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Abstract

In this work we study the behaviour of compact, smooth, orientable, spacelike hypersurfaces without
boundary, which are immersed in cosmological spacetimes and move under the inverse mean curvature
flow. We prove longtime existence and regularity of a solution to the corresponding nonlinear parabolic
system of partial differential equations.

2000 Mathematics subject classification: primary 53C42, 53C50, 83C30.

1. Introduction

A cosmological spacetime is a time-oriented connected Lorentzian manifold ¥ con-
taining a global Cauchy surface, thus we can write ¥ = X" x [ with £” being a
Cauchy surface. In [8] Gerhardt obtained general existence and regularity results
for prescribed mean curvature surfaces in cosmological spacetimes (in {1] Bartnik
settled the corresponding problem for asymptotically flat spacetimes). In particular it
was proved that in cosmological spacetimes which satisfy the timelike convergence
condition and admit a big bang and a big crunch (this means suitable barriers in the
future and past are known) there exists a foliation of ¥ by hypersurfaces of constant
mean curvature. Ecker and Huisken [6] studied the corresponding mean curvature
flow and constructed hypersurfaces of prescribed mean curvature J# in cosmological
spacetimes satisfying the timelike convergence condition as an asymptotic limit of
the geometric evolution equation d/dsF = (H — ##)v. So they gave an alternative
proof for the existence of maximal and constant mean curvature surfaces. However
they needed as well the assumption of future and past barriers.
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In this paper we want to construct a foliation of the past of a spacelike hypersurface
with strict positive mean curvature in a cosmological spacetime. For that purpose
we look at the geometric evolution equation which deforms a given hypersurface in
direction of its past directed unit normal where the speed at each point is determined by
the inverse of the mean curvature at this point. The solution of the corresponding fully
nonlinear parabolic system gives a foliation of the past of a spacelike hypersurface with
strict positive mean curvature since the positivity of the mean curvature is preserved.
To be more precise let M, be a smooth, orientable, compact, spacelike hypersurface
without boundary in a cosmological spacetime ¥ with strictly positive mean curvature
given by an immersion

FoZM"—)fy.

Then we solve the evolution equation

d 1
(1) E;F(P’s)_:_(_l—iv) (P’S)» pEM", SZO’

F(p,0) = F(p).

where v(p, s) denotes the future directed unit normal to M, := F(-, s)(M") at F(p, s)
and H > 0 is the mean curvature on M.

Since ¥ is a cosmological spacetime a spacelike hypersurface can be written as
the graph of a real valued function u over some fixed Cauchy surface £* and the fully
nonlinear parabolic system (1) can be rewritten as a fully nonlinear equation for u. To
derive longtime existence for (1) it is therefore necessary to develop a priori estimates
on the height, the slope and the curvature. The a priori estimate for the slope is proved
with methods related to that in [1] and [6], while the one for the curvature is proved
by using a maximum principle for bilinear forms due to Hamilton [10].

This gives existence and therefore a foliation as long as the flow stays in a smooth
compact region of the cosmological spacetime ¥#'. Existence for all time follows then
from an a priori estimate on the height u. To prove such an a priori estimate we make a
natural regularity assumption (Section 5, Equation (5)) on the reference slicing, which
is for example always satisfied in a Friedmann model (see the last section).

The evolution of hypersurfaces by mean curvature has been extensively studied
in Riemannian ambient spaces. In [14,15] Huisken looked at the so-called mean
curvature flow: d/dsF = —Hv. This flow contracts compact initial surfaces and
develops singularities as the flow decreases area (like the flow in the equation above).
In the case of spacelike hypersurfaces in Lorentzian manifolds the mean curvature
flow [6] increases rather than decreases area which leads to a more regular behaviour.

The flow along the inverse of the mean curvature in a Riemannian manifold plays
an important role in the proof of the Penrose Inequality [17]. For this flow Gerhardt
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[9] and Urbas [23] proved independently longtime existence and convergence to an
expanding round sphere if the initial surface is a compact star-shaped C** hypersurface
in R".

After fixing notation and recalling some fundamentals in Section 2, we calculate the
relevant evolution equations in Section 3 before we obtain the crucial a priori estimates
in Section 4. The main results, longtime existence and existence for all time including
the necessary height bound, are then proved in Section 5. In Section 6 we consider
the case where the cosmological spacetime is a Robertson-Walker spacetime. We
show, in particular, that assumption above is always satisfied in the Friedman model,
a model for ‘dust’.

The author wishes to thank Gerhard Huisken for his advice and encouragement
while this work was undertaken.

2. Preliminaries

We consider ¥ to be an (n + 1)-dimensional smooth spacetime with a Lorentzian
metric g = (g,,} with signature (—, +, +,...,+). The canonical connection is
denoted by V, the metric pairing by (-, -) and the curvature tensor by Rm = {R,s,s}.
Greek indices range from O to n. As in [1] we shall assume the existence of a global
time function t € C*®(¥) with nonzero, past-directed timelike vector field Vz. The
reference slices %, := {p € ¥ | t(p) = t} have future-directed unit normal vector

T = —yVt,
where the lapse function y € C*(¥) is defined by
¥ li= —(Vt, Vr).

An adapted orthonormal frame on .# will be denoted by e, e, ..., e, such that
€0 = T. This adapted orthonormal frame defines a positive-definite norm || - || on
tensors on ¥, see [1] for more details.

Let M be a smooth spacelike hypersurface in ¥, which is embedded by some map

F: M-,

Let v be the future directed timelike unit normal and choose locally an adapted
orthonormal frame 15, 7, ..., T, in ¥ such that restricted to M we have 7, = v.
We will denote by g = {g;;} and Rm = {R;;} the induced metric and the Riemann
curvature tensor on M respectively, where Latin indices run from 1 to n. The covariant
derivative on M will be denoted by V and the Laplace-Beltrami operator by A. The
second fundamental form A = {h;;} on M is given by

hy = (V,v, 1) = —(v, V,.1;).
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As in [6, 14] we sum over repeated indices
H - h,‘,’, |A|2 = h,jh,'j.

The curvature, Ricci curvature Ric = {R;;} and the scalar curvature R on M are given
by the Gauss’ equation

Rju = Ryu — hihji + hahjy,
Ry = Ry — Hhy + hyhy + Rigeo,
R =R — H*+|A> + 2Ric(v, v).

The Codazzi equations state that:
Vihij — Vihi = Roji.
We have the following rule for changing covariant derivatives:
ViV, Y, — V;ViYe = —R;u Y.

From these equations we can get the following fundamental identity, see for example
[3,20,22].

LEMMA 2.1. We have

Ahy = V,V;H + V; Roix + ViRosx + HRoyo + h; (Ric(v, v) + |A[)
+ huRujx + hy Ry + 2hu Ry — Hhyhy,

The a priori estimates are expressed in terms of the height function
u(p) :=1(F(p))

and the gradient function v, which measures the angle between M and the reference
slices .7, given as

vi=—(v, T).
Like in [1, (2.8)] we get the identity
) Au =divVe + ¢y wH.
Furthermore, we have the inequality

[{ta, €8)] <V
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for all 0 < a, 8 < n. This gives an estimate for the restriction of any p-tensor
BeTP(¥)on M

3 IBlrull < v*1IB]l.

For a tensor B we denote by || B||; ¢ the C'-norm of B in the domain G C ¥'.

For the convenience of the reader let us recall the first variation formula for H
(see [1,4,71) with respect to a deformation of the surrounding space generated by an
arbitrary transverse vector field X

4) X (Hyx) = —A(X,v) + (X, v) (IA’| + Ric(v, v)) (X, VH),

or in terms of the Killing tensor £rg(X, Y) = (VxT, Y) + (V¢ T, X),

1 — — 1
T(Hr) = E(Vv-ng)(eiy e) — (V.. Lrg)(v, ) — EH-ng(V, v)
— %rglei, e))Alei, ¢)).

3. Evolution equations

Starting from the evolution equation

d F 1
—F=——v,
ds H
we derive evolution equations for the height, the gradient, the curvature and other
relevant quantities on M,.
Proceeding exactly as in [14], we first compute the derivative of the metric g,

volume element x and the unit normal v on M

LEMMA 3.1. We have the equations

i —gy = —2—hy,
® ds®? H
d 1
.. 2 =v(-=),
(ar) s’ H)
d 1
(i) ds ( H) p=-n
We now notice that
d 1 I~
—_—U = —— v,
ds H
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and

d 1 1
av = —(T, —[_{-EVH>+ -I;WVT, U),

such that from (2) and (4) we obtain
LEMMA 3.2.
. d 1 1 . = 2
(i) (‘—E—mA)u=—;ﬁdlth—-ﬁw v,
.. d 1 1 1 1 —.
(i) (E - EA) v= E(V"T’ v) — EET(HT) - mv (|A2| + Ric(v, v)).

Finally we derive the evolution equation for the second fundamental form.

LEMMA 3.3. We have the equations

(i) (:—s - #A) hj = —Z-H%V,-HV,-H - 2%Eiwj - 2-}%2-/1,‘,?,,,,‘
| R | Q— 1 = —
- 7_1—2hlelkik - ﬁ‘z‘hlilejk - 'FI—ZVkRo.‘jk
~ 2239 Rowa = g5y (1471 + Rictv, ),
(ii) (i - —I—A) H=—2LVHVH+ - (1A% 4 Ric(v, v)).
ds H? H? ' H ’

PROOF. Like in [15] we get

d 1 1 _
and with Lemma 2.1, (i) follows. The second identity is an immediate consequence

of (4) and can also be derived by taking the trace of (i). O

4. A priori estimates

In this and in the following section we assume that ¥ is a cosmological spacetime,
thus it is connected, globally hyperbolic and admits a compact Cauchy surface (thus
¥ = ¥ x I). This implies, in particular, the existence of a global time function
t € C®(¥) as in Section 2. Moreover, we assume that the timelike convergence
condition is satisfied, thus

Ric(X,X) >0
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holds for all timelike vector fields X. The timelike convergence condition is only
needed for the lower bound on the mean curvature.

Now we prove the a priori estimates, which are necessary for the proof of Theo-
rem 5.1, the main result. With Lemma 4.1 we get a lower a priori bound on the mean
curvature H which implies an upper bound on the height function u. Then we get the
crucial a priori bound on the gradient function v. To prove this estimate we proceed in
the same way as Bartnik did in [1, Theorem 3.1]. Using the derived a priori estimates
we get an upper a priori estimate on the mean curvature H and, using a maximum
principle for bilinear forms as Hamilton formulated it in [10], an a priori bound for
the full second fundamental form. So we have, as long as the flow stays in a smooth
region of ¥ where ¢ is bounded, a a priori C? bound for the height function « which
combined with estimates due to Krylov yields to an a priori C>* bound of u and thus
to full regularity.

LEMMA 4.1. Let g = g(t, y) be a smooth function with t € R,y € R*. Let
f (@) =inf{g(t,y):y €Y},
where Y is a compact set. Then f (t) is Lipschitz and
if(t) 2 inf{—a—g(t, y):ye€ Y(t)} ;
ot ar

with Y(t) = {y : g(t, y) = f ()}.

For a proof see [11].

From now on let M, be a smooth solution of (1) on the interval 0 < s < s, such
that M; is contained in a smooth compact subset G C ¥ forall 0 < s < sp and we
assume that H > Hy > 0 on M,,.

PROPOSITION 4.1. Since H > Hy > 0 on My, we have the following a priori bound
for the mean curvature on M,

H > ¢*/"H,.

PROOF. We only need to show that the function f (s) := min{He™/"(p,s) : p €
M"} is growing, thus

d
—f >0.
dsf -

Define Y(s) := {p : He™*/"(p,s) = f (s)} and use Lemma 4.1
ds

%f(S) > min{: (He™'")(p,s) | p € Y(S)}
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= mi ~sin (L AH 2 V,HV.H
= min e _}}E - E ,'H i

+l (|A|2 + Ric(v, v) — lH’))) (p,s)|pe Y(s)}
H n

1
Zmin{(e'”"(O——O+;H+O-—lH)>}=0. (]
n

REMARK 4.1. As adirect consequence to the above equation we have u < maxyy, u,
since d/dsu = —1/Hy v,

PROPOSITION 4.2. The gradient function v satisfies on M,

v(p,s) < (1 + sup v) exp (A [maxu —u(p, s):l) exp (Ii's) ,
Mo My

where

A=A (n 1%rghe 1 The I¥ "), K=2 .

PROOEF. Following the argument in [1, Theorem 3.1] let A, K > 0 be constants
chosen later and define

G = <1 + sup v) e maxmg #
Mo

Suppose ve* ks reaches C, for the first time at (p, 51) € M" x (0, so]. Then at this
point

0= V(ve‘"'k‘).

From Lemma 3.2 and {1, Proof of Theorem 3.1] we infer
d 1 A < d 1 A

as mo ) = \as " mt)"

1 , 1
=< ?CI(CO)U +-2-,

1 2 2 -1
$'}?COU +ﬁ1// v

as well as
d 1

1 1
(EE - mA) v < =gVl + g GO+ AR,
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where

Co=Coll¥vle) and C = GUIZrglhe I Tlc. n).
Here we also use (3) and the timelike convergence condition. Hence we conclude
1 N
v|A|2 < —C2|A|v + ——(C2 + G + SVt g A2|Vu|2 - Kv.

Proceeding as in [1, Theorem 3.1] we obtain
2 1 2 2 3 2
v[AI" > {1+ n Au|Vul® — G(n, || Tl ¢)v” — H*v.
n
Set K = 2(2n)/(4n + 1) + A/2 and since |Vu[? = y~2(v? — 1) we finally arrive at

1
2—)31/;-2(1)2 —1) < C (A + D).
n

at (p,, ;) where C, depends on Gy, C;, C, and C;. Since by definition of C, we have
v(p1, s1) > 2 and we derive a contradiction for large enough A. O

PROPOSITION 4.3. We have the following a priori upper bound for the mean curva-
ture H on M

HECSv

where

1
Cs = max {sup Hv?, sup (——CG)}
My M x[0,s0] H
withq :=1+4¢, Cs = Cs(n, e, | Lrgllic, I Tll1.¢) and € > O arbitrary but fixed.

PROOF. Suppose H v reaches Cs for the first time, at (p,, 5;) € M" x (0, so]. Then
at this point

V(Hv?) =0,
d 1
S A)HY >0
(ds H2> v

d 1 1
(__EA> = —2-=ViHVH + — (|A2|+R1c(v V)
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d 1 1 1
(— - —A) v < _?”M'z + Ecz(v3 + |AvY).
Using again the fact that Ric(v, v) > 0 we conclude
1 1 G
0<—C q+2 _ _1__A2q 1A g+1
=7 G (g )H||v+HIlv
G C? |
<__q+2 72 q+2 —-1—= _AZ.
=gVt gt (g 8)H| I
Since |A|?> > 1/nH? we finally get at the point (p,, 5,) by choosing & = ¢/2
Hv? < lcs < Cs.
=gle=
The proposition follows because H < Hv9. a

PROPOSITION 4.4. For the second fundamental form h; satisfies the following a
priori estimate on M

hyj < Cogy»
where

— 1 —
C0=max[ sup (—+2H+4C,),sup|A| ,
Mo

M x[0,s0]

with C; = C\(Hy, |

Rml|, ;) and Hy like in Proposition 4.2.

REMARK 4.2. It’s enough to show an upper bound on &;;, because H is strictly
positive.

PROOF. We show that the eigenvalues of

M; = (Cogyj — hy)

remain nonnegative. First of all we need an evolution equation for M;. Using
Lemma 3.3 (i) and Lemma 3.1 (i) we get

d 1
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where
N; = —2C0 hq + 2 sViHV;H + 2HR:00, + 2 hklRluk + h,szluk
1 l 1
+ Ehlilejk + VkR()qk + V Rowir + —h., (1A% + Ric(v, V).

In {10, Theorem 9.1] a maximum principle for such an evolution equation was
proved under the assumption that the absolute term Nj; is a polynomial of M; and g;;.
Since Rm is smooth and H is bounded, it is easy to see that the argument is valid in
our case as well. We have then only to consider the first time s,, where at some point
p € M, azero eigenvector v = {v;} of M;; occurs, and Proposition 4.6 is proved if
we can show that N;; v'v/ is non-negative. For that purpose we choose an orthonormal
basis (e, ..., e,) for T, M, such that h; (and thus M) becomes diagonal. Let us

assume that v = ¢, and that A,, ..., A, are the eigenvalues of h; at p. Then from
M, = 0t follows that A, = Cj at p and we obtain
1 11 ) 1 5
N,,v ‘W =Ny > 2C0—A1+2 VelHVe,H ——A] ———C1+—A |A|

H 2 H?
_ 1 1 /2 1\=
> 2Co— — —Ci + (co - —) C,

°H H2 H? 2
1 1 2 1 —
Z-}TZ-(CO———ZH> Co——2C1
1 1 —
ZHZ Co—§—2H 4C C,>0. O

It is well known that one can get C* a priori estimates on V?u in G from the a
priori estimates on v, H and h; (like in the work of Gerhardt [9, Theorem 4.2] and
Urbas [23, (3.55)]).

PROPOSITION 4.5. The second derivatives of the height function u are uniformly
bounded in C**(G).

For the proof we refer to [18, Chapter 5].

REMARK 4.3. With Proposition 4.5 and standard results from regularity theory, we
get the full regularity of u.

5. Longtime existence

With the help of the a priori estimates derived in the last section, we now obtain
the main longtime existence result.
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THEOREM 5.1. Let ¥ = X" x I be a cosmological spacetime satisfying the timelike
convergence condition and suppose that My = Fo(M™) is a smooth, compact, spacelike
hypersurface in ¥. Then there exists a unique family M, = F(-, s)(M") of smooth
compact spacelike hypersurfaces satisfying the initial value problem (1) on an interval
0 < s < so. Moreover, if M, remains in a smooth region of ¥ where t is bounded as
s — 5o, then the solution can be extended beyond sy.

PROOE. It is easy to see that for short times the nonlinear system (1) reduces to a
nonlinear scalar equation in « which is strictly parabolic (see [5]). Then, if the initial
surface M, is smooth, short time existence of a unique smooth solution of (1) follows
from standard parabolic theory, see for example [12]. Now let s, be the maximal time
of existence. Since by assumption M; stays in a compact smooth region of ¥ and
therefore u is uniformly bounded, we infer from the last section that M, converges to
a smooth surface M, as s — so. Thus the solution M, can be extended beyond s, by
means of the local existence resuit. ]

LEMMA 5.1. If the ‘inverse mean curvature flow’ (1) exists for all times then the
area of (M) tends to zero as s — 0.

PROOE. The volume decreases exponentially, see Lemma 4.1 (iii), d/ds f du =
- [du. O

To prove existence for all times we need an a priori estimate on the height function
u which can only be derived by an regularity assumption on the reference slicing. For
simplicity assume that the ‘big bang’ isat t = 0.

DEFINITION 5.1. We will call a spacetime ‘slicing-natural’ if this spacetime satisfies
«d P— v d
—le—tHy, <(|Agl"+Ric(T, 7)) < —CEHy, and

5 C
(5) — <t —.
Hg, Hg,
Here Hy,, |A 5 |* and T are the mean curvature, total curvature and unit normal of the
reference slices ..

Note that the first equation ensures that the lapse function is bounded from above
and below which could be alternatively assumed. Examples for ‘slicing-natural’
spacetimes are for example the Robertson Walker spacetimes which model dust or
radiation, the Kasner cosmological model [MTW] and the Mixmaster like universe, a
Kasner model with time depending exponents. The model spacetimes for dust, the so
called Friedmann models will be discussed in the next section. If we already have a

https://doi.org/10.1017/51446788700001385 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700001385

{13] Contracting spacelike hypersurfaces 297

foliation by constant mean curvature surfaces then we can set: t := 2/H 5, so that (5)
reduces to (|A 5> + Ric(T, T)) < CHZ,.

PROPOSITION 5.1. Let ¥ be a ‘slicing-natural’ spacetime, then the height function
Sulfills on M

exp(—Cs)infu < u < exp (—8s) sup u.
Mo Mo
PROOF. First we show that the lapse function v is bounded from above and below
under the assumption (5).
We have (constraint equations) d/dtHs, = Ay — Y (|Ag,|* + Ric(T, T)). So we
have a point (p, s) € ¥ where y attains its maximum

4 by <~ (1Al +Ric(T, T)) = y < ——2d/dt 1

_ — 1 \ < — = <.

T 7 (As ] +Ric(T, T) ~ 3
Therefore, ¥ < 1/ everywhere. Ata point (p, s) € ¥ where ¥ attains its minimum
we have

d _ ~d(Hy)/dt 1

—Hy > -y (|Ag P +Ric(T, T)) <> ¢ > = > .

2 V(lAs (T, 7)) 14 Ay +Ric(T,T) = &

Therefore, ¥ > 1/ C everywhere.
Now we use the fact that Ax < Oand v = 1 in a point where « attains its maximum.
This gives us
0>Au=divVt+ Hyv=—div(Ty ) + Hy ™!
z - (vfi T’ ri) l/j—l - <T1 ti) vtiw_l + Hl//_l lf and Only it H =< H.5’,
S—— S——
(Ve Te)=Hs, =0
In a point where u attains its minimum we get in the same way H > Hg,.

For the lower bound of u we show that the function g(s) := miny, uexp (Cs) is
nondecreasing, thus d/dsg > 0. This follows directly from (5), d/dsu = —1/H¢y v
and the above equations. For the upper bound one shows in the same way that the
function g := maxy, uexp (8s) is nonincreasing. Here C = 1/66 and § = 1/CC and
are therefore only depending on the constants of (5). a

THEOREM 5.2. In a ‘slicing-natural’ spacetime ¥ we have that the ‘inverse mean
curvature flow’ (1) exists for all times, the area of (M) tends to zero and maxy_ {u| — 0
ass — 00.

PROOF. This follows directly from Proposition 5.1, Theorem 5.1, and Lemma 5.1.
O
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REMARK 5.1. The assumption (5) implies that the beginning singularity is ‘crush-
ing’ and by Theorem 5.2 we have that the solution to (1) gives a foliation of this
‘crushing’ singularity.

6. Existence for all times and the Friedmann models

In this section we look at the condition (5) when the cosmological spacetime is a
Robertson-Walker spacetime or a Friedmann model. A Robertson-Walker spacetime
is a warped product M (k, f) = I x; S (see for example [21, Chapter 7 and 12]),
where S is a connected, often three-dimensional Riemannian manifold of constant
curvature k = —1,0 or 1 and f > O is a smooth function on an open interval [ in
the one-dimensional Minkowski space R}. To satisfy our definition of cosmological
spacetime we also need that S is compact. We talk about a Friedmann cosmological
model, if n = 3 and the scale function f in a Robertson-Walker spacetime satisfies
the Friedmann equation f'?> + k = A/f, where A is a constant depending only on
mass. This is a model for dust (noninteracting matter).

PROPOSITION 6.1. In a Robertson-Walker spacetime condition (5) takes the follow-
ing form for the scale function

6) 5f () <nf ()t < Cf (1)
for S, C>0.

PROOF. That the ‘big bang’ is at + = 0, can always be achieved by rescaling time
(f (0) = 0). General results about Robertson-Walker spacetimes {21, Chapter 12]

show that d/dtHs = (|As|* + Ric(T, T)) and since Hg = nf'/f the last two inequal-
ities reduce to (6). a

PROPOSITION 6.2. The condition (5) is always satisfied in a Friedmann model.

PROOF. Itis enough to show that (6) is always true. For this we look at the solutions
to the Friedmann equation, assuming the ‘big bang’ isat ¢ = 0

(@ k=0: f@=cCc’ with 4C° =94;
1 1
By k=1: t= EA(O —sin8), f = —2—A(1 —cosB) 6 € (0,2m);

1 1
) k=-1: t=§A(sinhn—n), f=§A(coshn—1) n > 0.
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In the case (@) we get 3f't/f = 2 so that (6) is true with § =C =2 For
(B) we get 3f'(uo)uo/f (o) < 3f’t/f < 2 where up = miny, u. This gives us
8 = 3f (uo) uo/f (uo) and C = 2. When k = —1 we get 2 < 3f't/f < 3 so that the
constants for (y) are § = 2 and C=3. O

REMARK 6.1. The qualitative behaviour near the singularity of (), (8) and (y) is
the same (see for example [13]).

From the above two propositions follows the existence for all times, which we
formulate in the following theorem.

THEOREM 6.1. In a Robertson-Walker spacetime where the time function satisfies
the estimate (6) with constants 5, C > 0, a solution to (1) exists for all times s > 0
and therefore Theorem 5.2 holds.

PROOF. This result follows direct from the above propositions. O
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