
A Matrix Representation of Ascending and Descending
Continued Fractions1

By L. M. MILNE-THOMSON (Greenwich).

{Received \5th September, 1932. Read teh November, 1932.)

The present paper describes briefly a notation for representing
continued fractions in many dimensions, which has the advantage
of providing a direct method of attack and of rendering intuitive,
results which are usually proved by induction. The notation is the
outcome of a generalisation which I previously made [1] in connec-
tion with the solution of certain difference equations. Only formal
theorems are considered here. For a discussion of convergence
reference may be made to the works [2, 3, 4, 5] cited at the end.
The paper by Paley and XJrsell is particularly important since these
authors discuss very fully the non-cyclic simple continued fraction.

Let Jm denote the square matrix of k rows and k columns
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Let </m] o denote the first column of Jm. We shall suppose that

3i =
Now consider the product

— J \J *J %• • • Jm —

PS,,

Writing m + 1 for m we have

1-1 — JHin«/m+li

1 Also read at the International Congress of Mathematicians, Zurich, 1932.
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190 L. M. MILNE-THOMSON

which gives
Pi, ra+1 = am+l Pi, m + bm+l p-2, m + • • • '+jm+\ Vk, m >

P2,m+l=Pl,m, P3,m+\ = P-2,m, • • • , Pk, m+l = Pk-1, m •

If then, we write pm for plm it follows at once that the first row
of Mm can be written

[Pm Pm-1 Pm-1 ••• Pm-k+\]

and similar results hold for every row. Thus we can write

(2)

where

(3)

"1 "2 "Z • • • Jn —

Pn Pn-l Pn-i

in in-I <ln-1

Wn

Pn = an Pn-\ + bn p,,.2 + • • • + jn Pn-k,
qn = an g-n-i + bn q,,_2 + . . . + jn qn-t,

wn = an «;„_! + bn w,,_2 + . ... +jn wn_k.
These considerations suggest the following definitions:
DEFINITION I. The matrix Jm of k rows and columns being defined

by (1), the matrix product

d i d 2 « / 3 . . . e / j j . . .

is a cyclic descending continued fraction in k dimensions.
If j m = 1, TO = 1, 2, 3, . . . we shall call the continued fraction

simple.

DEFINITION II. The matrix product

J\ J<> J3 . . . Jn _ i J,h o

is the nth convergent of the continued fraction.
Thus we can write

Pn
: in

Wn

— "1 "2 • • • • ' n - l

The numbers pn, qn, rn, ..., wn are called the components of the
nth. convergent. Their successive values are related by (3).
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DEFINITION III. The value of a non-terminating continued fraction
is the limit when n -> oo of the ratio

Pn • qn : rn : . . . : wn

provided that this limit exists. If the fraction terminates, the value is
the ratio of the components of the last convergent.

Since the determinant of the matrix Jm is (— I)*"1 jm it follows
from (2) that

Pit Pn-I Pn-2 • •

(5)
<ln-l Qn-2

r,,.i rn_2

— I— 1\n(*-l>,.= (-1) 32 33 3n-

In the case k = 2 we have the ordinary or two-dimensional
continued fraction

Tax 11 ("a2 11 Tan 11
LI oJ U 2 oJ ''" L6n 0-1

and (5) becomes
pn qn-i — Pn-i qn = (— i ) " b2b3 . . . bn,

a well known result of which (5) is the generalisation.

Periodic Cyclic Continued Fractions.

A continued fraction of the form
J T T 7 XT TT IT IT IT TZ IT IT V

1 t / 2 I / J . . . < / j J\.x - " - 2 • • • - t t -A " - \ - " - 2 • • • -"-A A l - " - 2 • • • - " - A • • •

where K, has been written for Ji+l, s = 1, 2, . . . , 7t, is said to be
periodic. The same set of matrices is continually repeated in the
same order. Put
J = Jx J2 . . . Jit K = Kx K% .. . Kh, n=i + mh + j , j < h,

We then have

JKJ'1 =

Pn

qn

O-2

«k

= JKmK}K2 .

Pn+h Pn
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This gives k linear difference equations for the components of
the convergents, the first equation being

Pn+h = «1 Pn + Pi Qn + yi rn+ ... +

Putting pn = px11, qn = qxn, . . . , we have

p(al—xh)+qp1+... +wKl = 0,

p a2 + q (j82 - x*) + . . . + w K2 = 0,

Wn

so that

(6)

Pi
a-2

= 0,

O-k Pk • • • «k — X

and the values of xh are the latent roots of the matrix JK J"1, while
corresponding to each value of xP, the numbers p, q, ..., w are
proportional to the cofactors of the elements of the top row in the
determinant (6). If (6) has one root, x, which is greater in absolute
value than every other root we have

pn — pxn, qn — qxn, . . .

so that the value of the.fraction is p: q: r:
As an illustration consider

w.

Li oJ Li oJ Li oJ Li oJ Li oJ Li oJ Li oJ Li 0J ""
Here

J KJ-^ = - 119 4021
125J

whence x3= 3 +

- 119-
— 37

, and

— 37

x8 402 = 0,
125 — x3

value of the fraction is (122 — ̂ 10): 37.

Generalised Continuants.

For brevity we consider three-dimensional continued fractions. Let

(7)
K(i,n) K{i,n-l) K{i,n-2)
q(i,n) q{i,n — \) q(i,n — 2)
r (i, n) r (i, n — 1) r (i, n — 2)

a; 1 0
64 0 1
1 0 0

. . . Cn
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where

It follows that

(8) P(i,n) = CiCt+

C, =

i • • . Cn=

a,
b.

_ct

~K
Q
c,

1 0
0 1
0 0

(i, n) ,
(i,n)
r (i, n)

K(i,

?(*.
Cir{

n
n

i,

- 1 )
- 1 )
n— 1

K
2

) c

(i,
(»,
r

n
n

- 2 )
- 2 )
n — 2)

Hence we have d P (i + 1, n) = P (i, n), which gives

K (i, n) = atK (i + 1, n) + q (i + 1, n),
(9) q {i, n) = b{ K (i + 1, n) + ci+1 r (i + 1, n),

r (i, n) = K(i+\, n),

whence we obtain the recurrence relation

(10) K (i, n) = at K (i + 1, n) + bi+l K (i + 2, n) + ci+2 K(i + 3, n).

We call the function K (i, n) a generalised continuant, since it is
an obvious extension of the continuant denned by a two-dimensional
fraction. The definition and method of inference by which (10) was
established are clearly general. We also note that

K(\,n)=fn.

Also, as in (3), we have at once

(11) K {i, n) = anK {i, n - 1) + bn K (i, n - 2) + c,, K (i, n - 3).

From (7) we see that

are appropriate interpretations.
F r o m (8) we see t h a t P(l,n) = P{l,i) P(i + l,n);

whence using (9) we have the theorem

(12) K (1, n)=K (1, i) K (i+1, n)+K (1, i-1) {6i+1 K (i+2, n)+ci+2 R (i+3, n)}
+ ci+1 K{l,i-2)K(i + 2, n).

In the two-dimensional case this reduces to
K (1, n) = K(l, i) K(i+ 1, n) + bi+1 K{l,i-l)K(i + 2, n).

Eider's Theorem on Continuants.

Euler gave for two-dimensional simple continuants a theorem
which is equivalent to
K(\, n) K (i, m)-K (1, m) K (i, n)

= (-l)ra- i+1Mi+1 . . . bm+iK{l, i-2) K(m+2,n), l<i<m<n.
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194 L. M. MILNE-THOMSON

This theorem can easily be generalised for our continued
fractions. We give the method applied to the three-dimensional
case. If k < i we have by repeated use of (11)

(13) K (i, n)
K(l,i—l)K(l,i — 2)K ( 1 , i - 3 ) '
K( ) 0 0
K (k, i - 1) K (k, i - 2) K (k, i - 3)

(14)

K (k, n)

If, then , l<k<i<t<m<n, we have

~K(l,n) K(l,m) K (1,1)
K (i, n) K (i, m) K (i, t)
K (k, n) K (k, m) K (k, t)

K{l,i-1) K(l,i-2) K(l,i-3)
K(....) 0 0
K (k, i - 1) K (k, i - 2) if (k, i - 3)

•. C-i

where

JV = Ct . . .
0 0
0 0
0 0

ct

0
0
0

am

bm

Cm

0
0
0

+
0
0
0

0
0
0

at

bt

Ct

K(t,n) K(t,m) at

q (t, n) q (t, m) bt

_ct r (t, n) ct r (t, m) c,

Using (9) and (10) we easily obtain

K (t, n) K (t, TO) at

q (t, n) q (t, m) bt = ct ct+1 ct+2

ct r (t, n) ct r (t, m) ct

K(t +• 3,n) K(t + 3, m)
K(t + 2,n) K(t+ 2, TO)

Now the determinant of C, is cs. If then, in (14), we replace the
matrices by determinants, we have the required generalisation to
three dimensions of Euler's theorem, namely

K (i, n) K (i, m) K (i, t)
K (k, ri) K (k, TO) K (k, t)

K(k,i-2) K(k,i-3) x
K(t+2, K(t+2,m)

K(t+3,m)
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Non-Cyclic Continued Fractions.

The non-cyclic continued fraction, which was introduced by
Paley and Ursell [3] for simple continued fractions, is equivalent to
the following type of matrix product (in the general case for three
dimensions):

1 0
0 1
0 0

c2 0 1
a2 0 0
6, 1 0

a3

b3

c3

1
0
0

0
1
0

c4

a4

&4

1
0
0

0
]

0

b5 0 1
c5 0 0
a, 1 0

0 1
0 0
1 0

If we refer to those rows which contain at most one element different
from zero, as zero rows, and to the other rows, as unit rows, the
simple continued fraction corresponds to the case in which the letter
in each zero row is replaced by unity. The characteristic formal
features of these fractions are:

(i) The first row of each matrix, except possibly in the first matrix,
is a unit row.

(ii) The letter in the first row of each matrix is the same as the
letter in the zero row of the immediately preceding matr ix .

(iii) In any given matrix the letters and units are arranged cyclically
from the zero row;

for example c 1 0 follows 6 0 0 and a 0 1 follows c 1 O.

By an obvious adaptation of our matrix notation we write the
above product in the form

C, C3 5 A6 . . .

where the capital letter indicates the letter of the zero row, and the
letter in the first row of each matrix is indicated by the capital letter
of the matrix which immediately precedes.

The rath-convergent is still given by Definition II, but the law of
recurrence is different, namely

Pn = anP/+ bn pg + cn ph,
qn = anqf + bn qg + cn qh,

rn =anrf + bn rg + cn rh,
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where / is the suffix of the latest matrix before the nth which has a
in the zero row, and g and h are similarly defined. This result
follows at once from the form of the matrices which shows that pf say,
cannot be annihilated until the letter a has again occurred in a
zero row.

Thus for example

Pa = «6 Pi + h 2h + ce p5
and

2h
<Ls C3 B4 C 5 ;

whence, replacing the matrices by determinants, we have

Pt 2h

= a2 c3

which indicates the form taken by (5) when applied to fractions of
this type. It may be noted that the determinant of each of the
matrices A, B, C is represented by the corresponding small letter.

The matrix method of generation of general non-cyclic continued
fractions from numbers is illustrated by the following numerical case.

150"
103
116

2
1
2

1
0
0

0
1
0

58
34
45_

58
34

45
=

3 0 1
2 0 0
2 1 0

17
11
7

The first of these results is obtained by dividing each member
by 58, the second by dividing by 17.

Proceeding in this way we obtain

150
103
116

=
2
1
2

1
0
0

0
1

0

3
2
2

0
0
1

1
0
0

2
1
1

1
0
0

o
i !
0 |

3
1
2

1
0
0

0
1

0

2

i—
i

1

0
0
1

1
0
0

1

I °1 0

The result is of course not unique as i t depends on the choice of
divisor at each stage.

For further developments of non-cyclic fractions the paper [3]
cited at the end should be consulted.
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Ascending Continued Fractions.

If the two-dimensional continued fraction

a3 + . . .
be reflected in a mirror placed above the fraction, with its plane
perpendicular to the plane of the paper, we obtain the ascending
continued fraction

Qs + . . .

which is at once seen to be equivalent to the series

Ol + ir + i n r + tnn + •••
0 2 O2 0 3 O2 O3 64

Continued fractions of this type arise naturally from the non-
homogeneous linear difference equation of the first order. For
consider the equation

6 (*) u{x) = u(x + l) + a (x).

We have by repeated substitution

which furnishes a particular solution if the ascending continued
fraction converges. Thus for instance the equation

u {x + 1) — x u (x) = — e~r r*

yields the particular solution

(1 r r- 1
u(x) = e-rr*\—-{ 1 1 (- . . . I

I* z ( z + l ) z(s + l)(a; + 2 ) ^ J

when the real part of x is positive: this is an Incomplete Gramma
function, which reduces to Prym's function when r = 1.

If we denote the sum of the first n terms of the series (17) by
P (n)l<l (n) w e have

P(n) = p(n—l) an

q (n) q(n — 1) b^bz ... bn
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which gives, on the supposition that no common factors are cancelled,

Qg\ q(n) = b2b3 ... bn,
p{n) = bnp(n-l)+-an.

In the matrix notation this becomes

(19)
lp(n)

01 \q(n- 1) 01 Vbn 01
lJ Lp(n — 1) 1-1 La,, U

= p 01 Vb, 01 p 3 01 Vbn 01
Lai lJ La2 lJ La3 lJ " ' ' Un lJ

dm

jm
im

C™

0
1
0
0

0

0
0
1
0

0

0
0
0
1

0

. . . 0

. . . 0

. . . 0

. . . 0

. . . 0
. . . 1

which is the matrix representation of an ascending continued fraction;
and is seen to be the reflection, in the manner already described, of
the matrix representation of a two-dimensional descending fraction.

To generalise this result we denote by Bm the matrix of k rows
and columns

(20)

and by Bm>0 the matrix consisting of the first column of Bm. We
shall suppose that 6X = 1.

DEFINITION IV. The matrix Bm of k rows and columns being
defined by (20), the matrix product

B1 B-2 B3 . . . Bn .. .

is a cyclic ascending continued fraction in k dimensions.

It may be observed that a matrix of type Bm arises from the
matrix Jm of (1) if the last row of the latter be moved to the top.
This operation may be considered as the analogue of reflection in a
mirror of the two-dimensional descending fraction.

The above definition does not exhaust the possibilities of
generalising (19). In fact it would appear that we could define a
generalised ascending fraction as a product of matrices obtained by
arbitrary rearrangements of the last k — 1 rows of Bm. This matter
is reserved for future consideration.

https://doi.org/10.1017/S0013091500007926 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500007926


MATRIX REPRESENTATION OF CONTINUED FRACTIONS

DEFINITION V. The matrix product

Bi B2 . . . -Bn-1 -Bn,0

is the nth convergent of the ascending continued fraction.

199

Thus we write

(21)

q(n)~
p(n)
w (n)

and we call the numbers p (n), q (n), . .. , the components of the nth
convergent.

DEFINITION VI. The value of a non-terminating ascending continued
fraction is the limit when n-> oo of the ratio p{n) : q(n) : . . . : w{n),
provided that this limit exists. If the fraction terminates, the value is
the ratio of the components of the last convergent.

From Definition V we have

(22)

which gives the recurrence relations
p(n) = bnp(n — 1)
'q(n) =bnq{n— 1),
r(n) =bnr{n — 1)

q(n)
p(n)

r{n)

0
1

0

. . . 0

. . . 0

. . . 1

q{n-
P ( » -

r (n —

1)
1)

1)

0
1

0

. . . 0

. . . 0

. . . 1

K
an

0
1

0

. . . 0

. . . 0

. . . 1

(23)
cn,

If in (22) we replace the matrices by determinants we obtain

q(n) — b2bi . . . bn>

which is indeed obvious from the second of relations (23).

Periodic Ascending Continued Fractions.

A periodic fraction will be of the type

B,B2 ... BidC, ... OtC,Co . . . C.C.C, ... Gh ...
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where C, denotes a matrix of the type B,. Writing

B = B1B2 ... Bu C =

BCB-l=

C2 ... Ch,

p o o
a 1 0
K 0 1

= i + mh

. o~

. 0

. 0

h,

\_y

we have
q (n + h)
p(n + h)

q(n)'
p{n)

= BCB'1

r (n + h) r (n)

which gives the difference equations

p (n + h) = aq (n) + p (n),
q (n + h)=fa (n),
r(n + h) = yq (n) + r (n).

Putting p (n) = pxn, q (n) = qxn, . .. , the second equation
xh = fi so that the value of the continued fraction is

p : q : ... : w = a : (ft — 1) : y : . .. : K

and the value exists if jS=|= 1.
Thus for example in the case of the ascending fraction

[\ 3 G 3 G 3G 3G 3 - . * « - G ?
the value is 17:9 which is readily verified from the series (17).

gives
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