THE SEXTIC PERIOD POLYNOMIAL

Andrew J. Lazarus

In this paper we show that the method of calculating the Gaussian period polynomial which originated with Gauss can be replaced by a more general method based on formulas for Lagrange resolvants. The period polynomial of cyclic sextic fields of arbitrary conductor is determined by way of example.

1. Introduction

Suppose $p=e f+1$ is prime. Define the e cyclotomic classes

$$
\mathcal{C}_{j}=\left\{g^{e k+j} \bmod p, \quad j=0, \ldots, e-1, \quad k=0, \ldots, f-1\right\}
$$

where g is any primitive root modulo \boldsymbol{p}. The Gaussian periods $\boldsymbol{\eta}_{\boldsymbol{j}}$ are defined by

$$
\begin{equation*}
\eta_{j}=\sum_{\nu \in c_{j}} \zeta_{p}^{\nu}, \quad \zeta_{p}=\exp (2 \pi i / p) \tag{1.1}
\end{equation*}
$$

The principal class \mathcal{C}_{0} contains the e-th power residues and the other classes are its cosets. The η_{j} are Galois conjugates and the period polynomial $\Psi_{e}(X)$ is their common minimal polynomial over \mathbb{Q}. Gauss introduced the cyclotomic numbers (h, k) determined, for a given g, by

$$
(h, k)=\#\left\{\nu \in(\mathbb{Z} / p \mathbb{Z})^{*}: \nu \in \mathcal{C}_{h}, \nu+1 \in \mathcal{C}_{k}\right\}
$$

It follows that

$$
\begin{equation*}
\eta_{0} \eta_{h}=\sum_{k=0}^{e-1}(h, k) \eta_{k}+f \delta(h, \ell) \tag{1.2}
\end{equation*}
$$

where δ is Kronecker's delta and $\ell=0$ or $e / 2$ according as f is even or odd. The coefficients of $\Psi_{3}(X)$ in terms of p and the coefficients of the quadratic form $4 p=$ $A^{2}+27 B^{2}$ were determined by Gauss in Disquisitiones Arithmeticae: enough relations exist to determine all (h, k) in terms of p, A, and B. The period polynomial's

[^0]coefficients are then calculated as the symmetric functions of the $\eta \mathrm{s}$. (See Gauss, Bachmann [1], or Mathews [13].) The same general method and (1.2), with the appropriate quadratic form, was used to solve the cases $e=4$ (Gauss [5], 1825), $e=5$ (Emma Lehmer [10], 1951), $e=6$ (D. H. and Emma Lehmer [9], 1984), and $e=8$ (Evans [4], 1983).

Throughout ζ_{n} is the root of unity $\exp (2 \pi i / n)$ and $\mu(\cdot)$ is the Möbius function. Let $\boldsymbol{\chi}$ be a primitive character of degree e and modulus p. Recall the Lagrange resolvant (sometimes called a Gauss sum) defined by $\tau(\chi)=\sum_{j=0}^{p-1} \chi(j) \zeta_{p}^{j}$. Provided that the periods are defined with primitive root g such that $\chi(g)=\zeta_{e}$,

$$
\begin{equation*}
\tau\left(\chi^{j}\right)=\sum_{k=0}^{e-1} \chi^{j}(k) \eta_{k} \tag{1.3}
\end{equation*}
$$

The inverse of (1.3) is

$$
\begin{equation*}
\eta_{j}=e^{-1} \sum_{h=0}^{e-1} \zeta_{p}^{-h j} \tau\left(\chi^{h}\right) \tag{1.4}
\end{equation*}
$$

Since (1.4) does not depend on the existence of a primitive root, it defines $\eta_{\boldsymbol{j}}$ for any character χ of arbitrary modulus.

Field-theoretically, embed an abelian field K of degree $[K: \mathbb{Q}]=e$, Galois group $\mathcal{G}=\operatorname{Gal}(K / \mathbb{Q})$, and conductor m in $\mathbb{Q}\left[\zeta_{m}\right]$. Let $\widehat{\mathcal{G}}$ be the group of Dirichlet characters modulo m which annihilate $\operatorname{Gal}\left(\mathbb{Q}\left[\zeta_{m}\right] / K\right) \subset \operatorname{Gal}\left(\mathbb{Q}\left[\zeta_{m}\right] / \mathbb{Q}\right) \cong(\mathbb{Z} / m \mathbb{Z})^{*}$. We say that K belongs to $\widehat{\mathcal{G}}$ and $\widehat{\mathcal{G}}$ is associated to K. Then $\widehat{\mathcal{G}}$ is the dual of \mathcal{G} and $\widehat{\mathcal{G}} \cong \mathcal{G}[15$, Chapter 3$]$. The Gaussian period is defined in this most general case by

$$
\begin{equation*}
\eta_{j}=e^{-1} \sum_{\chi \in \widehat{\widehat{\varphi}}} \zeta_{p}^{-h j} \tau(\chi) \tag{1.5}
\end{equation*}
$$

This reduces to (1.4) when $\widehat{\mathcal{G}}$ is cyclic and to (1.1) when m is prime. It is easy to see that $\eta_{0}=\operatorname{Tr}_{K}^{\mathbb{Q}\left[\zeta_{m}\right]} \zeta_{m}$. The class \mathcal{C}_{0} becomes the kernel of $\widehat{\mathcal{G}}$ in $(\mathbb{Z} / m \mathbb{Z})^{*}$. For all $j \in \mathcal{C}_{0}$, the map $\zeta_{m} \mapsto \zeta_{m}^{j}$ is an automorphism of $\mathbb{Q}\left[\zeta_{m}\right]$ which fixes K. The period polynomial in this general case was determined in an ad hoc way for cyclic cubic fields by Châtelet [3], and for cyclic quartic fields by Nakahara [14] and (independently) by the author [8]. The computation of period polynomials can be made systematic through well-known formulas for arithmetic of Lagrange resolvants.

Lemma 1.1. (A) For χ_{m} and χ_{n} of conductors m, n respectively with $\operatorname{gcd}(m, n)$ $=1$,

$$
\tau\left(\chi_{m} \chi_{n}\right)=\chi_{n}(m) \chi_{m}(n) \tau\left(\chi_{m}\right) \tau\left(\chi_{n}\right)
$$

(B) If the conductor of χ is m and c is odd, then

$$
\sum_{j=0}^{c m-1} \chi(j) \zeta_{c m}=\mu(c) \chi(c) \tau(\chi)
$$

If c is even the sum vanishes.
(C) If \mathcal{X} is the set of characters of prime conductor $p, \ell \mid p-1$, and $\chi^{\ell} \neq 1$, then

$$
\prod_{\substack{\psi \in \mathcal{X} \\ \psi^{\ell}=1}} \tau(\chi \psi)=\bar{\chi}^{\ell}(\ell) \tau\left(\chi^{\ell}\right) \prod_{\substack{\psi \in \mathcal{X} \\ \psi^{\ell}=1}} \tau(\psi) .
$$

Proof: The first two formulas are routine; the last is the theorem of Hasse and Davenport [6, 20.4.IX].

Remarks. (1) The Hasse-Davenport Theorem has been used extensively in cyclotomy of prime modulus and composite degree; see, for example, Buck, Smith, Spearman and Williams [2].
(2) The Gaussian periods appear as summands of the 'Basiszahl' of an abelian number field in the elegant paper of Lettl [11].

2. Sextic Dirichlet Characters

Notation. From now on ψ, ξ, and χ will be primitive quadratic, cubic, and sextic characters, respectively. A subscript, for example χ_{m}, will indicate the conductor. Powers such as χ_{m}^{2} denote a possibly imprimitive character.

We may associate to every cubic character ξ_{m} an integer m in $\mathbb{Q}\left[\zeta_{s}\right]$ as follows. There is a prime-power decomposition of

$$
\xi_{m}=\xi_{p_{1}} \cdots \xi_{p_{\nu}}
$$

where each p_{j} is either 9 or a prime congruent to 1 modulo 3 . We may assume that if $3 \mid m$, the divisors are ordered such that $p_{1}=9 . \xi_{p_{j}}$ is a complex cubic residue symbol modulo p_{j}, where p_{j} is a prime of $\mathbb{Q}\left[\zeta_{3}\right]$ lying over p_{j} (over 3 , if $p_{1}=9$). Set

$$
\mathfrak{m}= \begin{cases}\prod_{j=1}^{\nu} p_{j} & 3 \nmid m \tag{2.1}\\ 3 \mathfrak{p}_{1} \prod_{j=2}^{\nu} p_{j} & \text { otherwise. }\end{cases}
$$

Since there are two conjugate primes lying over each p_{j}, it is clear that there are 2^{ν} different cubic characters, where m is divisible by ν distinct primes, but $\boldsymbol{\xi}$ and $\bar{\xi}$ generate the same group and are associated to the same field. Therefore there are $\mathbf{2}^{\boldsymbol{\nu - 1}}$ distinct cubic fields of conductor m.

Lemma 2.1. If ξ_{m} is a cubic character and ψ_{m} is a quadratic character, both primitive with conductor m, not necessarily prime, then

$$
\tau\left(\xi_{m} \psi_{m}\right)=\xi_{m}(2) \tau\left(\psi_{m}\right) \frac{\tau\left(\xi_{m}\right)^{2}}{m}
$$

Proof: The conductor of a primitive quadratic (respectively cubic) character is square-free except for powers of 2 (respectively 3), so m is square-free. If m is prime, the lemma is just the Hasse-Davenport Theorem (Lemma 1.1C). Proceeding by induction on the number of primes dividing m, write $m=p q, p$ prime, and factor $\xi_{m}=\xi_{p} \xi_{q}$ (similarly $\boldsymbol{\psi}_{m}$).

$$
\begin{aligned}
\tau\left(\xi_{m} \psi_{m}\right) & =\xi_{q}(p) \psi_{q}(p) \xi_{p}(q) \psi_{p}(q) \tau\left(\xi_{p} \psi_{p}\right) \tau\left(\xi_{q} \psi_{q}\right), \quad \text { by Lemma 1.1A and } \operatorname{gcd}(p, q)=1 \\
& =\frac{\xi_{p}(2)}{p} \frac{\xi_{q}(2)}{q} \xi_{q}(p) \xi_{p}(q) \tau\left(\xi_{p}\right)^{2} \tau\left(\xi_{q}\right)^{2} \psi_{q}(p) \psi_{p}(q) \tau\left(\psi_{p}\right) \tau\left(\psi_{q}\right)
\end{aligned}
$$

by inductive hypothesis

$$
=\xi_{m}(2) \tau\left(\psi_{m}\right) \frac{\tau\left(\xi_{m}\right)^{2}}{m}
$$

Lemma 2.2. The complex integer m defined by (2.1) is equal to the Jacobi sum $J\left(\xi_{m}, \xi_{m}\right)=\tau\left(\xi_{m}\right)^{2} / \tau\left(\bar{\xi}_{m}\right)$. The sextic resolvant $\tau\left(\xi_{m} \psi_{m}\right)=\xi_{m}(2) \tau\left(\psi_{m}\right) \tau\left(\xi_{m}\right) \bar{m} / m$.

Proof: The first clause is well-known, for example, Hasse [7, Section 2(1)]. The second now follows using the previous lemma.

3. The period polynomial

The sextic period polynomial will be determined from these lemmas. Let K be a cyclic sextic field of conductor m. K is the compositum of a quadratic field K_{2} of conductor m_{2} and a cyclic (hence real) cubic field K_{3} of conductor m_{3}. Set $g=$ $\operatorname{gcd}\left(m_{2}, m_{s}\right)$. In this section we shall assume that $3 \nmid g$; we shall treat the other case afterwards. Let $n_{i}=m_{i} / g, i=2,3$. Then $m=g n_{2} n_{3}$ and $3 \nmid g$ implies g, n_{2}, and n_{3} are pairwise co-prime. The sextic character χ_{m} can be factored into a product of cubic and quadratic characters:

$$
\chi_{m}=\xi_{m_{3}} \psi_{m_{2}}=\xi_{g} \xi_{n_{3}} \psi_{g} \psi_{n_{2}}
$$

We define \mathfrak{g} and \mathfrak{m} as the Jacobi sums of $\boldsymbol{\xi}_{g}$ and $\boldsymbol{\xi}_{m_{3}}$. (If $g=1$, we define $\mathfrak{g}=1$.) Let $n=m / g$, which is $J\left(\xi_{n_{3}}, \xi_{n_{3}}\right)$ if $n_{3}>1$.

We are now equipped to determine the resolvants necessary to use (1.4). Clearly $\tau\left(\chi^{6}\right)=\mu(m)$. Since K_{3} is real, $\psi_{m_{2}}(-1)=\chi_{m}(-1)$. From Lemma 1.1B and the result of Gauss on $\tau(\psi)$,

$$
\tau\left(\chi_{m}^{3}\right)=\mu\left(n_{3}\right) \psi_{m_{2}}\left(n_{3}\right) \sqrt{m_{2}^{*}}, \quad m_{2}^{*}=\chi_{m}(-1) m_{2}
$$

From Lemmas 1.1B and 2.2,

$$
\tau\left(\chi_{m}^{2}\right)=\mu\left(n_{2}\right) \xi_{m_{3}}\left(n_{2}\right) \tau\left(\xi_{m_{3}}\right)
$$

The sextic resolvant can be found in terms of the quadratic and cubic ones by Lemmas 1.1 and 2.2 .

$$
\begin{align*}
\tau\left(\chi_{m}\right) & =\xi_{n_{3}} \psi_{n_{2}}(g) \xi_{g} \psi_{g}\left(n_{3} n_{2}\right) \tau\left(\xi_{n_{3}} \psi_{n_{2}}\right) \tau\left(\xi_{g} \psi_{g}\right) \tag{3.1}\\
& =\xi_{n_{3}} \psi_{n_{2}}(g) \xi_{g} \psi_{g}\left(n_{3} n_{2}\right) \xi_{n_{3}}\left(n_{2}\right) \psi_{n_{2}}\left(n_{3}\right) \tau\left(\xi_{n_{3}}\right) \tau\left(\psi_{n_{2}}\right) \xi_{g}(2) \tau\left(\psi_{g}\right) \tau\left(\xi_{g}\right) \bar{g} / g \\
& =\xi_{m_{3}}\left(n_{2}\right) \psi_{m_{2}}\left(n_{3}\right) \xi_{g}(2) \tau\left(\psi_{m_{2}}\right) \tau\left(\xi_{m_{3}}\right) \bar{g} / g
\end{align*}
$$

It is easy to see that $\tau\left(\chi_{m}^{4}\right)=\overline{\tau\left(\chi_{m}^{2}\right)}$ and $\tau\left(\chi_{m}^{5}\right)=\chi_{m}(-1) \overline{\tau\left(\chi_{m}\right)}$.
The symbolic coefficients are simpler if we work with the reduced Gaussian period $\lambda_{j}=e \eta_{j}-\mu(m)$. The reduced period polynomial $\Lambda(X)$ is given by

$$
\Lambda(X)=\operatorname{Irr}_{\mathbb{Q}}^{K} \lambda_{0}=\operatorname{Irr}_{K_{2}}\left(\lambda_{0}\right) \operatorname{Irr}_{K_{2}}\left(\lambda_{1}\right)
$$

The normal and reduced period polynomials of degree e are related by $\Psi_{e}(X)=$ $e^{-c} \Lambda_{e}(e X-\mu(m))$.

Proposition 3.1. The minimal polynomial $\operatorname{Irr}_{K_{2}}\left(\lambda_{0}\right)$ of λ_{0} over K_{2} is

$$
\left(X-\lambda_{0}\right)\left(X-\lambda_{2}\right)\left(X-\lambda_{4}\right)=X^{3}+c_{2} X^{2}+c_{1} X+c_{0}
$$

where a calculation shows

$$
\begin{aligned}
c_{2}= & -3 \mu\left(n_{3}\right) \psi_{m_{2}}\left(n_{3}\right) \sqrt{m_{2}^{*}} \\
c_{1}= & -3 \mu\left(n_{2}\right)^{2} m_{3}-3 \chi_{m}(-1)\left(m-\mu\left(n_{3}\right)^{2} m_{2}\right) \\
& -6 \mu\left(n_{2}\right) \psi_{m_{2}}\left(n_{3}\right) n_{3} \operatorname{Re}\left(\xi_{g}(2) \overline{\mathfrak{g}}\right) \sqrt{m_{2}^{*}} \\
c_{0}= & -2 \mu\left(n_{2}\right) m_{3} \operatorname{Re}(m)-6 \mu\left(n_{2}\right) m \chi_{m}(-1) \operatorname{Re}\left(\xi_{g}(2)\left[\bar{n} \mathfrak{g}-\mu\left(n_{3}\right) \overline{\mathfrak{g}}\right]\right) \\
& \left\{-3 \mu\left(n_{2}\right)^{2} m_{3}\left(2 \operatorname{Re}\left(\xi_{g}(2) n\right)-\mu\left(n_{3}\right)\right)\right. \\
& \left.-n_{2} \chi_{m}(-1)\left(2 n_{3} \operatorname{Re}\left(\bar{n} g^{2}\right)+\mu\left(n_{3}\right)\left(g-3 m_{3}\right)\right)\right\} \psi_{m_{2}}\left(n_{3}\right) \sqrt{m_{2}^{*}} .
\end{aligned}
$$

Proof: The coefficients were computed from (1.4) and the values of $\tau\left(\chi^{j}\right)$ using the Maple symbolic algebra system, and then simplified by Lemma 2.2.

To rewrite Proposition 3.1 with rational integer coefficients, create new variables with the assignments

$$
\begin{equation*}
\xi_{g}(2)=\frac{z_{0}+\sqrt{-3} z_{1}}{2}, \quad \mathfrak{g}=\frac{A+3 \sqrt{-3} B}{2}, \quad \mathrm{~m}=\frac{L+3 \sqrt{-3} M}{2}, \quad \mathfrak{n}=\frac{R+3 \sqrt{-3} S}{2} \tag{3.2}
\end{equation*}
$$

so that

$$
\begin{equation*}
R=\frac{A L+27 B M}{2 g}, \quad S=\frac{A M-B L}{2 g} \tag{3.3}
\end{equation*}
$$

Maple's Gröbner basis reduction package normalised c_{0} and c_{1} with respect to (3.3) and the obvious relations on the conductors. We have that

$$
\begin{aligned}
c_{1}= & -3 \mu\left(n_{2}\right)^{2} m_{3}-3 \chi_{m}(-1)\left(m-\mu\left(n_{3}\right)^{2} m_{2}\right) \\
& -\frac{3}{2} \mu\left(n_{2}\right) \psi_{m_{2}}\left(n_{3}\right) n_{3}\left(z_{0} A+9 z_{1} B\right) \sqrt{m_{2}^{*}} \\
c_{0}= & -\mu\left(n_{2}\right) m_{3} L \\
& -\frac{3}{4} \mu\left(n_{2}\right) m_{m}(-1)\left[z_{0}(A R+27 B S)+9 z_{1}(A S-B R)-2 \mu\left(n_{3}\right)\left(z_{0} A+9 z_{1} B\right)\right] \\
- & \left\{\frac{3}{2} \mu\left(n_{2}\right)^{2} m_{3}\left(z_{0} R-9 z_{1} S-2 \mu\left(n_{3}\right)\right)+\frac{1}{2} n_{2} \chi_{m}(-1)\left[n_{3}(2 g R\right.\right. \\
& \left.\left.\left.+27 A B S-27 B^{2} R\right)+2 \mu\left(n_{3}\right)\left(g-3 m_{3}\right)\right]\right\} \psi_{m_{2}}\left(n_{3}\right) \sqrt{m_{2}^{*}} .
\end{aligned}
$$

Define rational numbers c_{0}^{\prime} and $c_{0}^{\prime \prime}$ by $c_{0}=c_{0}^{\prime}+c_{0}^{\prime \prime} \sqrt{m_{2}^{*}}$; similarly $c_{2}^{\prime \prime}, c_{1}^{\prime}$ and $c_{1}^{\prime \prime}$. The conjugate polynomial $\operatorname{Irr}_{K_{2}}\left(\lambda_{1}\right)$ is

$$
X^{3}-c_{2} X^{2}+\left(c_{1}^{\prime}-c_{1}^{\prime \prime} \sqrt{m_{2}^{*}}\right) X+\left(c_{0}^{\prime}-c_{0}^{\prime \prime} \sqrt{m_{2}^{*}}\right)
$$

Writing the reduced period polynomial

$$
\Lambda(X)=X^{6}+0 X^{5}+d_{4} X^{4}+d_{3} X^{3}+d_{2} X^{2}+d_{1} X+d_{0}
$$

we have our main result.
Theorem 1. The coefficients d_{ν} are given by
$d_{4}=-6 \mu\left(n_{2}\right)^{2} m_{3}-3\left(2 m+\mu\left(n_{3}\right)^{2} m_{2}\right) \chi_{m}(-1)$
$d_{3}=\mu\left(n_{2}\right)\left\{-2 m_{3} L\right.$

$$
\left.+\left(-6 \mu\left(n_{3}\right)\left(z_{0} A+9 z_{1} B\right)-\frac{3}{2}\left[z_{0}(A R+27 B S)+9 z_{1}(A S-B R)\right]\right) \chi_{m}(-1) m\right\}
$$

$d_{2}=c_{1}^{\prime 2}-\left(c_{1}^{\prime \prime 2}+2 c_{0}^{\prime \prime} c_{2}^{\prime \prime}\right) \chi_{m}(-1) m_{2}$
$d_{1}=2\left(c_{0}^{\prime} c_{1}^{\prime}-c_{0}^{\prime \prime} c_{1}^{\prime \prime} \chi_{m}(-1) m_{2}\right)$
$d_{0}=c_{0}^{\prime 2}-c_{0}^{\prime \prime 2} \chi_{m}(-1) m_{2}$.

The expanded expressions for the three trailing coefficients are very large.
Remarks. (1) d_{4} depends on m_{3} but not on m, that is, the choice of K_{3} is irrelevant. (2) The coefficients are all divisible by g. This is to be expected, since λ_{j} is a sum of terms divisible by a prime over g.
(3) When $4 \mid m_{2}$ the polynomial is even. (This can also be seen directly from the definition.)
(4) The factor $\psi_{m_{2}}\left(n_{3}\right)$ does not appear explicitly.

Corollary 3.2. If $m=m_{2}=m_{3}=g$, then

$$
\begin{aligned}
c_{2}= & -3 \sqrt{\chi_{m}(-1) m} \\
c_{1}= & -3 m-\frac{9}{2}\left(z_{0} L+3 z_{1} M\right) \sqrt{\chi_{m}(-1) m} \\
c_{0}= & -m L+27 \chi_{m}(-1) z_{1} M m+\left(\left[3-3 z_{0}+4 \chi_{m}(-1)\right] m-\chi_{m}(-1) L^{2}\right) \sqrt{\chi_{m}(-1) m} \\
d_{4}= & -3 m\left(3 \chi_{m}(-1)+2\right) \\
d_{3}= & {\left[-9\left(z_{0} L+3 z_{1} M\right) \chi_{m}(-1)-2 L\right] m } \\
d_{2}= & {\left[9\left(2-2 z_{0}-3 z_{1}^{2}\right) \chi_{m}(-1)+33\right] m^{2} } \\
& -\frac{3}{4}\left[3\left(z_{0}^{2} L^{2}+18 z_{0} z_{1} L M-3 z_{1}^{2} L^{2}\right) \chi_{m}(-1)+8 L^{2}\right] m \\
d_{1}= & -9\left(9 z_{1} M+z_{0}^{2} L+9 z_{0} z_{1} M-z_{0} L\right) \chi_{m}(-1) m^{2} \\
& +3\left(2 L m+4 z_{0} L m+36 z_{1} M m-9 z_{1} L^{2} M-z_{0} L^{3}\right) m \\
d_{0}= & \left(27 \chi_{m}(-1) z_{1} M-L\right)^{2} m^{2}-\left(\left[3-3 z_{0}+4 \chi_{m}(-1)\right] m-\chi_{m}(-1) L^{2}\right)^{2} \chi_{m}(-1) m .
\end{aligned}
$$

REMARK. If moreover m is prime we recover formulas (8)-(12) of [9].
Example. To illustrate the theorem, we show in Table 1 all ten sextic period polynomials of conductor 91 . The two sextic subfields of $\mathbb{Q}\left[\zeta_{01}\right]$ of smaller conductor are omitted. Although the reduced polynomial is simpler symbolically, the period polynomial in the table has smaller coefficients.

Table 1. Sextic period polynomials of conductor 91

Remark. For units in sextic fields see Mäki [12].

4. The special case $3 \mid \operatorname{gcd}\left(m_{2}, m_{3}\right)$

In this case, we write $g=\operatorname{gcd}\left(m_{2}, m_{3}\right) / 3, n_{3}=m_{3} / 9 g, n_{2}=m_{2} / 3 g$, so that 9 ,
g, n_{2}, and n_{3} are pairwise co-prime. We have

$$
\chi_{m}=\xi_{9} \xi_{g} \xi_{n_{3}} \psi_{\mathbf{s}} \psi_{g} \psi_{n_{2}}
$$

We can relate the Gauss sums for χ_{m} to the character $\chi_{m}^{\prime}=\psi_{s} \chi_{m}$.
Lemma 4.1. If ξ_{9} is the cubic residue symbol ($\frac{\zeta_{3}}{9}$), then $\tau\left(\xi_{9} \psi_{3}\right)=\tau\left(\xi_{9}\right)$.
Since the character belonging to a field is determined only up to complex conjugation, we may assume the condition of the lemma without loss of generality.

Lemma 4.2. With χ_{9} normalised, $\tau\left(\chi_{m}^{6}\right)=\tau\left(\chi_{m}^{\prime 6}\right)=\tau\left(\chi_{m}^{3}\right)=\tau\left(\chi_{m}^{\prime}{ }^{3}\right)=$ $0, \tau\left(\chi_{m}^{2}\right)=\tau\left(\chi_{m}^{\prime 2}\right), \tau\left(\chi_{m}^{\prime 4}\right)=\tau\left(\chi_{m}^{\prime}{ }^{4}\right)=\overline{\tau\left(\chi_{m}^{2}\right)}, \tau\left(\chi_{m}\right)=\psi_{3}(m / 9) \tau\left(\chi_{m}^{\prime}\right)$ and $\tau\left(\chi_{m}^{5}\right)=-\psi_{5}(m / 9) \tau\left(\chi_{m}^{\prime 5}\right)$.

Proof: We have $\tau\left(\chi_{m}^{0}\right)=\tau\left(\chi_{m}^{\prime}{ }^{0}\right)=\mu(9(m / 9))=0$. For the cube, use Lemma 1.1B. From the definition $\chi_{m}^{2}=\chi_{m}^{\prime}{ }^{2}$. Since exactly one of $\chi_{m}, \chi_{m}^{\prime}$ is an even character, we need prove only the relation on $\tau\left(\chi_{m}\right)$. By Lemma 1.1,

$$
\begin{aligned}
\tau\left(\chi_{m}\right) & =\chi_{9}\left(g n_{2} n_{3}\right) \chi_{g} \psi_{n_{2}} \xi_{n_{3}}(9) \tau\left(\chi_{9}\right) \tau\left(\chi_{9} \psi_{n_{2}} \xi_{n_{3}}\right) \\
& =\chi_{9}\left(g n_{2} n_{3}\right) \chi_{g} \xi_{n_{3}}(9) \tau\left(\xi_{9}\right) \xi_{g n_{3}}\left(n_{2}\right) \psi_{g n_{2}}\left(n_{3}\right) \xi_{g}(2) \tau\left(\psi_{g n_{2}}\right) \tau\left(\xi_{g n_{3}}\right) \mathfrak{g} / g
\end{aligned}
$$

using Lemmas $2.2,4.1$, and $\psi_{g}(9)=1$. Expanding $\chi_{9}\left(g n_{2} n_{3}\right)$ and recombining terms,

$$
\tau\left(\chi_{m}\right)=\xi_{m_{3}}\left(n_{2}\right) \psi_{3}\left(g n_{2} n_{3}\right) \psi_{g n_{2}}\left(n_{3}\right) \xi_{g}(2) \tau\left(\xi_{m_{3}}\right) \tau\left(\psi_{g n_{2}}\right) g / g
$$

Since $g n_{2}$ is the conductor of the quadratic field associated to χ^{\prime}, comparing this expression to (3.1) gives the lemma.

The coefficients can now be computed.
Proposition 4.3. The polynomial $\operatorname{Irr}_{K_{2}}\left(\lambda_{0}\right)$ is given by $X^{3}+0 X^{2}+c_{1} X+c_{0}$ where

$$
\begin{aligned}
c_{1}=- & -3\left(\mu\left(n_{2}\right)^{2} m_{3}+\chi_{m}(-1) m\right) \\
& -6 \sqrt{-1} \mu\left(n_{2}\right) \psi_{m_{2}}\left(n_{3}\right) \psi_{\mathrm{s}}(m / 9) n_{3} \operatorname{Im}\left(\xi_{g}(2) \overline{\mathfrak{g}}\right) \sqrt{\chi_{m}^{\prime}(-1) g n_{2}} \\
c_{0}=- & -\mu\left(n_{2}\right) m_{3} \operatorname{Re}(m)+6 \mu\left(n_{2}\right) \chi_{m}(-1) m \operatorname{Re}\left(\xi_{g}(2) \bar{n} \mathfrak{g}\right) \\
& -6 \sqrt{-1} \mu\left(n_{2}\right)^{2} \psi_{m_{2}}\left(n_{3}\right) \psi_{3}(m / 9) m_{3} \operatorname{Im}\left(\xi_{g}(2) n\right) \sqrt{\chi_{m}^{\prime}(-1) g n_{2}} \\
& -18 \sqrt{-1} \psi_{m_{2}}\left(n_{3}\right) \psi_{3}(m / 9) \chi_{m}(-1) n_{2} n_{3} \operatorname{Im}\left(\overline{\mathrm{ng}}{ }^{2}\right) \sqrt{\chi_{m}^{\prime}(-1) g n_{2}} .
\end{aligned}
$$

The radicand $\chi_{m}^{\prime}(-1) g n_{2}=-m_{2} / 3$ appears because $\sqrt{3}$ is hidden in the imaginary parts. We have $\sqrt{m_{2}^{*}}=-\chi_{m}(-1) \sqrt{-3} \sqrt{\chi_{m}^{\prime}(-1) g n_{2}}$. Making the assignments (3.2) and (3.3) we obtain:

Theorem 2. For $3 \mid \operatorname{gcd}\left(m_{2}, m_{3}\right)$ the reduced period polynomial $\Lambda(X)=X^{6}+$ $\sum_{\nu=0}^{4} d_{\nu} X^{\nu}$ is given by

$$
\begin{aligned}
& c_{1}=-3 {\left[\left(\mu\left(n_{2}\right)^{2} m_{3}+\chi_{m}(-1) m\right)\right] } \\
&-\frac{3}{2} \mu\left(n_{2}\right) \psi_{m_{2}}\left(n_{3}\right) \psi_{3}(m / 9) \chi_{m}(-1) n_{3}\left(3 z_{0} B-z_{1} A\right) \sqrt{m_{2}^{*}} \\
& c_{0}=-\mu\left(n_{2}\right) m_{3} L+\frac{3}{4} \mu\left(n_{2}\right) \chi_{m}(-1) m\left[z_{0}(A R+27 B S)+9 z_{1}(A S-B R)\right] \\
&+\frac{27}{2} \psi_{m_{2}}\left(n_{3}\right) \psi_{3}(m / 9)\left(2 g S+A B R-A^{2} S\right) \sqrt{m_{2}^{*}} \\
&+\frac{3}{2} \mu\left(n_{2}\right)^{2} \psi_{m_{2}}\left(n_{3}\right) \psi_{3}(m / 9) \chi_{m}(-1) m_{3}\left(3 z_{0} S+z_{1} R\right) \sqrt{m_{2}^{*}} \\
& d_{4}=-6\left[\left(\mu\left(n_{2}\right)^{2} m_{3}+\chi_{m}(-1) m\right)\right] \\
& d_{3}=-2 \mu\left(n_{2}\right) m_{3} L+\frac{3}{2} \mu\left(n_{2}\right) \chi_{m}(-1) m\left[z_{0}(A R+27 B S)+9 z_{1}(A S-B R)\right] \\
& d_{2}= c_{1}^{\prime 2}-c_{1}^{\prime \prime 2} \chi_{m}(-1) m_{2} \\
& d_{1}= 2\left(c_{0}^{\prime} c_{1}^{\prime}-c_{0}^{\prime \prime} c_{1}^{\prime \prime} \chi_{m}(-1) m_{2}\right) \\
& d_{0}=c_{0}^{\prime 2}-c_{0}^{\prime \prime 2} \chi_{m}(-1) m_{2}
\end{aligned}
$$

where $c_{j}=c_{j}^{\prime}+c_{j}^{\prime \prime} \sqrt{m_{2}^{*}}$.
As in the general case we suppress writing the trailing terms in full.
Remark. The remarks after Theorem 1 hold. In addition, if $n_{2}=1$ and $m_{2} \equiv$ 3 mod 4, d_{4} vanishes and d_{2} is independent of $K_{3} . d_{2}$ is also independent of K_{3} whenever g is prime or trivial, since we can fix g.

Example. In Table 2 we give the period polynomials of the six sextic fields of conductor 63 . When $m_{2}=7$, Theorem 1 holds; for $m_{2}=21$, we use Theorem 2.

Table 1. Sextic period polynomials of conductor 63

$\begin{array}{llll} m_{2} & m_{3} & & \mathfrak{g} \\ & & \mathcal{C}_{0} & \\ \hline \end{array}$	$\begin{array}{lll} \mathrm{m} & \xi_{g}(2) & \\ & & \Psi_{6}(X) \\ \hline \end{array}$
$\begin{array}{ccc} 7 & 9 & 1 \\ \{1,8,37,44,46,53\} \end{array}$	$\begin{aligned} & \frac{-3+3 \sqrt{-3}}{2} \\ & X^{6}+9 X^{4}+5 X^{3}+36 X^{2}+12 X+8 \end{aligned}$
$\begin{gathered} 7 \quad 63 \\ \{1,8,11,23,25,58\} \end{gathered}$	$\begin{aligned} & \frac{-15-3 \sqrt{-3}}{2} \\ & X^{6}+14 X^{3}+63 X^{2}-168 X+161 \end{aligned}$
$\begin{array}{ccc} 7 & 63 & \frac{1-3 \sqrt{-3}}{2} \\ \{1,2,4,8,16,32\} \end{array}$	$\begin{aligned} & 6-3 \sqrt{-3} \quad \bar{\zeta}_{3} \\ & X^{6}+14 X^{3}+63 X^{2}+210 X+224 \end{aligned}$
$\begin{array}{ccc} 21 & 9 & 1 \\ \{1,17,26,37,46,62\} \end{array}$	$\begin{aligned} & \frac{-3+3 \sqrt{-3}}{2} \\ & X^{6}-12 X^{4}+5 X^{3}+36 X^{2}-30 X+1 \end{aligned}$
$\begin{aligned} & 21 \quad 63 \quad \frac{1+3 \sqrt{-3}}{2} \\ & \{1,5,25,38,58,62\} \end{aligned}$	$\begin{aligned} & \frac{-15-3 \sqrt{-3}}{2} \\ & X^{6}-21 X^{4}+14 X^{3}+63 X^{2}-21 X-35 \end{aligned}$
$\begin{aligned} & 21 \quad 63 \quad \frac{1+3 \sqrt{-3}}{2} \\ & \{1,4,16,47,59,62\} \\ & \hline \end{aligned}$	$\begin{aligned} & 6-3 \sqrt{-3} \quad \zeta_{3} \\ & X^{6}-21 X^{4}+14 X^{3}+63 X^{2}-84 X+28 \end{aligned}$

References

[1] P. Bachmann, Die Lehre von der Kreisteilung (B.G. Teubner, Leipzig and Berlin, 1927).
[2] N. Buck, L. Smith, B.K. Spearman and K.S. Williams, The cyclotomic numbers of order fifteen, Mathematical Lecture Note Series 6 (Carleton University and Université d'Ottawa, 1985).
[3] A. Châtelet, 'Arithmétique des corps abéliens du troisième degré', Ann. Sci. École Norm. Sup. 63 (1946), 109-160.
[4] R.J. Evans, 'The octic period polynomial', Proc. Amer. Math. Soc. 87 (1983), 389-393.
[5] C.F. Gauss, Theoria residuorum biquadraticorum: Commentatio prima 2, Werke (Königlichen Gesellschaft der Wissenschaften, Göttingen, 1876). Originally published $1825 \mathrm{pp} .65-92$.
[6] H. Hasse, Vorlesungen über Zahlentheorie (Springer-Verlag, Berlin, Heidelberg and New York, 1964).
[7] H. Hasse, Arithmetische Bestimmung von Grundeinheit und Klassenzahl in zyklischen kubischen und biquadratischen Zahlkörpern, Mathematische Abhandlungen 3 (Walter deGruyter, Berlin, 1975). Originally published 1950, pp. 285-379.
[8] A.J. Lazarus, 'Gaussian periods and units in certain cyclic fields', Proc. Amer. Math. Soc. 115 (1992), 961-968.
[9] D.H. Lehmer and Emma Lehmer, 'The sextic period polynomial', Pacific J. Math. 111 (1984), 341-355.
[10] Emma Lehmer, 'The quintic character of 2 and 3', Duke Math. J. 18 (1951), 11-18.
[11] Günter Lettl, 'The ring of integers of an abelian number field', J. Reine Angew. Math. 404 (1990), 162-170.
[12] S. Mäki, The determination of units in real cyclic sextic fields, Lecture Notes in Mathematics 797 (Springer-Verlag, Berlin, Heidelberg and New York, 1980).
[13] G.R. Mathews, Theory of numbers, Second edition (Chelsea, 1960).
[14] T. Nakahara, 'On cyclic biquadratic fields related to a problem of Hasse', Monatsh. Math. 94 (1982), 125-132.
[15] L.C. Washington, Introduction to cyclotomic fields, Graduate Texts in Mathematics 83 (Springer-Verlag, Berlin, Heidelberg and New York, 1982).

2745 Elmwood Ave
Berkeley CA 94705
United States of America

[^0]: Received 10th May, 1993
 Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/94 \$A2.00+0.00.

