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THE SEXTIC PERIOD POLYNOMIAL

ANDREW J. LAZARUS

In this paper we show that the method of calculating the Gaussian period poly-
nomial which originated with Gauss can be replaced by a more general method
based on formulas for Lagrange resolvants. The period polynomial of cyclic sextic
fields of arbitrary conductor is determined by way of example.

1. INTRODUCTION

Suppose p = ef + 1 is prime. Define the e cyclotomic classes

where g is any primitive root modulo p. The Gaussian periods rjj are defined by

(1.1) W

The principal class Co contains the e-th power residues and the other classes are its
cosets. The rjj are Galois conjugates and the period polynomial \Pe(X) is their com-
mon minimal polynomial over Q. Gauss introduced the cyclotomic numbers (A,fc)
determined, for a given g, by

(h, k) = #{v e (Z/JIZ)* : v e Ch, v + 1 G Ck}.

It follows that

e- l

(1.2) »?o»7/, = X ; ( & , % * + M M )
Jfe=0

where S is Kronecker's delta and I — 0 or e/2 according as / is even or odd. The
coefficients of ^s(X) in terms of p and the coefficients of the quadratic form 4p =
A2 + 27B2 were determined by Gauss in Disquisitiones Arithmetical enough rela-
tions exist to determine all (h,k) in terms of p, A, and B. The period polynomial's
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coefficients are then calculated as the symmetric functions of the 77s. (See Gauss, Bach-
mann [l], or Mathews [13].) The same general method and (1.2), with the appropriate
quadratic form, was used to solve the cases e — 4 (Gauss [5], 1825), e = 5 (Emma
Lehmer [10], 1951), e = 6 (D. H. and Emma Lehmer [9], 1984), and e = 8 (Evans [4],
1983).

Throughout £n is the root of unity exp(27rt/n) and //(•) is the Mobius function.
Let x D e a primitive character of degree e and modulus p. Recall the Lagrange

resolvant (sometimes called a Gauss sum) defined by T(X) = $Z x{j)(p • Provided that
; = 0

the periods are defined with primitive root g such that x(s) = Ce,

•a) T\X ) -

*=o

The inverse of (1.3) is

e - l

(1.4) Vj = e"1

Since (1.4) does not depend on the existence of a primitive root, it defines t]j for any
character x °f arbitrary modulus.

Field-theoretically, embed an abelian field K of degree [K : Q] = e, Galois
group Q = Gal (K/Q), and conductor m in Q[£m]. Let Q be the group of Dirichlet
characters modulo m which annihilate Gal (Q[(m]/K) C Gal(Q[£m]/Q) ^ (Z/tnZ)'.
We say that K belongs to Q and Q is associated to K. Then Q is the dual of Q and
Q = Q [15, Chapter 3]. The Gaussian period is defined in this most general case by

(1-5) i7i = e -
xea

This reduces to (1.4/ when Q is cyclic and to (1.1) when m is prime. It is easy to
see that 770 = Tr^<ml (m. The class Co becomes the kernel of Q in (Z/mZ)*. For all
j G Co, the map £m •-> ^ is an automorphism of Q[Cm] which fixes K. The period
polynomial in this general case was determined in an ad hoc way for cyclic cubic fields
by Chatelet [3], and for cyclic quartic fields by Nakahara [14] and (independently) by
the author [8]. The computation of period polynomials can be made systematic through
well-known formulas for arithmetic of Lagrange resolvants.

LEMMA 1 . 1 . (A) For Xm and Xn of conductors m,n respectively with gcd (m,n)
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(B) If the conductor of x JS m an<i c is odd, then

i=o

If c is even the sum vanishes.
(C) If X is the set of characters of prime conductor p, £ \ p — 1, and x1 ^ 1, then

PROOF: The first two formulas are routine; the last is the theorem of Hasse and
Davenport [6, 20.4.IX]. D

REMARKS. (1) The Hasse-Davenport Theorem has been used extensively in cyclotomy
of prime modulus and composite degree; see, for example, Buck, Smith, Spearman and
Williams [2].
(2) The Gaussian periods appear as summands of the 'Basiszahl' of an abelian number
field in the elegant paper of Lettl [11].

2. SEXTIC DIRICHLET CHARACTERS

NOTATION. From now on r(>, {, and \ will be primitive quadratic, cubic, and sextic
characters, respectively. A subscript, for example Xm i will indicate the conductor.
Powers such as ^J, denote a possibly imprimitive character.

We may associate to every cubic character £m an integer m in Q[£3] as follows.
There is a prime-power decomposition of

where each pj is either 9 or a prime congruent to 1 modulo 3. We may assume that if
3 | m, the divisors are ordered such that p\ = 9. £?i is a complex cubic residue symbol
modulo pj, where pj is a prime of Q[Cs] lying over pj (over 3, if p\ =9) . Set

(2.1) m = <

f[pj 3|m

3pi J J pj otherwise.
, = 2

Since there are two conjugate primes lying over each pj, it is clear that there are 2"
different cubic characters, where m is divisible by v distinct primes, but £ and £
generate the same group and are associated to the same field. Therefore there are 2 V - 1

distinct cubic fields of conductor m .
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LEMMA 2 . 1 . If £m is a cubic character and V>m is a quadratic character, both
primitive with conductor m, not necessarily prime, then

m

PROOF: The conductor of a primitive quadratic (respectively cubic) character is
square-free except for powers of 2 (respectively 3), so m is square-free. If m is prime, the
lemma is just the Hasse-Davenport Theorem (Lemma 1.1C). Proceeding by induction
on the number of primes dividing m, write m = pq, p prime, and factor £m = £p£q
(similarly i>m)-

gM£pV',>M£«^«), by Lemma 1.1A and gcd (p, q) = 1

by inductive hypothesis

TO

LEMMA 2 . 2 . The complex integer m defined by (2.1) is equal to the Jacobi sum
J(£m,tm) = T(U)*/T(£m) • The sextic resolvant T(£mVm) = fm(2)T(V>mM6n)m/m.

PROOF: The first clause is well-known, for example, Hasse [7, Section 2(1)]. The
second now follows using the previous lemma. U

3. THE PERIOD POLYNOMIAL

The sextic period polynomial will be determined from these lemmas. Let K be
a cyclic sextic field of conductor m. K is the compositum of a quadratic field Ki
of conductor mi and a cyclic (hence real) cubic field K3 of conductor ms. Set g =
gcd (m2, rn3 ). In this section we shall assume that 3 f g; we shall treat the other case
afterwards. Let nj = mi/g, i = 2,3. Then m = gninj and 3 \g implies g, n.2, and nj
are pairwise co-prime.The sextic character Xm c*n be factored into a product of cubic
and quadratic characters:

We define g and m as the Jacobi sums of £g and £ms . (If g = 1, we define 9 = 1.)
Let n = m/g, which is J(£nj,£ns) if n3 > 1.
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We are now equipped to determine the resolvants necessary to use (1-4). Clearly
T ( X 6 ) = /*(«*). Since K3 is real, ^m,(—1) = Xm(—1)- From Lemma 1.1B and the
result of Gauss on T(IJ>) ,

Prom Lemmas L IB and 2.2,

The sextic resolvant can be found in terms of the quadratic and cubic ones by Lemmas
1.1 and 2.2.

(3-1)

, (n3 )Cg(2)r(tl>mi )r((m3 )g/g

It is easy to see that T(X^) = T(XL) and T ( X ^ ) = Xm(-l)r(,Xm)-
The symbolic coefficients are simpler if we work with the reduced Gaussian period

Xj = er\j — fi(m). The reduced period polynomial A(X) is given by

A(X) = Irr£ Ao =

The normal and reduced period polynomials of degree e are related by We

e~eAe(eX — fJ.(m)).

PROPOSITION 3 . 1 . The minimal polynomial Irr/fj (Ao) of Ao over K2 is

(X - X0)(X - X2)(X - A4) = X3 + c2X
2 + ClX + c0

where a calculation shows

c2 = - 3 /i(n3)V>mj

C! = -3/i(n2)2m3 - 3xm(-l) \m -

c0 = - 2 / i ( n 2 ) m 3 Re(m) - 6 / i ( n 2 ) m x m ( - l )

{-3/x(n2)
2m3 (2 Re(^(2)n)-M(n,))

(-l) (2n, Re(ng2) +p(n3) (g -

PROOF: The coefficients were computed from (1.4) and the values of T ( X J ) using

the Maple symbolic algebra system, and then simplified by Lemma 2.2. D
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To rewrite Proposition 3.1 with rational integer coefficients, create new variables
with the assignments

(3.2)
„ . . zo + s/^zi A + 3v/=3B L + Zy/^3M R
U2) 9 m "U2) = g ' 9 = 2 ' m = 2

so that
AL + 27BM AM-BL

R SR 2 g ' S = 2g
Maple's Grobner basis reduction package normalised CQ and c\ with respect to (3.3)
and the obvious relations on the conductors. We have that

f - 3xm(-l)

^ i(na)na (z0 A + 9zx

Co = — /i(n2)ni3 L

- | /x(n2)mXm(-l) [z0 (AR + 2755) + 9*a (AS - BR) -

{3 1

- n{n2)
2m3 {z0R - 9 5 2 ( ) ) +

+27 ABS - 27B2R)

Define rational numbers c'o and c{f by c0 = cj, +c{,'^/mj; similarly c2', c'x and c". The
conjugate polynomial Irr/f, (Ai) is

Xs - c2X
2 + (^ - c'/v^f)x + (ci - c

Writing the reduced period polynomial

A(X) = X 6 + OX5 + d4X4 + d 3 X 3 + d2X
2

we have our main result.

THEOREM 1 . The coefficients dv are given by

di = -6/i(n2)2m3 - 3 (2m + M(n3)2m2) Xm(-l)

L

6/i(n3) (z0A + 9 Z ! B ) - | [z0 {AR + 27BS) + 92l (AS -

d2 = ci2 - (cf + 2c'icl')xm(-l)m2

c'2 c'2do = c'o
2 - c'o2xm(-l)m2.
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The expanded expressions for the three trailing coefficients are very large.

REMARKS. (1) d4 depends on m3 but not on m, that is, the choice of K3 is irrelevant.
(2) The coefficients are all divisible by g. This is to be expected, since A,- is a sum of
terms divisible by a prime over g.
(3) When 4 | n»2 the polynomial is even. (This can also be seen directly from the
definition.)
(4) The factor rl>mj(n3) does not appear explicitly.

COROLLARY 3 . 2 . IIm = m2 =ma =g, then

= - 3

9 . _
C\ = —oro — — (ZQL •

= -mL + 27Xm(-l) *i Mm + ([3-3 z0 + 4Xm(-l)l m - X » ( - l ) L2)c0

d3 = [-9 (z0L + 3z1M)Xm(-l)-2L}m

d2=[9(2-2z0-3z\)Xm(-l) + 33] m2

- 1 [3 (zlL2 + 18 zo2l LM - 3 z\L2) Xm{-1) + 8 L2]m

di = -9 (9 zi M + z\L + 9z0z1M-z0L) Xm(-l)m2

+ 3 (2Lm + 4z0Lm + 36*iMm - 9ziL2M - zoL^m

do = (27xm(-l) zxM- Lf m2 - ([3 - 3z0 + 4xm(-l)]™ - X m ( -1 ) L2)2
 X n ( - l ) m .

REMARK. If moreover m is prime we recover formulas (8)-(12) of [9].

EXAMPLE. TO illustrate the theorem, we show in Table 1 all ten sextic period polynomi-
als of conductor 91. The two sextic subfields of Q[£»i] of smaller conductor are omitted.
Although the reduced polynomial is simpler symbolically, the period polynomial in the
table has smaller coefficients.
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TABLE 1. Sextic period polynomials of conductor 91

mj ms 9 m

7 13 1
{1,8,18,25,44,51,53,57,60,64,79,86}

7 91
{1,2,4,8,16,23,32,37,46,57,64,74}

•» Qi 1+3V—3 ll-f-9>/^3
' y l 3 3

{1,8,9,11,30,57,58,64,67,72,81,88}

1
Xs - X* + UX* + 13X3 + 58X2 + 16X + 8

C3
X6 - X s + X* + UX3 + 162X2 - 400X + 736

C3

X" - X* + X* + 13X3 + 71X2 + 419X + 827

13 7 1
{1,22, 27,29,36,43,48,55,62,64,69,90}

13 91 -»+3/=3

{1,4,16,17,23,27,64,68,74,75,87,90}

13 91 5 ,
{1,3,9,10,27,30,61,64,81,82,88,90}

1
X*

91 7 -^— — , —
{1,6,20,22,29,34,36,41,43,64,76,83}

91 13 - 8 + 3 V - 3 j
{1,5,25,31,34,47,51,53,64,73,79,83}

- Xs - UX* + AX3 + 57X3 - 18X - 27

X* - X* - SIX* + 4X3 + 253X2 + 101X - 391

X6 - X* - SIX* + Ax3 + 162X2 - 81X - 27

X* - X* + 22A"* - 22X3 + 148X2 - 148X + 337

C,
X6 - X* + 21X* - 22X3 + 58X2 + 23X + 155

{1,4,16,23,34,45,54,59,64,74,83,89}

91 91 2 ,
{1,9,19,24,30,33,34,64,80,81,83,88}

1
Xe - X6 + 8X4 - 113X3 + 435X2 - 666X + 428

C»
Xe - XB + 8X4 - 22X3 - 20X2 + 426X + 1611

REMARK. For units in sextic fields see Maki [12].

4. THE SPECIAL CASE 3 | gcd (m2 )m3)

In this case, we write g = gcd(7712,mj)/3, nj = m j / ^ , 712 = m^/Zg, so that 9,
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g, T»2 , and 713 are pairwise co-prime. We have

Xm = 6£9£

We can relate the Gauss sums for Xm to the character xm =

LEMMA 4 . 1 . If(ais the cubic residue symbol (^) , then T(£9Y>3) = T(£9) .

Since the character belonging to a field is determined only up to complex conjuga-
tion, we may assume the condition of the lemma without loss of generality.

LEMMA 4 . 2 . With X . normalised, r ( X m ) = r ^ j ) = r ( X m ) = r(x'j) =

0, r(Xl) = T(X'J), T(X'J) = r{X'j) = TftT), r{Xm) = ^3(m/9)r(x^) and

PROOF: We have T ( X 5 , ) = T(x'm) = f1(^(m/^)) = 0- F o r tae cube, use Lemma

LIB. From the definition Xm = Xm • Since exactly one of Xm, Xm *s a n even character,

we need prove only the relation on r(xm)- By Lemma 1.1,

using Lemmas 2.2, 4.1, and ^9(9) = 1. Expanding X9(5n2"3) and recombining terms,

Since gn2 is the conductor of the quadratic field associated to x'> comparing this
expression to (3.1) gives the lemma. D

The coefficients can now be computed.

PROPOSITION 4 . 3 . The polynomial Irrjf, (Ao) is given by X 3 + 0 X 2 + c i X + c 0

where

c\ = —3

Co = —2/x(n2 )m3 Re (m)

Im (nfl
2)

The radicand x'm(~^)9n2 = ~mi/S appears because y/2 is hidden in the imaginary
parts. We have ^/mj = — Xm(—1)%/—3^/Xm(~l)ffn2 • Making the assignments (3.2)
and (3.3) we obtain:
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THEOREM 2 . For 3 | gcd (m 2 ) m 3 ) the reduced period polynomial A(X) = X6 +
4

dvX" is given by
v=0

Cl = -3 [(/i(n2)
2m3 +X m(-l)m)]

3

3
co = -n{n2)maL + - n(n2)xm(~l)m[z0{AR + TIBS) + 9Zl(AS - BR)]

27
+ - ^ V-m2 (ns)V>s(m/9)(2 gS

04 — —0 :

d3 = -2/x(n2)m3X + ^ n(n2)xm(-l)™[z0{AR + 27 BS) + 9 z^AS - BR)}

d 1 = 2 ( c o c ' 1 - c o V 1 ' X r o ( - l ) m 2 )

do = c0
2 - c 0

| 2 x m ( - l ) m 2

wJiere CJ = c'j + c" -y/wf •

As in the general case we suppress writing the trailing terms in full.

REMARK. The remarks after Theorem 1 hold. In addition, if n2 = 1 and m2 =
3 mod 4, di vanishes and d2 is independent of K3. d2 is also independent of K3
whenever g is prime or trivial, since we can fix g.

EXAMPLE. In Table 2 we give the period polynomials of the six sextic fields of conduc-

tor 63. When m2 = 7, Theorem 1 holds; for m2 = 21, we use Theorem 2.
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TABLE 1. Sextic period polynomials of conductor 63

7712

7 9 1
{1,8,37,44,46,53}

7 6 3 i i ^ E I

{1,8,11,23,25,58}

7 63 1~3>^r5

{1,2,4,8,16,32}

21 9 1
{1,17,26,37,46,62}

21 63 1+l^El

{1,5,25,38,58,62}

21 63 i±^/EI

{1,4,16,47,59,62}

X6 + 9X* + 5X* + 36X2 + 12X + 8

X6 + MX* + 63X2 - 168X + 161

6 - 3v/=3 Cs

X6 + UXa + 63A"2 + 210X + 224

- 12X4 + 5X3 + 36X2 - 30X + 1

X6 - 21X4 + 14X3 + 63X2 - 21X - 35

6 - 3y/^ (a

Xe - 21X4 + 14JT3 + 63X2 - 84X + 28
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