplication of (2.2) by ψ yields a conservation law for kinetic energy

T = 1
2∇ψ · ∇ψ, (2.3)

that reads
∂T
∂t

+ ∇ · F T = 0 with F T = −ψ ∂∇ψ
∂t

− i
1
2
βψ2, (2.4)

where we use i, j to denote the customary unit vectors associated with Cartesian
x, y-directions, respectively. Buchwald (1972) established by inspection of (2.2) that the
Rossby wave equation gives rise to a second conservation law, related to

V = 1
2βψη (2.5)

which acts as the density function of pseudo-potential energy per unit mass, despite the
presence of a rigid upper surface. Here, η denotes the northward particle displacement
whose time derivative yields the northward velocity v = ∂η/∂t.

Without use of Buchwald’s results, the conservation equation for pseudo-potential
energy V can be obtained also by using the observation by Seliger & Whitham (1968) that
the linear non-divergent Rossby wave equation (2.2) follows with a variational principle
akin to Hamilton’s principle in classical mechanics: the dynamics is determined by
requiring the difference of kinetic energy and potential energy to be stationary with respect
to small variations.

By introducing an auxiliary function χ , such that ψ = ∂tχ , Seliger & Whitham (1968)
note that (2.2) is obtained by demanding that the variation δI of an action integral I =∫∫∫

L dx dy dt with respect to small variations δχ vanishes. Here, L is the Lagrangian
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density

L = T − V = 1
2

(
∂∇χ
∂t

)2

− 1
2
β
∂χ

∂t
∂χ

∂x
. (2.6)

With the definition of χ we have ψ = ∂tχ but also ∂xχ = η because northward velocity
v = ∂tη = ∂xψ = ∂2

x,tχ . Thus V in (2.6) equals the pseudo-potential energy (2.5) of
Buchwald (1972). As Olbers, Willebrand & Eden (2012) point out, a pseudo-potential
energy appearing in the expression for the Lagrangian density is not necessarily identical
to a physical energy, although the interpretation of (pseudo) kinetic energy T as a physical
energy is beyond dispute.

Using the Rossby wave equation (2.2), V in (2.5) can be written elegantly as

V = −1
2ψ∇2ψ = −1

2ψq with q = ∇2ψ. (2.7)

Definitions (2.3) and (2.7) show that the Lagrangian density can be written as the
divergence of a flux:

L ≡ T − V = 1
2∇ · (ψ∇ψ). (2.8)

Subtracting the time derivative of T − V in (2.8) from (2.4) yields the conservation law
for pseudo-potential energy V:

∂V
∂t

+ ∇ · F V = 0 with F V = 1
2
∂ψ

∂t
∇ψ − 1

2
ψ∇ ∂ψ

∂t
− i

1
2
βψ2. (2.9)

Since E = T + V , combining (2.4) and (2.9) implies the energy conservation law

∂E
∂t

+ ∇ · F = 0 with F = F T + F V = −3
2
ψ
∂∇ψ
∂t

+ 1
2
∂ψ

∂t
∇ψ − iβψ2. (2.10)

The relevance of acknowledging V as a form of pseudo-potential energy in (2.7) is
immediately clear if we apply it to a free monochromatic Rossby wave: ψ = A sinΦ with
amplitude A and phase Φ ≡ kx + ly − ωt − φ, where wave vector k = (k, l) obeys the
dispersion relation

ω = −β k
κ2 , κ = |k|, ω > 0. (2.11)

Both kinetic and pseudo-potential energy,

T = 1
2κ

2A2 cos2Φ and V = 1
2κ

2A2 sin2Φ, (2.12a,b)

propagate on average with the group velocity cg = (∂ω/∂k, ∂ω/∂l). These expressions
do not only imply, as Buchwald inferred, equipartitioning of their phase-averages, where
the phase-average is defined as 〈·〉 = (1/2π)

∫ 2π

0 ·dΦ, but they also render the total
pseudo-energy

E = T + V = 1
2κ

2A2 (2.13)

a spatially uniform constant, without the need for any phase-averaging. Remarkably, an
infinite-dimensional system thus seems to recover a local balance between kinetic and
pseudo-potential energy, a property otherwise restricted to single degree of freedom
systems, such as the pendulum.

913 A46-4
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For plane non-divergent Rossby waves, the group velocity vector is given by

cg =
(
∂ω

∂k
,
∂ω

∂l

)
= i

β(k2 − l2)
κ4 + j

2βkl
κ4 . (2.14)

The energy flux vector

F = βA2

2κ2

(
i
[
k2 − l2 + l2 cos(2Φ)

]
+ j lk [2 − cos(2Φ)]

)

= cgE + 1
2
βA2 l

κ2 cos(2Φ)k⊥, (2.15)

where k⊥ = (l,−k) is a vector perpendicular to k. This shows that, as usual in wave
dynamics, the phase-average of the flux vector

〈F 〉 = cgE (2.16)

is indeed the product of group velocity (2.14) and energy density (2.13). This spatially
constant vector is obviously non-divergent. Yet it shows the presence of a steady flux of
energy into the direction into which the group velocity points. The second, oscillatory part
of the flux vector proportional to cos(2Φ), that accommodates the exchange of kinetic to
pseudo-potential energy and back, consists of a vector that is perpendicular to wave vector
k, implying this part is indeed also non-divergent. Vanishing of the divergence of energy
flux F in (2.15) agrees with the fact that pseudo-energy density E is invariant over time.
In § 4, we show that this also holds for the much more involved response to an impulsive
point source of vorticity which we shall first describe briefly in the next section.

3. Rossby waves due to an impulsive point source: Green’s function

With (2.12a,b) we saw that for a plane monochromatic Rossby wave, the kinetic energy
T and pseudo-potential energy V complement each other perfectly: where T is high, V is
low and vice versa, in such a manner that their total sum E is spatially uniform. In § 4,
we show that this also holds for the wave field generated by an instantaneous application
of wind-stress torque, curl τ , infinitely concentrated at a singular point. This complicated
Rossby wave field generated by an impulsive point source, the Green’s function G, is
described in detail in Kloosterziel & Maas (2017). This Green’s function is the solution of

LG = δ(t)δ(x)δ( y) with L = ∂

∂t
∇2 + β

∂

∂x
. (3.1)

Here L is the Rossby wave operator and δ the usual Dirac delta-function. In Kloosterziel
& Maas (2017), we showed that

G = H(t)
4

[J0(z+)Y0(z−)+ J0(z−)Y0(z+)], (3.2)

where Jn,Yn are nth-order Bessel functions of the first and second kind, respectively, with
complex conjugate arguments

z±=
√
βt(x ± iy) =

√
βtre±iθ/2, (3.3)

with r, θ the usual cylindrical coordinates in the x, y plane. The complex conjugate
variables z± can be expressed also in parabolic coordinates {ζ, η}

z+=az�, z−=az̄�, a =
√
βt
2
, z�≡ζ + iη, z̄�≡ζ − iη (3.4a–e)
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with

ζ = √
x + r, η = √

r − x with r =
√

x2 + y2, ζ 2 + η2 = 2r. (3.5)

The Green’s function has a self-similar dependence on βtr, and an independent angular
dependence on θ . The prefactor H(t) in (3.2) is the Heaviside unit stepfunction which
enforces ‘causality’, i.e. G = 0 for t < 0. By definition δ(t) ≡ dH(t)/dt. In the following,
H(t) will be omitted with the understanding that all results are for t > 0. The Green’s
function is remarkable in that its closed-form expression requires the use of products of
Bessel functions of complex arguments, even though the solution itself is real. Graphing G
given in (3.2) at various times is easy with available numerical packages, such as Wolfram
Research, Inc. (2020).

Figure 1 displays the Green’s function during its development. Initially, it consists
of an isotropic response as the highest derivative term in the differential operator L in
(3.1), representing the evolution of relative vorticity, which should match the point-source
singularity. Hence, as on a non-rotating plane (β = 0), the fluid initially responds in
the form of a circular irrotational point or line vortex. In figure 1(a), the near circular
symmetry near the origin at the start is obvious. Mathematically, this initial behaviour and
the behaviour near the origin follows with the small-z behaviour of J0,Y0 in (3.2) (see
(A1) in appendix A):

lim tr ↓ 0 : G ∼ 1
2π

ln r and swirl velocity vθ = ∂G
∂r

∼ 1
2πr

. (3.6)

The point vortex’s localized vorticity is positive, in agreement with the cyclonic nature of
the applied curl of the wind stress. Outside the origin, the response initially consists of
potential flow, lacking vorticity. Thus, initially all energy is kinetic, i.e. V = 0, and with
(3.6)

lim t ↓ 0 : E = T = 1
2
v2
θ = 1

2

(
1

2πr

)2

. (3.7)

However, soon after, relative vorticity q is created by cyclonic (counter-clockwise)
advection of northwards-increasing background vorticity (βv in (2.1) or the second term
of operator L in (3.1)). The exact expression for the vorticity q = ∇2G is given below in
(4.3a,b). In figure 2, we show graphs of ∇2G at the same times for which G is shown in
figure 1. Due to this advection, the secondary vortices acquire positive sign to the west, and
negative sign to the east of the source. This is seen in the first two panels of figure 2. At the
central latitude y = 0, these secondary vorticity fields in turn advect background vorticity,
in both cases leading to positive tertiary vortices further to the west and to the east of the
secondary vortices, respectively (see figure 2c). This process continues, to the east leading
to an array of vortices alternating in sign, while those to the west are all positive. This
leads to a single-signed, algebraically decreasing tail of vorticity to the west (proportional
to r−3/2) while to the east a set of westward propagating vortices appear.

The patterns seen in figure 1(c) for G and figure 2(c) for q = ∇2G at time t = 0.5 can be
described accurately by simple analytical expressions found with expansions of the Bessel
function for large argument z (see (A3) in appendix A). For example, for large βtr

G = 1
4

[J0(z+)Y0(z−)+ J0(z−)Y0(z+)] ∼ −cos(z++z−)
2π

√
z+z−

= −cos(
√

2βt(x + r))
2π

√
βtr

. (3.8)

Lines of constant ζ = √
x + r are parabolas (see figure 1) that open towards the west

(x < 0). A number of these parabolas have been plotted in figure 1. Veronis (1958) already
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Figure 1. Green’s function G (3.2) for (a) t = 0.005, (b) t = 0.05 and (c) t = 0.5 over a fixed spatial area,
showing a decrease in magnitude and scale. The innermost dashed parabola in the second and third panels
is defined by 2aζ = (n + 1/2)π with n = 0 and ζ = √

x + r, a = √
βt/2. The neighbouring parabolas in the

third panel are for n = 1 and 2, respectively.
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Figure 2. Vorticity of the Green’s function, q = ∇2G (4.3a,b) at several moments in time t over a fixed spatial
area. Vorticity increases with time. To enable use of the same colour scale, q is scaled by

√
t and has been

multiplied by 103. Parabolas and times as in figure 1: (a) t = 0.005, (b) t = 0.05 and (c) t = 0.5.

predicted that lines of constant phase would be such parabolas. For a more detailed
description of G, see Kloosterziel & Maas (2017).

With the advection of planetary vorticity a transfer of energy from T to V is enabled
by means of Rossby waves, making it likely that also the total pseudo-energy, E = T + V ,
evolves. In the next section we show however that E remains invariant as well as isotropic,
i.e. at all times E equals the initial kinetic energy (3.7).

4. Energy for the Green’s function wave field

In the following, it will be expedient to use the following notation:

Imn ≡ Jm(z+)Yn(z−)+ Jn(z−)Ym(z+), (4.1)

where m, n are integers. For brevity, we suppress the spatio-temporal dependence on the
complex z± coordinates defined in (3.3). With this notation the Green’s function (3.2) is

G = 1
4

I00. (4.2)

Treating G as the streamfunction ψ of the forced problem Lψ = δ(t)δ(x)δ( y), using
(3.4a–e) it is easy to calculate the vorticity q ≡ ∇2ψ = ∇2G:

∇2 = 4
z�z̄�

∂2

∂z�∂ z̄�
and q = ∇2G = βt

2(ζ 2 + η2)
I11 (4.3a,b)
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and 2: (a) t = 0.005, (b) t = 0.05 and (c) t = 0.5. Parabolas also as in figures 1 and 2.
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Figure 4. Pseudo-potential energy of the Green’s function V = −(G∇2G)/2 (4.5) at times (a) t = 0.005, (b)
t = 0.05 and (c) t = 0.5 over a fixed spatial area. Parabolas and times as in figures 1, 2 and 3. Colour scale as
in figure 3. Final panel (d) shows the total energy E = T + V (4.8), which is time-invariant and isotropic (see
text).

because {J′
0,Y′

0} = −{J1,Y1} (primes indicate differentiation). The variables z�, z̄�, ζ, η
are defined in (3.4a–e) and (3.5). Figure 2 shows this vorticity field at three instances. In
Kloosterziel & Maas (2017), we already determined that the kinetic energy T = (∇ψ ·
∇ψ)/2 associated with the streamfunction ψ = G equals

T = 1
2(ζ 2 + η2)

[(
∂G
∂ζ

)2

+
(
∂G
∂η

)2
]

= 1
42

βt
ζ 2 + η2 I01I10. (4.4)

The evolution of the kinetic energy distribution T is shown in figure 3. Late in its
development, the kinetic energy’s spatial distribution shows regions of very small values,
see light yellow areas in figure 3(c). This suggests these must be regions where energy
is represented by an appropriately defined form of potential energy. Substituting ψ = G
from (3.2) and ∇2ψ = ∇2G from (4.3a,b) in (2.7) we find

V = −1
2
ψ∇2ψ = −1

2
G∇2G = − 1

42
βt

ζ 2 + η2 I00I11. (4.5)

The pseudo-potential energy V is shown in figure 4 for the same three times used in figure
3 for the kinetic energy T . Comparison of figure 4(c) with figure 3(c) shows that V indeed
complements T in that where T has low values, V has high values and vice versa.

For reference, the same parabolas as in figure 1 have been shown as dashed lines in
figures 3(b,c) and 4(b,c), passing through the maxima of T and the minima of V . Note
that the pseudo-potential energy can become negative, initially mimicking the vorticity’s
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Figure 5. Angular distribution of normalized kinetic energy T/E (solid) and pseudo-potential energy V/E
(dashed), scaled by total energy E along circle of radius r = 40 at times (a) t = 0.0005, (b) t = 0.01 and
(c) t = 0.2 (time increasing by a factor 20). While all energy E starts out kinetic energy T , it rapidly converts
into potential energy V along the west axis (θ = π, centre of graphs), but at all times T/E + V/E = 1 (thin
solid line).

sign (compare first panels of figures 2 and 4) because initially −G > 0 everywhere, while,
later, weak negative values of V contract to regions where T is maximal.

When (4.4) and (4.5) are added, four terms involving the product of four Bessel
functions cancel and the result is

E = T + V = 1
42

βt
ζ 2 + η2

× [
J0(z+)Y1(z+)− J1(z+)Y0(z+)

] [
J0(z−)Y1(z−)− J1(z−)Y0(z−)

]
. (4.6)

This is a product of two Wronskians W (see the NIST Handbook of Mathematical
functions Olver et al. (2010, formula 10.5.2)):

J0(z)Y1(z)− J1(z)Y0(z) = W{J0,Y0} = 2
πz

and because
βt

ζ 2 + η2 = z+z−
2r2 (4.7)

(see definitions ((3.4a–e)–(3.5))), we find the astonishing result that at all times

E = T + V = 1
2

(
1

2πr

)2

. (4.8)

This is displayed in figure 4(d). Hence, the total energy is isotropic and time-independent
(∂E/∂t = 0). Note this is the energy entirely contained initially in the kinetic energy of the
line vortex generated by the impulsive forcing, see (3.7). At later times, kinetic energy T
is transferred to pseudo-potential energy V . This is illustrated in figure 5, which shows the
angular dependence of T/E and V/E on a circle of radius r = 40. Due to the self-similar
development of the streamfunction field, the particular radius chosen to show its angular
distribution is arbitrary. The temporal development of rapid undulations in the angular
distributions of T and V seen in figure 5 are due to the appearance of Rossby waves of
smaller and smaller scales.

How the isotropy and time-independence of E come about is seen with the asymptotic
properties of T and V . They are determined by the large-z behaviour of the Bessel functions
in Imn and we find that for large βtr (see appendix A):

βtr → ∞ : T ∼ 1
2

sin2(2aζ )
π2(ζ 2 + η2)2

= 1
2

sin2(
√

2βt(x + r))
(2πr)2

, (4.9a)

V ∼ 1
2

cos2(2aζ )
π2(ζ 2 + η2)2

= 1
2

cos2(
√

2βt(x + r))
(2πr)2

. (4.9b)
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Because sin2 z + cos2 z = 1, these approximations also yield the exact result (4.8) for the
total pseudo-energy E = T + V . The patterns for both T and V have a distinct ‘preference’
for the westward side of the forcing – at least visually (see figures 3 and 4) – but when
added to form E this disappears and in accordance with (4.8) isotropy results. Note that
this is analogous to the result for plane waves, discussed in § 2, leading to constant total
energy everywhere.

Kinetic energy may locally increase beyond that given by the isotropic distribution
present after the instantaneous torque has been applied (T/E > 1, see first two panels
of figure 5). At the same time, pseudo-potential energy V may initially become negative.
This is a consequence of the material conservation of the combined planetary and relative
vorticity. Advection of an initially quiescent fluid that is endowed with a meridionally
varying planetary vorticity, leads to the generation of relative vorticity. Its motions enhance
or diminish T locally, depending on the increase or decrease of associated gradients in
G. This is possible because the beta plane’s quiescent ground state (u = 0) is described
from within a non-uniformly rotating frame of reference, a frame that carries non-zero
ground-state energy (Tolstoy 1973). For stable wave motions, this energy may temporarily
raise the kinetic energy above its initially injected amount, at the expense of V turning
negative. In that sense, V denotes a surplus (V > 0) or shortage (V < 0) of background
energy. This happens evidently without affecting that background state owing to the huge
velocity difference between wave velocity and speed with which the beta plane revolves
around Earth’s axis. The rotating system represents an effectively infinite reservoir of
energy. The presence of such a fund of energy is more easily recognized in a stable
shear-flow, U, lacking inflection points and sheared either in the horizontal or vertical
direction. Shear-flow stability waves, supported by curvature in this background flow,
U′′ /= 0, are isomorphic with Rossby waves on the beta plane (Tolstoy 1973; Harnik &
Heifetz 2007).

5. Radial energy flux for the Green’s function wave field

In view of (2.10), when the pseudo-energy is invariant, ∂E/∂t = 0, the energy flux F must
be non-divergent:

∇ · F = 0, (5.1)

everywhere outside the origin. Non-divergency of the energy flux, however, does not imply
that the energy flux itself should vanish. In the presence of an initial amount of energy,
introduced when the wind-stress torque is applied at t = 0, a certain amount may escape,
and this is indeed what we will find.

Using our solution for the Green’s function, we can plot the energy flux vector F given
in (2.10) over the plane, or, as we do here in figure 6, present it upon division by the
invariant energy E(r) given in (4.8). We can interpret this as the energy velocity vector
U ≡ F/E that can be used to construct energy streamlines and energy paths (Chapman
2001). Since the energy flux satisfies the two-dimensional continuity equation (5.1), it can
be described by an energy streamfunction whose streamlines are tangent to the velocity
vectors depicted in figure 6.

Figure 6 shows that energy is carried in a non-uniform manner strictly outwards, away
from the source. To show this analytically, we determined the outward-directed energy flux
across a circle of some fixed radius r about the source-origin as a function of the azimuthal
angle θ . In polar coordinates, the energy flux F = Frer + Fθeθ . Here, er, eθ denote the
orthogonal unit vectors associated with the polar coordinate system. Of interest is only
the radial component, Fr, which follows with the fact that ∇ = er∂/∂r + eθ (1/r)∂/∂θ .
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Figure 6. Energy velocity, defined as the energy flux scaled by total energy, U = F/E: magnitude (colour)
and direction (arrows) at times (a) t = 0.1, (b) t = 0.4 and (c) t = 1.

Thus, with (2.10),

Fr = −3
2
ψ
∂2ψ

∂t∂r
+ 1

2
∂ψ

∂t
∂ψ

∂r
− βψ2 cos θ (5.2)

because er · i = cos θ .
Sinceψ = G = I00/4 is a function of just z± (see (4.1)), the derivatives ∂t and ∂r in (5.2)

are quickly calculated with the fact that according to (3.3) ∂z±/∂t = z±/2t, ∂z±/∂r =
z±/2r. Further, the second derivative ∂2ψ/∂t∂r can be simplified by noting that J0,Y0
satisfy their defining Bessel equation

(
z
∂

∂z

)2

{J0,Y0} = −z2{J0,Y0}. (5.3)

Also taking into account that {J′
0,Y′

0} = −{J1,Y1} and that z2+ + z2− = 2βtr cos θ , we find

Fr = −1
8

1
42

1
tr

{
(z2

+ + z2
−)I

2
00 + 6z+z−I00I11 − [z+I10 + z−I01]2

}
, (5.4)

with the Imn defined in (4.1). This exact result for the radial flux is shown in figure 7 as a
function of θ at three instants and fixed radius r = 1. It is seen in figure 7 that the radial
component of the energy flux vector F associated with E is always directed outwards, away
from the source. In contrast, we find that the kinetic energy flux F T for the traditional
Rossby wave energy equation (2.4) exhibits inward-directed fluxes over some range of
polar angles (not shown). The energy flux, F V , present in the conservation equation for V ,
(2.9), however, does exhibit only an outward-directed flux. This makes sense as initially
all vorticity is concentrated at the source.

The complicated expression (5.4) for the radial flux can be well-approximated in the
limits of small and large βtr. Substitution in (5.4) of the small-z expansions of the Bessel
functions from (A1) in appendix A yields

βtr → 0 : Fr ∼ 1
8π2tr

[
1 − 1

2
βtr cos θ log2(βtr)+ O

(
(βtr)2 log2(βtr)

)]
, (5.5)
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Figure 7. Radial energy flux Fr through the unit circle (r = 1) at times t = 1/3, 1, 3 as a function of azimuthal
coordinate θ given by its exact expression (5.4) or (5.8) (solid) and, for t = 1, by its asymptotic approximation
(5.6) (dashed). The centre of this graph θ = π corresponds to west. Horizontal lines give the isotropic part
1/(8π2tr) of Fr at the corresponding moments.

while with substitution of the large-z expansions from (A3) we find after rearrangements
and use of trigonometric identities with (A5) in appendix A that

βtr → ∞ : Fr ∼ 1
8π2tr

[
1 + sin2

(
1
2
θ

)
cos

(
4
√
βtr cos

(
1
2
θ

))]
. (5.6)

This is positive for all θ and shown as dashed line in figure 7 for a single time t = 1 at
r = 1. On the central latitude (y = 0)

βtr → ∞ : ‘east’(θ = 0, 2π) : Fr ∼ 1
8π2tr

, ‘west’(θ = π) : Fr ∼ 1
4π2tr

. (5.7a,b)

In this limit along the central latitude, twice as much energy propagates to the ‘west’.
For small βtr, (5.5) shows that there is also a (slight) preference for westward energy
propagation.

With a non-trivial analysis, we show in appendix A that when ψ = G the radial flux
consists of an isotropic part (θ -independent) and an anisotropic part F(r, θ, t):

Fr = 1
8π2tr

+ F(r, θ, t) with F = −2
8

1
42

1
tr
∂2

∂θ2 I2
00 = − 1

4tr
∂2

∂θ2 G2. (5.8)

The isotropic part of the outward-directed energy flux 1/(8π2tr) is recognized in both
asymptotic expressions (5.5) and (5.6).

Because of continuity of the (squared) Green’s function and its azimuthal derivatives,∮
Frr dθ =

∮ (
1

8π2tr
+ F

)
r dθ =

∮
1

8π2tr
r dθ = 1

4πt
(5.9)

for any radius r. Thus, the energy flux into a domain with an inner boundary of any radius
r = r1 equals the flux out of that domain bounded by any outer, larger radius r = r2. It
agrees with the fact that ∂E/∂t = 0 and shows that indeed ∇ · F = 0.

Finally, let us note that the time-integrated radial energy flux as a function of direction
(polar angle θ ) is indeterminate because the integral of the isotropic part, the first term in
(5.8), diverges. But the anisotropic part

∫ τ
0 F(r, θ, t) dt of the radial flux can be calculated.
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Figure 8. Azimuthal distribution of the time-integral of the anisotropic part of the radially outward-directed
energy flux F ≡ ∫ τ

0 F(r, θ, t) dt through the unit circle r = 1. Here, F is defined in (5.8). The centre of this
graph θ = π corresponds to west. The example is for τ = 50.

It is shown in figure 8 for time τ = 50. We find that as τ increases, the undulations in this
curve, representing contributions of individual Rossby waves, vanish. The dominant peak
in the total flux toward the western side of the forcing is obvious in figure 8.

6. Discussion

The role of Rossby potential energy that Buchwald (1972) proposed nearly 50 years ago
has not been firmly established. Perhaps this is because it is hard to associate the whirling
motion expressed as vorticity with a form of potential energy. One might prefer to refer to
it as rotational kinetic energy which it exchanges with the classical form of kinetic energy
related to translation of fluid masses. Owing to its appearance in the Lagrangian density
from which the Rossby wave equation can be derived by variation of its action integral
(Seliger & Whitham 1968), it seems appropriate to refer to V as the pseudo-potential
energy.

The present paper shows the relevance of pseudo-potential energy V = −(ψ∇2ψ)/2,
both for free as well as for impulsively forced non-divergent Rossby waves. In either case,
the spatio-temporal distribution of V perfectly complements that of the kinetic energy
distribution T = (∇ψ · ∇ψ)/2 and leaves their sum E = T + V , the pseudo-energy,
invariant. Remarkably, this is true at any location in the plane.

Certainly, the invariance of pseudo-energy is not a generic property of non-divergent
Rossby waves, as, for example, inspection of standing waves in a rectangular basin shows.
Nevertheless, the demonstrated importance of pseudo-potential energy and the appearance
of a local Eulerian invariant in rotating fluids invite further investigation.

The existence of a local Eulerian isotropic invariant in a complicated spatio-temporally
evolving field is a novel feature. It provides a much stronger constraint than global Eulerian
invariants obtained from conservation laws do. To the best of the authors’ knowledge, it is
unique amongst the solutions of partial differential equations. Remarkably, the existence
of this invariant is here obtained by explicit computation, in terms of products of Bessel
functions. It does not seem derivable from the governing equations (2.2) and (3.1).
Applying group analysis (Bluman & Kumei 1989) to (2.2) shows that while an infinite
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number of conservation laws exist, none of them can be related to the local invariance of
E (Z. Makridin, personal communication). Further research is therefore necessary to see
if this discovery of a local Eulerian invariant acts like the proverbial crack in the wall that
might lead to finding local Eulerian invariants in other partial differential equations too.

From an energetic point of view, the exact Green’s function (3.2) seemingly poses a
riddle. How can the total pseudo-energy be both invariant, displaying merely a geometrical
decay, as well as support an energy flux towards infinity? Clearly, the singularity created by
the impulsive torque initially sets up a bound line vortex, characterized by a potential flow.
The advection of background potential vorticity – spatially-varying planetary vorticity
– leads to its evolution in the form of Rossby waves of scales and speed that are ever
decreasing, folding indefinitely around the axis west of the point source. This riddle is
solved by observing that subtracting an infinite amount of energy (the outward-directed
energy flux) from an infinite amount of initial energy, introduced by the forcing, does not
need to affect the energy distribution outside the singularity.

Our finding may throw some new light on the so-called western intensification of ocean
currents occurring on a beta plane in response to variable winds. Western intensification
is usually attributed to Rossby wave anisotropy and the effects that take place upon
Rossby wave reflection from an ocean’s western boundary. Long Rossby waves propagate
their energy rapidly towards the west, while short waves propagate energy slowly to the
east. When long waves reflect from an ocean’s western boundary, they transfer their
energy to short, eastward propagating waves having the same frequency. But these short
waves practically stall while being affected by viscous and nonlinear processes. Viscosity
degrades the small-scale reflected waves. Energy transported westward by long waves is
therefore deposited near the ocean’s western boundary. In addition, nonlinear rectification
likewise intensifies when scales reduce during this reflection process, transferring wave
energy into steady western boundary currents. (Pedlosky 1987).

A further clarification of the role of the beta plane on the western intensification of
ocean currents is found here, not involving any boundary reflection. It might be expected
that an instantaneous circularly symmetric point source sends wave energy isotropically
in all directions. Here, we observe this emission to be anisotropic, favouring westward
propagation of the energy flux. While confirming Stommel’s conclusion that western
intensification of ocean circulation must be attributed to the presence of a gradient in
planetary vorticity, β, (Stommel 1948), our observation puts emphasis on the fact that
anisotropy of the beta plane may well be felt right at its incipient stage, long before waves
reach any ocean boundary.

An amusing corollary of this study is that the existence of a self-similar,
spatio-temporally evolving Green’s function that displays a local Eulerian invariant serves
as a metaphor for how to reconcile two apparently contradictory pre-Socratian notions of
the universe: Heraclitus’ pantha rhei – everything flows / changes – versus Parmenides’
permanency; despite appearances, everything exists as one, giant unchanging thing.

Acknowledgements. Critical remarks by the reviewers on the manuscript were helpful in rephrasing its
content. We thank E. Heifetz for constructive comments and Z. Makridin for performing the group analysis for
the free Rossby wave equation.

Funding. R.C.K. acknowledges support from National Science Foundation grant OCE 18-30098.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
R.C. Kloosterziel https://orcid.org/0000-0002-9638-3856;
L.R.M. Maas https://orcid.org/0000-0003-1523-7548.

913 A46-14

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

17
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://orcid.org/0000-0002-9638-3856
https://orcid.org/0000-0002-9638-3856
https://orcid.org/0000-0003-1523-7548
https://orcid.org/0000-0003-1523-7548
https://doi.org/10.1017/jfm.2021.17


Rossby wave energy: a local Eulerian isotropic invariant

Appendix A. Mathematical details

For small z,

z → 0 : J0(z) → 1, Y0(z) ∼ (2/π) ln z, J1 ∼ z
2
, Y1 ∼ − 2

πz
+ z

π
ln z

(A1a–e)

(see the NIST Handbook of Mathematical functions, Olver et al. (2010)). Substitution in
(3.2) shows that therefore near the origin or at very early times t > 0:

tr ↓ 0 : G ∼ 1
4

[
2
π

ln z−+ 2
π

ln z+
]

= 1
2π

lnβtr = 1
2π

[ln r + lnβt] . (A2)

The part that is spatially constant, i.e. (lnβt)/2π can be dropped (but may be important in
V) and therefore (3.6) follows.

For large argument z, it is known that for Bessel functions of order ν

z → ∞ : Jν (z) ∼
√

2
πz

cos
(

z − 1
2
νπ − 1

4
π

)
, Yν (z) ∼

√
2
πz

sin
(

z − 1
2
νπ − 1

4
π

)
(A3a,b)

(see the NIST Handbook of Mathematical functions, Olver et al. (2010)). We find (3.8)
after substitution of (A3) in (3.2) after use of the definitions ((3.4a–e) and (3.5)) of z±.

With the notation Imn introduced in (4.1), with (A3),

βtr → ∞ : I01 = J0(z+)Y1(z−)+ J1(z−)Y0(z+) ∼ − 2
π

sin(z++z−)√
z+z−

,

I11 = J1(z+)Y1(z−)+ J1(z−)Y1(z+) ∼ +2 cos(z++z−)
π

√
z+z−

,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(A4)

the asymptotics for I00 in (3.8) and noting that I10 has the same asymptotics as I01, we find
in view of the definitions of z± the asymptotic expressions ((4.9a) and (4.9b)) for T and V .

In the limit βtr → ∞, the radial component of the energy flux Fr can be approximated
using (3.8) and (A4) for the groups of combinations of Bessel functions (I00, I01, I10 and
I11 in (5.4)). After rearrangements of powers of z±, employing Z ≡ z+ + z−, and use of
the product rule for trigonometric functions, we find

Fr ∼ 1
8

1
42

1
tr

1
π2z+z−

{
−(z2

+ + z2
−)4 cos2 Z − 6z+z−[−4 cos2 Z] + [(z++z−)(−2 sin Z)]2

}

= 1
32tr

1
π2z+z−

[
−(z+−z−)2 cos(2(z++z−))+ 4z+z−

]
. (A5)

Using (3.3), in terms of cylindrical coordinates, this asymptotic expression becomes (5.6).
The expression (5.8) for Fr was determined as follows: inspired by the way that the

asymptotic expression in (A5) was formed, (5.4) can be rearranged as

Fr = 1
8

1
42

1
tr

{
4z+z−(I10I01 − I00I11)− (z2

+ + z2
−)I

2
00 − 2z+z−I00I11 + [z+I10 − z−I01]2

}

= 1
8

1
42

1
tr

{
42

π2 − A(r, θ, t)
}
, (A6)
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where
A ≡ (z2

+ + z2
−)I

2
00 + 2z+z−I00I11 − [z+I10 − z−I01]2, (A7)

and we used (4.4), (4.5) as well as the Wronskian expression (4.7) to simplify the first term
of (A6) within the curly brackets to 42/π2.

With the definition of the Imn (4.1), the following relations follow:

I10 = −∂I00

∂z+
, I01 = −∂I00

∂z−
, I11 = ∂2I00

∂z+∂z−
, z2

±I00 = −
(

z±
∂

∂z±

)2

I00, (A8a–d)

where we used again {J′
0,Y′

0} = −{J1,Y1}, and the Bessel equation (5.3). Thus, we find
with the notation L+ = z+∂/∂z+, L− = z−∂/∂z−

A = −I00(L2
+ + L2

−)I00 + 2I00(L+L−)I00 − [
(L+−L−)I00

]2

= −I00(L+−L−)2I00 − [
(L+−L−)I00

]2 = −1
2
(L+−L−)2I2

00

= −1
2

(
z+

∂

∂z+
− z−

∂

∂z−

)2

I2
00 = 2

∂2

∂θ2 I2
00 = 2 × 42 × ∂2G

∂θ2

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A9)

because, when applied to functions of the variables {z+, z−},
∂

∂θ
= i

2

(
z+

∂

∂z+
− z−

∂

∂z−

)
. (A10)

Then with (A6) the result is the expression (5.8) for Fr.
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