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Abstract. For even small astronomy projects, the petabyte scale is now upon us. The Aster-
oid Terrestrial-impact Last Alert System (Tonry 2011) will survey the entire visible sky from
Hawaii multiple times per night to search for near-Earth asteroids on impact trajectories. While
the ATLAS optical system is modest by modern astronomical standards – two 0.5 m F/2.0
telescopes – each night the ATLAS system will measure nearly 109 astronomical sources to a
photometric accuracy of < 5%, totaling 1012 individual observations over its initial 3-year mis-
sion. This ever-growing dataset must be searched in real-time for moving objects and transients
then archived for further analysis, and alerts for newly discovered near-Earth asteroids (NEAs)
disseminated within tens of minutes from detection. ATLAS’s all-sky coverage ensures it will
discover many ‘rifle shot’ near-misses moving rapidly on the sky as they shoot past the Earth,
so the system will need software to automatically detect highly-trailed sources and discriminate
them from the thousands of low-Earth orbit (LEO) and geosynchronous orbit (GEO) satellites
ATLAS will see each night. Additional interrogation will identify interesting phenomena from
millions of transient sources per night beyond the solar system. The data processing and storage
requirements for ATLAS demand a ‘big data’ approach typical of commercial internet enter-
prises. We describe our experience in deploying a nimble, scalable and reliable data processing
infrastructure, and suggest ATLAS as steppingstone to data processing capability needed as we
enter the era of LSST.
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1. Introduction
Fueled by the Moore’s Law (Moore 1965), the relentlessly increasing density of tran-

sistors and resulting cheaper and faster electronic components have ushered in a new age
in astronomical data acquisition and computation. CCDs for astronomical cameras now
number hundreds of millions of pixels per single device, with mosaics achieving billions of
pixels. Increasingly sophisticated data processing techniques are able to rapidly measure
the sources in these single images and perform deeper searches across years’ worth of
images. Storage and interrogation of modern astronomical images requires entire ‘farms’
of compute and disk, typically occupying many cabinets of servers in a dedicated com-
pute facility. As compute facilities for astronomical projects continue to grow, greater
engineering is required to deploy infrastructure, and maintenance and reliability become
serious issues – more hardware means more components can fail, so redundancy and high
availability (resistance to outages) must be designed into the infrastructure. A fundamen-
tal conflict exists between the low cost of computer resources and the growing difficulty
of managing these resources.

In the commercial world, a similar technological revolution has been spurred by the
availability of the same faster, cheaper technology applied to the Internet. Billions of
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devices, from traditional desktop and laptop computers to mobile phones and appliances,
interact via megabit-capacity connections to an Internet supported by many multi-gigabit
backbones. Thousands of web services exist that each can support realtime communica-
tions and data exchange among millions of users. Computational resources themselves
can be provisioned in the ‘cloud’, meaning that procurement of hardware and physical
proximity are no longer a requirement for deploying large-scale compute infrastructure.
The software landscape is exploding with free and commercial packages to archive and
mine the huge volume of data generated daily by global Internet users. This scale of com-
putational infrastructure, now referred to as ‘big data,’ was once considered the domain
of large astronomy or particle physics projects, but has become routine for a commercial
Internet endeavor.

The Asteroid Terrestrial Last-Alert System (Tonry 2011) is a contemporary survey
telescope project whose success will depend on the project’s ability to grapple with big
data scale while remaining a nimble and lean project that can stay within its predicted
budget. ATLAS relies on modern technology to achieve scalable, unprecedented perfor-
mance per unit cost. In the remainder of this paper, we present ATLAS requirements
and discuss technological choices available to ATLAS and their ramifications.

2. ATLAS
ATLAS was funded in 2013 by the NASA Near Earth Objects Observations (NEOO)

program for $5M over five years to design, construct and operate for two years a telescope
system optimized for the discovery of ‘death-plunge’ asteroids on impacting trajectories
with the Earth. While other near-Earth asteroid (NEA) surveys exist and are funded by
NASA NEOO, with Catalina Sky Survey (CSS; Larsen et al. 1998) and Pan-STARRS
(Kaiser et al. 2002) being the dominant NEA discovery surveys, these programs have
historically focused on the threat posed by the largest NEAs, typically > 140 m in
diameter. This focus requires survey strategies geared toward discovering these objects
at opposition when they are brightest and moving slowly. This strategy has been largely
successful, having achieved > 90% completion of 1 km NEAs (Mainzer et al. 2011) and
increasing the number of known NEAs of any size to more than 10,000.

Despite their orientation toward large objects, these surveys still discover large numbers
of small NEAs. Catalina Sky Survey remains the only survey to date to have discovered
near-Earth asteroids prior to impact: 2008 TC3 and 2014 AA, both about 2-4 m in
diameter (Boattini et al. 2009, Kowalski et al. 2014).

ATLAS optimizes for small, impacting NEAs via its 30 deg2 field of view that is capable
of observing the entire visible sky three times per night down a limiting magnitude of m =
20. Despite its relatively large field of view compared to other NEA survey telescopes, each
ATLAS telescope’s STA1600 110 megapixel CCD achieves a pixel scale of 1.8 arcseconds.
The ATLAS system will obtain around 2000 exposures per night, for a raw pixel volume of
about half a terabyte (1012 bytes) per night for the duration of a nominal two-year survey,
nearly a half petabyte (1015 bytes). Exposures obtained under photometric conditions
will be assembled into a full-sky template image for image subtraction. With its nightly
all-sky coverage, ATLAS can assemble a deep full-sky template in several nights.

Each night ATLAS will also measure between 108 and 109 astronomical sources (mostly
stars and galaxies); by acquiring three measurements at a given sky location per night,
ATLAS will obtain nearly 1000 distinct measurements of these 109 sources by the end
of its nominal two-year operations funding. The ATLAS software is mostly home-grown,
consisting of fast, compact code to perform basic reductions (flatfielding, calibration),
image subtraction and source detection.
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Figure 1. Comparison of ATLAS performance to contemporary survey telescopes at detecting
transient phenomena. Better asteroid discovery performance (in particular for NEAs) occurs
toward the top left, where single-image sensitivity and short cadences are important. The circles
are proportional to the solid angle surveyed for a given cadence interval. The short tails to the
bottom left of each indicate the sensitivity at a given cadence; at longer time scales, sensitivity
is increased due to image stacking at the expense of the ability to detect asteroids, which require
short time scales.

To find moving objects in its data, ATLAS will employ an adapted version of the Pan-
STARRS moving object processing system (Denneau et al. 2013). Effective identification
of transient sources requires ATLAS to catalog all sources detected in its images. Stars
and galaxies must be recorded for photometric and astrometric calibration and for iden-
tification with transient sources that are known to be variable stars (of which ATLAS
will detect millions per night). So in addition to raw pixel data, the ATLAS database
must absorb information for > 108 sources per night. Asteroids will constitute a small
fraction of the transient sources measured by ATLAS, around 105 per night.

The ATLAS hardware is modest by modern standards – a 0.5 m primary mirror F/2.0
in a Wright-Schmidt configuration, with a construction cost of about $1M per telescope,
yet it will measure nearly 1/3 the number of sources measured by the Pan-STARRS1
survey at nearly two orders of magnitude more in cost. The etendue, or product AΩ of
collecting area times solid angle subtended, is similar to Pan-STARRS or Skymapper,
making up the 1/10 sensitivity with 10× the solid angle. Figure 1 compares ATLAS to
contemporary surveys, revealing ATLAS to be competitive with other modern surveys
with respect to discovery performance for transient phenomena, especially once total
project cost is considered.

Figure 2 shows the ATLAS sensitivity for 30 m NEAs – ATLAS will be sensitive to
asteroids in a ‘candle flame’ shape around the Earth, able to detect incoming asteroids in
all directions except toward the Sun. There is an enhancement toward opposition where
phase effects allow asteroids to be detected more easily. The candle flame suggests that

https://doi.org/10.1017/S174392131500722X Published online by Cambridge University Press

https://doi.org/10.1017/S174392131500722X


302 L. Denneau, Jr.

Figure 2. Visibility of 30m NEAs by ATLAS. The ‘candle flame’ shape on the right shows the
volume for which ATLAS is sensitive to NEAs of a given size.

ATLAS will provide, on average, seven days warning for an impacting 50 m asteroid and
three weeks for a 140 m asteroid, allowing for civil defense of at-risk areas.

One additional feature of the ATLAS project is its small size in human terms: the
project employs only five full-time employees (FTEs) who have been responsible for
management of the project, design of the ATLAS camera, and development of ATLAS
software. ATLAS operates in many ways like a startup company – the small staff is
responsible for project management and engineering.

3. Big Data
The ATLAS data stream presents several challenges that encroach upon the ‘big data’

regime of data management and processing. Broadly, big data refers to volume or com-
plexity of data that requires unconventional methods for acquisition, storage, analysis,
search, visualization and sharing. For modern Internet services, these issues might refer
to real-time ingest and classification of geospatially-encoded end-user communications;
storage and indexing of this data in a distributed, redundant database; and real-time an-
alytics of this data and the on-demand dispatch of search results from such a database.

In the ATLAS context, big data approaches are needed for a) storage and retrieval of
0.5 TB of pixel data every night; b) database storage and analysis of 108 astronomical
sources per night; c) real-time spatial searching of 106 transient detections per night for
new and unknown asteroids; and d) image processing to integrate photometric images
into the deep full-sky template.

Table 1 describes the processing rates for several large-scale Internet services. Some
of these services have become so prevalent that they have cultivated entire software
ecosystems that support and extend their data services, for example:
• External curation of video (e.g. YouTube) into specialty channels
• Games and discussion groups using a service’s application programming interface

(API)
• Realtime-discussion groups and news feeds generated from billions of messages daily
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Figure 3. The big data landscape as of 2012. (Feinleib 2012)

An important by-product of these software ecosystems is the proliferation and avail-
ability of general-purpose open-source software to build and manage infrastructure in
support of these services. The image- and video-based services in particular have led
to a multitude of frameworks to enable distributed multiprocessing over large datasets.
Inspired by Google, Inc.’s MapReduce programming model for parallel, distributed pro-
gramming (Dean & Ghemawat 2008), the Apache Software Foundation developed the
Java-based Hadoop framework (White 2009), which in turn has spun off many support-
ing projects: HBase, a scalable, distributed Hadoop database; Hadoop Distributed File
System (HDFS), for high-throughput access to application data; Cassandra, a scalable
multiple-master database; Spark, a compute engine for Hadoop data, to name a few. As of
September 2015, the Twitter service operates a 300PB Hadoop infrastructure federated
over tens of thousands of servers (Shegalov 2015).

The unstructured document-based nature of Internet services has also led to rapid
growth of ‘no-SQL’ databases, a departure from traditional sequential query language
(SQL) databases that enforce rigid structure of input data into tables. As with distributed
parallel processing, there now exists a large number of open-source packages to serve
huge volumes of unstructured data in such databases: MongoDB, CouchDB, DynamoDB,
MapR are among the dozens available. Figure 3 conveys the large array of choices in the
big data software marketplace.

All of these packages perform admirably and support successful commercial enter-
prises. They are relevant to ATLAS in that they could facilitate real-time processing
of geospatially-encoded (e.g. celestial) pixel and catalog data and can grow to petabyte
scales. Since the software is open-source and freely available, these packages would seem
to be an excellent fit to the ATLAS project.
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Table 1. Daily transaction rates, per minute, of modern ‘big data’ Internet services. Most of
these services are capable of performing real-time, geo-indexed searches against databases of
millions of users and billions of messages.

Service Action Data Number/day

Twitter Send Tweets (text messages) 5 × 108

Netflix Stream Hour of video 1 × 108

Skype Send/receive Audio calls 1.5 × 108

Snapchat Share Photo 4 × 108

Instagram Share Photo 2.5 × 109

Facebook Like Post 5 × 109

Vine Play Video 1.4 × 109

YouTube Upload Hour of video 4 × 105

Pinterest Pin (upload) Image 1.3 × 107

4. Discussion
Mesmerized by the prospects of open-source distributed parallel processing software

used by successful companies, ATLAS undertook investigation of modern big data soft-
ware within its infrastructure. Constrained by a limited staff, budget and schedule, the
results have been underwhelming and largely unsuccessful for the following reasons:

Big hardware deployments. Environments such as Hadoop and Cassandra require sig-
nificant hardware just to deploy for accurate evaluation under test scenarios. Simulta-
neous comparison of competing technology requires even more hardware. We found the
procurement and setup of evaluation systems to be slow and time-consuming. Cloud ser-
vices can alleviate some of these issues at much greater expense, exceeding the cost of
hardware after several months of operation.

Big software stacks. Modern big data infrastructure requires complicated supporting
software environments to be installed underneath them, spanning an array of program-
ming languages (e.g. Go, Java, Python, JavaScript, Scala) and high-level operating envi-
ronments (Linux, Docker). Proper exploitation of these environments depends on highly-
skilled staff fluent in all of these tools.

Big engineering. Installation of many big data infrastructures continues to be simpli-
fied, but adaptation to ATLAS-specific needs requires significant integration engineering.

Uncertain software lifespan. The rapidly-changing commercial software world in which
these tools originate means that a tool that was ‘industry standard’ several years ago
may be superseded by new technology. When a project such as ATLAS needs stability
over a 5-10 year window, the correct choice of tools (if there is one) is not at all obvious.

CAP theorem considerations. A properly deployed big data infrastructure must cope
with theoretical limitations as described by (Brewer 2000), now known as Brewer’s CAP
Theorem (Gilbert & Lynch 2002). CAP refers to a) consistency, all nodes see the same
data at the same time; b) availability, a guarantee that requests receive a response indi-
cating success or failure; and c) partition tolerance, or ability to perform during network
failures. The CAP theorem broadly states that two of these three features are available
in a distributed system. ATLAS operations need to be evaluated against the tradeoffs
imposed by CAP limitations.

Going forward, ATLAS has retreated somewhat to a traditional relational database
management system (RDBMS) with a pool of locally-managed storage nodes, growing
on-demand as the ATLAS dataset grows. But compute and storage hardware that a
decade ago filled a room occupies a single enclosure today. Our take-away lessons from
the ATLAS big data experiment:
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Big data is hard – how do you find the right model? Optimal use of big data technol-
ogy requires intense evaluation of hard-to-deploy scenarios. There are dozens of com-
peting infrastructures for distributed parallel data processing, and some of them will
not exist several years from now. What expertise is needed and what are the proper
evaluation techniques? Strong engineering is needed to answer these questions.

Boring technology is OK. Old technology has not stood still – ‘boring’ RDBMSes such
as MySQL have grown in capability and can now handle the 1012 records that ATLAS
will obtain and can operate in replicated and/or distributed modes. Traditional parallel
processing environments such as HTCondor (Thain et al. 2005) remain under develop-
ment and are able to scale over thousands of CPUs on standard Linux sytems.

Don’t overreach. It is better to employ well-understood technology that strains to keep
up with ATLAS data processing needs than to adopt new technology whose engineering
demands and long-term performance are unknown and can possibly overwhelm informa-
tion technology staff.

Acknowledgements
The design and construction of ATLAS is funded by the National Aeronautics and

Space Administration Near Earth Objects Observations program under Grant
No. NNX12AR55G.

References
Busso, A. et al. (2009 ) 2009, AAS Abstracts, 41
Brewer, E. (2000 ) 2000, PODC Keynote
Dean, J. & Ghemawat, S. (2008 ) 2008, Communications of the ACM, 51, 1, 107
Denneau, L. et al. (2013 ) 2013, PASP, 125, 357
DOMO (2015 ) 2015, https://www.domo.com/blog/2015/08/data-never-sleeps-3-0, 2015
Feinleib, D. (2012 ) 2012, http://www.forbes.com/sites/davefeinleib/2012/06/19/the-big-data-

landscape/
Gilbert, S. & Lynch, N. (2002 ) 2002, ACM SIGACT News, 33, 2, 51
Kaiser, N. et al. (2002 ) 2002, SPIE Conference Series, 4836, 154
Kowalski, R. A. et al. (2014 ) 2014, http://www.minorplanetcenter.net/mpec/K14/K14A02.html
Larson, S., Brownle, J., Hergenrother, C., & Spahr, T. (1998 ) 1998, Bulletin of the American

Astronomical Society, 30, 1037
Mainzer, A. K. et al. (2011 ) 2011, ApJ, 743, 156
Moore, G. (1965 ) 1965, Electronics Magazine, 38, 8
Shegalov, G. (2015) 2015 https://blog.twitter.com/2015/hadoop-filesystem-at-twitter, 2015
Thain, D., Tannenbaum, T., & Livny, M. (2005 ) 2005, Concurrency - Practice and Experience,

17, 323
Tonry, J. L. (2011 ) 2011, PASP, 123, 58
White, T. (2009 ) 2009, Hadoop: The Definitive Guide (O’Reilly Media, Inc.)

https://doi.org/10.1017/S174392131500722X Published online by Cambridge University Press

https://doi.org/10.1017/S174392131500722X

