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1. Introduction. In a recent paper1 some general properties of
y-matrices were proved and Dienes' theorem on regular y-matrices 2

extended to semiregular y-matrices and the binomial series.3 In
section 2 of this paper the previous results will be extended to certain
classes of Taylor series. Section 3 gives some new results on BorePs
exponential summation, and section 4 introduces matrices efficient
for Taylor series on the circle of convergence and others efficient for
Dirichlet series on the line of convergence. A knowledge of the
definitions and results of the paper mentioned above is assumed.

2. On the y-sum of the Taylor series.

[2.1] If the semiregular y-matrix G sums the Taylor series ~Lakz
k of the

function f(z) at z = z0 to the value S, then it also sums the Taylor series
of the function F(z) = z?f(z) (p = 1, 2, . . . ) at z = z0 to the sum zo

pS.
° ° ;.•

Proof: By hypothesis lim 2 gn_ jfltZff = S, and, G being semiregular,
n—>m k = 0

oo

lim S 0B,i + j,a*z£ = S,
n—5>a> k — 0

which multiplied by z% can be rewritten

(2.1) lim S gn, * at-A = 2o#-
QO 00

But the Taylor series of F(z) is 2 akz
k + v = S ak _ P zk,

k = 0 * = J>

and so (2.1) proves the theorem.

Corollary. Under the conditions of the theorem, if P(z) is a polynomial

and F(z) = P(z) f(z), then G sums the Taylor series of F(z) at z0 to P(zo)S.

1 P. Vermes, "On y-matrices and their application to the binomial series," these
Proceedings 8 (1947), 1-13. This paper will be referred to as y.M.

- P . Dienes, The Taylor Series (Oxford), 1931, 418. This book will be referred to
as T.S.

3 y-M, section 5.
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44 P. VERMES

[2.II] If a semiregular y-matrix G sums the Taylor series of a mero-
morphic function f(z) at a regular point z = z0, then the sum is the "right "
value f(z0).
Proof: Let f(z) = I,akz

k for \ z \ < R. By hypothesis if p > | z0 | ,
the only singularities of /(z) in the circle | z | ^ p are poles a4 of order
mi, so that if F{z) = P(z)f(z), where P(z) = II(z - Oi)mi (the product
being taken over all poles in the circle | z | fS p), F(z) is analytic in
and on this circle. Hence the Taylor series of F(z) is convergent at z0,
and its <?-sum therefore exists and is P(zo)f(zo). Applying the
Corollary of [2.1] we have P(zo)f{z0) = P{zo)S, whence 8 = f(z0).

Corollary. The theorem readily extends to general Taylor series for
values of z0 in the circle of meromorphy.

[2.Ill] / / the semiregular y-matrix 0 bums the series Y,akz
k in the

tx> QO

domain D to s(z), then the y-matrix H = £ A;(?w / S A; sums the series to the
i = 0 i = 0

same value, provided that condition (b) of theorem [l.III] of y-M is

satisfied by the A{, and that

(i) | gn, k | ^ | 9n, *+i I for everV n and k>
CO

(ii) | afn{z) | = | S gn.k + iatz* \ ^ N(z) for every i, n, and a fixed z in D.
k = 0

Moreover H is semiregular with respect to this series.1

NOTE: I t will be seen in [3.1] that (i) and under certain con-
ditions (ii) hold for the Borel-matrix.

Proof: Since g (i\ = gn,k+% we see by [1.1] of y-M that all con-

ditions of [l.III] of y-M are satisfied. Hence H exists and is a

y-mairix.

Since by hypothesis, for a fixed n, the series o-°(z) = T,gnkakz
k con-

verges for every z in D, it converges absolutely in D, i.e.

S | 9n. kakz
k | = Sn( | z | ) is finite in D.

Also 2 S | *g&azk | = 1 | \ | S | g^az* |
i=0i=0 l " • * * t = 0 i = 0 ».*• S

2 I ?«. *«*«* \ ^ S n ( \ z \ ) 2 | A, | = Sn( | z
4 = 0 i = 0

Since the last member is independent of p, the double series

1 Here G[li denotes the t'-th diminutive of £r, e.(?. (3.1) of y • M.
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•converges absolutely for every z in D, and thus we can reverse the
order of summation, i.e.

X 00

( 2 . 3 ) P (z) =•- 2 A. 2 g ^ a ^ k = 2 A a (
n ; = 0 * * = 0 "• * i = 0 i n

Comparing the series on the right-hand side of (2.3) with the series
.2 | A; I V̂ = NL, we see that it converges uniformly for every n, so that

(2.4) lim Pn{z)= £ Xi lim e/^sr) = 2 A,*(a) = Z *(«),
n—>oo t - 0 n—>=n ?' = 0

and it follows by (2.2) and (2.4) that

(2.5) lim 2 hn/,akz
k =hm 2 \ \ 2 A.Q

W \ a^" = s(z).

i.e. Z7 sums the series to s (2).
Also 27a) = 2A;G

(i + 1)/2Ai satisfies the conditions of this theorem.
Hence (2.5) applies to Hm, showing that H is semiregular with respect
• to ~Zakz

k. This concludes the proof.
Corollary. If 2A;= 0, the matrix 2Aj(?(i) (which is not a y-matrix) sums
the series to zero.

This follows from (2.4).

[2.IV] We suppose that f(z) = "Lakz
k in a circle V round the origin, that

the semiregular y-matrix G sums the series to s(z) in the domain D, and
that conditions (i) and (ii) of [2-in] are satisfied. If the function F(z)
is regular in a circle C with centre at the origin, then G sums the Taylor
series of F(z)f(z) about the origin to the sum F{z)s(z) in the domain CD.

Proof: By hypothesis F(z) = 2 6 ^ in C, whence

F(z)f(z)= 2 zk 2 at _ fr in CT;
k = 0 i = 0

-and if we write at = 0 for i = — 1, — 2, — 3 , . . . ,

(2.6) F(z)f(z)~ 2 z* 2 at.ibi in CT.
k = 0 i = 0

By hypothesis

(2.7) lim 2 gn? kakz
k = s(z) in D, and hence in CD.

n—>oo t=0

Since the series 26tz' converges absolutely in CD, we can apply [2.III]
or its corollary with X—bfi* and 1= F(i) to (2.7); and we have as in
.(2.2) and (2.4)

CO ' C

lim Pn(z) s lim 2 2 biz
ignk + iakz

k = F(z)s{z) in CD.
k—0i = 0
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Writing k — i for k, we have
00 00

l im 2 .9niJfc2
fc 2 6 ^ . _i = F(z)s(z) in CD,

n—>w A-^t ' i = 0

and again putting at = 0 for i = — 1, — 2, . . . , we have

(2.8) lim 2 grn, kz
k 2 %._<&* = ^(s)«(s) in CD.

«—>oo k - 0 t = 0

The left-hand side is the 6-sum of the series (2.6). Thus (2.8)
proves the theorem.

3. Borel's exponential summation.
This is a summation method by the y-matrix

(3.1) gn,k S -L£e - Vdt = 1 - e - ( l + » + ~+• •• ~) ,4, n=0,1, 2,...

The following well-known propertiesx will be used in this section r

9n. k ^ gn. k +1 ^ 0 for every w and k,
9n,k ~> 0 a s * ~> °° f ° r every fixed w.

When (? sums the series 2c^, the order of summation and integration,
can be interchanged,2 i.e.

(3.2) (B) sum of 2 c , = lim 2
* = o n-5>« * = 0

- Km Te-«(i £ > = {
. n->ooJo \ * = 0 * ! / (J =o

G is semiregular, and Hardy gave an example of a series summabla
by this method but with respect to which the summation is not
regular.3

» r ft
Using the notation4 uo{t) = 2 — ,

i = 0 ^ !

we see from (3.2) that when G sums the series 2ct> «„(') is a n integral
function of f, and so «0(i) can be integrated repeatedly, giving

(3.3) «,(,), J o * ^ , ,- = 0,1,2,...,.

where M^O is an integral function of t. We also see that

(3.4) . «,- + !(*) = P «,(«)*, .? = 0, 1, 2, . . . .
Jo

1 T.S. 401. s T.S. 401.

3 T.S. 419-420. * T.S. 403-404.
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Since G is semiregular, if n->oo

00 00

(3.5) CT°= S gn,kck->s implies aj = £ gn,h + pk->s.
h=0 4 = 0

Finally, we know that Sa^z* is summable by (?, if z is an inner point
of the "polygon of summability," 1 to the " r i gh t " sum. G is in-
efficient outside the polygon.

[3.1] / / £ct ts summable (B), then \ o3
n \ is bounded for every n and $

whenever | uo(t) \ is bounded for 0 ^ t 5S oo .
Proof: By (3.1), (3.2), (3.3), (3.4) and (3.5)

(3.6) From (3.4) Uj(O) = 0 forj = l, 2, 3 , . . . , and so by repeated
integration by parts

(3.7) o{ = o°n — e~n[Uj{n) + u, _ x(n) + ... + u^n)].

By (3.5) | CT° | ^Ko for every n. Also applying Taylor's theorem to
Uj(n) and considering (3.4) and (3.6), we have Uj(n) = «0(f2j)7i3/i' where
0 ^ O.j ^ n. Hence

^ | o ( , ) | + + y

and, since by hypothesis | uo(t) [ ^ i? for. 0 ^ < ^ <» ,

which proves the theorem.

Examples. The divergent series S(— 2)7c is summable (JB), and
uo{t)=e~2tis bounded in (0, oo ). The convergent series 2(£)* is
summable (B), and uo(t) = e^ is not bounded. But Uj{n) and aj
are positive; hence by (3.7) o{ is bounded, so that the condition of this
theorem is not necessary.

[3.II] Borel's y-matrix is regular with respect to all Taylor series in the
polygon of summability.

Proof: When z0 = 0 the proof is trivial. If z0 =f= 0 is in the
polygon of summability, then

1 T.S. 305.
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00 CO

(3.8) lim 2 gn>kakz\; = a0 + 2 gn,k^kz\ exists and is equal to/(z0).
n—>« & = 0 ' £ = 1

The function F(z) = {/(z) — ao}/z hfts singularities at the same finite
points as/(z) and at no other points. Hence it has the same polygon
of summability. Thus G sums the series for F(z), ax-\-ag, + a3z

2 + . . . ,
at z0, i.e.

00

lim 2
n->oo k = 1

whence
CO

(3.9) lim 2 gn,k-iakz*=f(z0) - a0.
n-=>oo t = 1

Comparing (3.8) and (3.9) we have for z0 in the polygon of summability
oo to

(3.10) lim 2 gn,kakz*Z$. lim 2 gn,k-\akz
k
0,

71—^OD k = 1 W" ^ oo fc = 1

which proves the theorem, since the semiregularity of G would be
represented by (3.10) with the arrows reversed.

4. y-matriceB efficient on the boundaries of convergence-domains.

Given a sequence^, plt p2, . ..satisfying the conditions

0 < pn < 1 for every n, pn -> 1 as n -» oo ,
we construct the matrix R: rn k = pn

k + x (k, n = 0, 1, 2, . . . ) .

Then we have:

[4.1] i? is a regular y-matrix, which sums every Taylor series at those
points z0 of its circle of convergence for which the function represented by
the series tends to a limiting value when z->z0 along the radius.

Proof: By definition
GO 00

2 I ^n,k — rn,k + \ | = 2 (rB>i — r,hk+1) = Pn < 1 for every n, and
t = o i- = o

lim rn k = 1 for every fixed k. Thus R is a y-matrix.
n—=>oo

00 00 OO

Also lim 2 rn>t + 1 c t ^ lim {pn 2 • r,, iC*} ̂  lim 2 rn> *(:«..
n—>oo£ = 0 n->oo /: = 0 «->o) 4 = 0

Hence i? is regular. If z0 is on the circle of convergence of ~Lakz
k,

representing f(z),
OO 00

•on= 2 r^ua^l^ pn 2 ak(pnz0)
t converges to pnf(pn

zo)-
k 0 1 0

Hence lim <7n = lim f(pnzo) whenever the limit on the right-hand side
B—>oo Pn—>1

exists. This proves the last statement.
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Examples, (a) If Pn = 0M» + x>, 0 < 0 < 1, then rn t = 6{t +1)/(" + °

(b)ItPn=*{n + p)-*K» + », p>O,p>O,
then rn>t = (n + )8) -J>(*+D/(»+I>.

The matrix R can be constructed independently of the series to which
it applies. A somewhat similar construction can be used for a par-
ticular class of Dirichlet series, given in the usual notation as

(4.1) £%. exp { — \{k)s}, representing the function/(s) where s=a+i t,.
where A(&)->oo with k, 0 < X(k) < A(k -- 1).
Given the class of series characterized by {A(&)}, we construct the
matrix L as follows:
We define a sequence 0 < /i(l) < /A(2) < . . . . where /x(w)->ao , and make

(4.2) lnyk = exp{ - PX(k)/fi(n)}, p>0, n,k=l,2,3,

[4.II] If the series (4.1) has a finite abscissa of convergence sQ, then the
y-matrix L given by (4.2) sums the series at all points s0 = a0 + it of its
line of convergence at which f(s0 + 0) exists, and the sum is f(s0 + 0).

Proof: By (4.2) ln k >ln,h + i> 0 for every n, k^> 1,
and lntk->0 for a fixed n as k-xx> ,

lnjjt—> 1 for a fixed k as n-><x .
CO 00

Hence S | lnh — ln, k + x \ = S (inil. — ZB, i +1) = «„, i ^ 1.

Thus L is a y-matrix. Also for s0 — a0 + i t

= S lnkakexp{-X(k)s0}= S a4exp [ -
i = 1 I- -- 1

and therefore Sn->f(s0 + 0) as n->oo whenever the limit exists. This-
concludes the proof.

Example. For the class of special Dirichlet series
Sofc/A* = Sot* exp (— s log k) the matrix L is given by

ln>k = e x p { — p log k/ij.(n)} = k~pll4-n).

BIRKBECK COLLEGE,

UNIVERSITY OF LONDON.
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