
SIEVE-GENERATED SEQUENCES 

M. C. WUNDERLICH 

We shall consider a generalization of the sieve process introduced by W. E. 
Briggs (1) in 1963. Let Aa) be the sequence {a*(1)}> where a*(1) = k + 1, so 
that A™ = {2, 3, 4, . . . } . Suppose inductively that A^\ A™, . . . , A™ has 
been defined. 4<n+1> wi\\ be defined from A™ = {a^n\ a2

(n), a3
(w\ • • •} in the 

following manner: For each integer t > 0, choose an arbitrary element at
(n> 

from the set {a^ a„+i, a^.tan+2f . . . , a££,an+an}, where an = a„(w), and delete 
the elements at

{n) from ^4(w) to form A{n+l). The sequence A is defined to be 
the sequence {an}. It is also the set-theoretic intersection of all the sequences 
Aw

y n — 1, 2, . . . . Let 9t be the class of all sequences that can be generated 
by this sieve process. 

Sequences of this nature have been studied by S. Ulam (3), P. Erdôs (2), 
D. Hawkins (5), B. Lachapelle (6), and most recently by W. E. Briggs (1). 
The principal purpose of these studies was to determine whether or not 
an ~ n log n (as is the case with the sequence of prime numbers). In this 
paper, the author presents a criterion characterizing all the sequences in dt 
for which an~ n log n. 

For the remainder of this paper, {an} is considered to be an arbitrary sequence 
in 9Î, and A(1), A(2), . . . are the successive sequences obtained in the sieve process 
generating \an). 

Definition 1. 
(a) Rn(x) is the number of elements in Aw not exceeding x. 

(b) <V= fl (l - ;r) • 
A;=l \ Q>k/ 

(c) /*(*) = Rk(x) - Rk+i(pc). 
(d) l{n) is the number of k for which fk(an) = 1. 
(e) t(n) is the greatest k such that fk(an) > 2. 
(f) d(n) = n/{n + /(»)). 

THEOREM 1. an~ n log n if and only if 

(1) Z ^ ~ <*(»)!<*». 

The proof of this theorem is contained in a sequence of lemmas. 
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L E M M A 1.1. If x < ani Rn+i(x) = Rn(x). If x > anj 

(2) i?B+1(x) = cnR,{x) + ± ^ ( { M x ) ~ k \ + 7 - e) , 

where ek is either 0 or 1, araZ {x} refers to the fractional part of x. 

Proof. T h e first p a r t is obvious from the definition of the sieve process. T o 
prove the second assertion, note t h a t when x > ani 

Ux) = \M?h 
L an 

Jn + Cn, 

where en = 0 or 1, and [x] means the greatest integer in x. Hence 

(3) Rn+l(X) = -RnW - h ) ( ~ *n 
an \ an 

T* / \ I -. 1 \ . W , J i L ( x ) —• « I 

T h e lemma then follows by i terat ion in (3). 

L E M M A 1.2. an an = n — En{an + 1), where 

&(«)-É?({&^} + 7-"«)-
A;=i o> \ v ak ; ak / 

Proof. Le t x = an + 1 in (2), and note t h a t since #i is always 2, 
aw + 1 ^ On+ii and therefore Rn+i(an + 1) = n. 

L E M M A 1.3. There exists a constant C\ such that for all n sufficiently large 

an> cxn log n. 

Proof. T h e a rgument used to prove this lemma is completely analogous to 
the proof b y W. E . Briggs of (1 , formula (9)) . Since a2 > 3 , ak > 3&/2. Hence 
since 0 < crn/ak < 1, 

<rn(JRk(x) - k\ , k \ ^5 

and hence 

o-jt \ I ak ) ak / < 3 

-n <En < 5w/3. 

Therefore, from L e m m a 1.2, o-waw < 2w for w > 1. Not ing t h a t 

we obta in by summing from 2 to n, 

1 1 A 1 1, . 
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or, for sufficiently large n, 

(4) l/an > | log n. 

Now clearly for any p and q, p < Rg(ap + 1) so that noting that 

Rn+l(x) = <Tn([x] ~ 1) + En(x), 

we have 

2w < Rn+1(a2n + 1) = <jn a2n + £w(a2„ + 1) < <rn a2n + 5rc/3 
and 

2n — 1 < i^w+i(a2w_i + 1) = <Tna2n-i + En(a2n-i) < o-n a2»_i + 5w/3. 

The lemma then follows from these inequalities and (4). 

LEMMA 1.4. There exists a constant c2 such that t(n) < c2 n/log n. 

Proof. Let k = t{n) — 1 so that fk(an) > 2. Since for all k' > k,fk>(an) < 1, 
Rk(an) < n + (n — k) < 2n. Also, Rk(an) > ak + k > ak so that a^ < 2w. 
Hence, applying Lemma 1.3, 2n > \c\k log k> so that t(n) — 1 < en/log n 
for some constant c. Hence there exists a constant c2 for which / (n) < c2 n/\og n. 

LEMMA 1.5. En(an + 1) = — Z(w) + o(n). 

Proof. If we let 

E{ki n) = £W (i^fa+l)-*} + A _ J f 

we can write 

(5) £„(<xn+l) = Z ' £(*,») + Z " £(*,«) + £ E(k,n) 
k k A;<C2w/log rc 

where the first sum is taken over those k for which k > c2 n/log n and 
fk(a>n) — 0, and the second sum is taken over those k for which k > c2 n/log n 
and fk (an) = 1. 

Since E(k, n) is bounded and an/ak < 1, we have 

(6) Z £(*,»)=*(»)-
fc<c2w/log w 

For & in the range of £ ' , we have 

je*fa. + i) -k < 1 
«A: 

so that, by Lemma 1.3 and since Rk(an + 1) < 2w, 

£ ( * , „ ) = g* (*«<"«+ 1>-J) < - 2 w 

o-̂  \ aA / C\ > k log k 
and so 

]C'E(fe, n) < 2 ' — r - j r < X) —TT—E-
V * Ci k log £ *«c"iog nCik log k 
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One can easily verify that 

Hence 

(8) £ ' ' E ( k , n ) = o(n). 
k 

Finally, for all k in the range of £ " , we have that 

p*fa + *> ~ k ] + * = i. 
If €fc = 1, we have (Rk(an + 1) — k)/ak < 1 so that 

(9) E(k, n) = 2a ( ^ ( a " + 1 } _ l ) . 

If €fc = 0, we have 1 < (Rk(an + 1) — k)/ak < 2, or 

JRk(an + 1) - l \ = Rk(an+ 1) -k __ x 

l a* S ak 

Hence 

(10) E(k, n) = * (*fc(a* + 1 } - l) . 

Since k > c% n/log n, 

i > * - n ( i - 1 ) > n ( i — n — ) 
<Tk i=tc+l \ 0*/ i=C2n/log n \ CillOgt/ 

= exp( ± log(l-—4—)) 

= e x p ( o ( ± -r±-)) 

Hence (rn/crfc = 1 + 0(1), and so from (9) and (10), 

Z" £(*, «) = Z " û ( ** ( a » + 1}) - 271 + o(i). 
A k o~k \ ak / k 

But 

V ^ V a* / k=ctZ/iog nCiklogk \ \ogn I 
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by (7). Also, 

17 1 + o(l) = /(») + o(n). 
k 

Hence we get 

(11) Z " E ( k , n ) - - / ( » ) + * ( » ) . 
A; 

Now (5), (6), (8), and (11) prove the lemma. 

We can now complete the proof of Theorem 1. From Lemmas 1.2 and 1.5, 
we have 

<jn an = n + l{n) + o(n) ~ n + l{n) = n/d(n) 

and since § < d(w) < 1, one can verify that 

(12) t^-tf. 
Let c(«) = ajn log n. Then we have 

(13) - ~ ^ ^ = c(n)d(n) log n. 

However, since 

1 1 1 

we have, using (4), 

nA^ V ! I l l 
(14) 2-r = ~~ ~ — . 

A:=2 #Jfc 0"* 0"» <^1 0"n 

Hence from (12), (13), and (14), 

(15) c(n)d(n) \ogn~ — ~ J j ~ 2 i ~ • 

Thus, c (n) ^ 1 if and only if 

d(w) l o g n ^ X ) - r ~ » 
A:=2 « 

which is the theorem. 

One can now obtain theorems concerning the order of anr which are analogous 
to Chebychefs theorems regarding the order of T(X). 

THEOREM 2. If e is an arbitrary positive real number, 

J - € < —r*— < 2 + e forn> n0(e). 
2 nlogn J 
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Proof. Since \ < d(n) < 1, 

- log n < 2^ -T— < log n, n> ni. 
A fc=2 K 

Hence, from (15), 

(^ — e) log n < c(n)d(n) log w < (1 + e) log w 

for n > wo, or 

| — e < c(n)d(n) < 1 + e for n > w0. 

But since | < d(n) < 1, we have 

c(n) > (è - e)/d(n) > | - e 
and 

c(n) < (1 + e)/d(n) < (1 + t)2, 

which proves the theorem. 

THEOREM 3. 

lim inf —r3— < 1 and lim sup —i-2— > 1. 
n log n n log n 

Proof. To prove the first assertion, suppose again that c(ri) = an/(n log n) 
and suppose that lim inf c(n) = 1 + e, where e > 0. Then from (15) 

Ê ^IP- > (1 + e)d(n) log n + o(\og n). 
k=2 K 

Let h = lim sup d(n). Clearly ^ < ô < 1. Also 

S t < Z \ < S log « + o(log n). 
fc=2 * k=2 K 

Hence (1 + t)d(n) < S + o(l) or 

d(») < j -^ l + °(1)' 

which contradicts the choice of 8. The proof of the second assertion is similar. 

I t is now possible to use Theorem 1 to obtain a subclass of 9t for which 
an ~ n log n holds and one for which it does not hold. The asymptotic character 
of l(ri)/n is affected only by the first element eliminated at each execution of 
the sieve process. Therefore in order to produce these subclasses, it is necessary 
only to specify the element a0

(w) eliminated from the interval 

( „ ( « ) (n) (n) \ 
\U>n+h # rc+2, • • • , U>n+an] 

at the nth sieving. We shall define rn by supposing that 

a™ = a£+rB, where 1 < rn < an. 
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Alternatively, rn can be defined as k — n, where ak
(n) is the smallest element 

eliminated from Aw to form A{n+l\ 

Definition 2. Let the sequences {sn} and {tn} be defined as follows: Si = 3, 
tk = sk log sk\ sk+i = tk log tk îor k = 1 , 2 , . . . . Define rk as follows: 

_ jak for 5 y < k < tj, 
?k 11 for tj *C k < Sj+i. 

THEOREM 4. 7/ 9?i is the class of sieve-generated sequences such that rk is 
defined as above, then if {an} G 9?i, an ~ n log n does not hold. 

Proof. For all k in the range tj-i < k < sj}fk(aSj) is clearly equal to 1, and 
since tj-i ~ Sj/(log Sj), we have 

(16) l(sj) ~ Sj, or d(sj) ~ %. 

Furthermore, if k is in the range s2< k < tj and fk(atj) = 1, then 

Rk{atj) > k + rk> k + ak> ak. 

But since Rk{atj) < 2tj} 2tj > ak > C\ k log k. Hence for some constant c, 

log tj 

Hence 

(17) l(tj) = o(tj), ord(tj)~l. 

Now suppose that an~ n log n. Then 

A d(k) A d(k) , A d(*) 
fc=2 # A;=2 « k=sn+l R 

By Theorem 1 and (17) 

Also, 

Hence 

fc=2 & 

= \og(sn\ogsn) ~ l o g s w . 

A dik) A( , , 1-
2^ ~ i ~ ~ d(sn) log 5n ~ - log sn. 
k=2 K & 

(18) E.. -y- ~ glog 5w 
fc=sr»+l 
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On the other hand, 

(19) ± d-f<t \ 
= 0(l0g(5n log Sn) - log Sn) 

= O(log Sn + log log Sn - log SH) 

= 0(log log sn) = <?(log sn). 

But (18) and (19) are a contradiction. 

Definition 3. Let 9î2 be the class of sequences in 9? for which the finite or 
infinite l im^^ (rk/k) exists. Let this limit be denoted by r, where r £ [0, » ] . 

THEOREM 5. 2/ {aw} € 9î2, then an~n\ogn. Furthermore, 

1 r + 1 
r + 2 

log ». 

Proof. We must first obtain estimates for l(n) and d(«). U fk(an) = 0 and 
r < oo, then k + rk > Rk(an) > n so that 

* > Ï ^ P 7 (1 + *(1)) and Z(») > ^ (1 + o(l)) . 

Secondly, if /*(a») = 1 but ^ (o» ) = 0 for all k' > k, then k + rfc < Rk(an) 
= » + 1 so that 

h < 

Hence in every case 

or 

(19) 

n ; (l + o(l)). 
1 + 1 

; (l + o(l)). 

l(n) 1 
n 1 + r 

f\.(vi\ / l + r 
"-*/ • 

2 + r' 

Thus, using Theorem 1, one can easily show that an~ n log n. Finally using 
(18) and (13), we obtain 

1 l + r 
- - — log*. 

This theorem is certainly not the best possible. It is conjectured that 
an~ n log n whenever the function rk/k has a limiting distribution on the 
positive real line. The author can show that d(k) is asymptotic to a constant 
whenever rk/k has a limiting distribution and the distribution function is a 
finite-valued step function, but the methods used in the proof are very 
cumbersome. 
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