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Abstract

A group is boundedly acyclic if its bounded cohomology with trivial real coefficients vanishes in all
positive degrees. Amenable groups are boundedly acyclic, while the first nonamenable examples are the
group of compactly supported homeomorphisms of R” (Matsumoto—Morita) and mitotic groups (L&h).
We prove that binate (alias pseudo-mitotic) groups are boundedly acyclic, which provides a unifying
approach to the aforementioned results. Moreover, we show that binate groups are universally boundedly
acyclic. We obtain several new examples of boundedly acyclic groups as well as computations of the
bounded cohomology of certain groups acting on the circle. In particular, we discuss how these results
suggest that the bounded cohomology of the Thompson groups F, T, and V is as simple as possible.

2020 Mathematics subject classification: primary 18G90.

Keywords and phrases: bounded cohomology, boundedly acyclic groups, binate groups, pseudo-mitotic
groups, Thompson groups.

1. Introduction

Bounded cohomology is defined via the topological dual of the simplicial resolution.
It was introduced by Johnson and Trauber in the context of Banach algebras [35],
then extended by Gromov to topological spaces [28]. Since then, it has become a
fundamental tool in several fields, including the geometry of manifolds [28], rigidity
theory [13], the dynamics of circle actions [25], and stable commutator length [14].
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Despite a good understanding in degree 2 and a partial understanding in degree 3,
the full bounded cohomology of a group seems to be hard to compute [22, Sec-
tion 7]. Therefore, it is fundamental to produce alternative resolutions that compute
the bounded cohomology of a group. In this respect, amenable groups played a
fundamental role in the approach of Ivanov [32]. One can also exploit a larger class
of groups for computing bounded cohomology, namely the class of boundedly acyclic
groups [33, 48].

DEFINITION LI Let n>1. A group I' is said to be n-boundedly acyclic if
H,(I';R) = Oforalli € {1,...,n}. The group I"is boundedly acyclic if it is n-boundedly
acyclic for every n > 1.

Amenable groups are boundedly acyclic [28, 35]. The first nonamenable example,
due to Matsumoto and Morita [42], is the group Homeo.(R") of compactly supported
homeomorphisms of R". Their proof relies on the acyclicity of this group, which for
the purposes of this paper will always be considered with respect to the integers.

DEFINITION 1.2. A group I'is said to be acyclic if H,(I'; Z) = 0 for all n > 1.

It was shown by Mather that Homeo.(R") is acyclic [40], and thus the proof
of bounded acyclicity reduces to the proof of injectivity of the comparison map
from bounded to ordinary cohomology. The same approach was employed by Loh
to prove that mitotic groups are boundedly acyclic [39]. This class was introduced by
Baumslag, Dyer and Heller [1] to produce embedding results into finitely generated
acyclic groups. Bounded acyclicity of mitotic groups, together with co-amenability of
ascending HNN extensions, eventually led to finitely generated and finitely presented
examples of nonamenable boundedly acyclic groups [22].

The two bounded acyclicity results mentioned above are similar in spirit but
independent of one another, since Homeo.(R") is not mitotic [49]. However, there
is a larger framework that includes both Homeo.(R") and mitotic groups: binate
groups (see Section 3 for the definition). This class was introduced by Berrick [4]
and independently by Varadarajan [55], under the name pseudo-mitotic. They proved
that binate groups are acyclic, and thus provided a unified approach to the proofs of
Mather and Baumslag—Dyer—Heller, as well as several new and interesting examples
of acyclic groups, mainly among groups of homeomorphisms (see Section 3.1). We
adapt this unification to bounded cohomology.

THEOREM 1.3 (Theorem 3.5). All binate groups are boundedly acyclic.

We remark that, in general, binate groups are nonamenable, since they typically
contain free subgroups. However, there are a few exceptions (Section 3.1.4).

Binate groups reflect enough of group theory to serve as a faithful testing class for
open problems such as the Bass conjecture, a modified version of the Baum—Connes
conjecture, or the Kervaire conjecture [6]. By Theorem 1.3, boundedly acyclic groups
also serve as conjecture testers. For instance, if the Bass conjecture holds for all
boundedly acyclic groups, then it holds for all groups. This is especially interesting
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since amenable groups, which serve as the prototypical example of boundedly acyclic
groups, are known to satisfy the Bass conjecture [7].

The bounded acyclicity of binate groups is a phenomenon that is not strictly linked
to real coefficients. Indeed we prove the following theorem.

THEOREM 1.4 (Corollary 5.4). Binate groups are universally boundedly acyclic: if T’
is a binate group, then for every complete valued field K and every n > 1, we have
H,T;K) = 0.

More generally, we characterize universally boundedly acyclic groups as those
groups that are simultaneously acyclic and boundedly acyclic (Theorem 5.2). In
this sense, Theorem 1.4 is a combination of the acyclicity result of Berrick and
Varadarajan, together with Theorem 1.3, but it also contains both results in its
statement.

1.1. Hereditary properties of boundedly acyclic groups. By analogy with the
amenable case, it is interesting to check which group-theoretic constructions preserve
bounded acyclicity. It is known that extensions, as well as quotients with boundedly
acyclic kernels, do [48]. It is therefore natural to wonder whether these two results
extend to a two-out-of-three property for bounded acyclicity and group extensions.

Using the fact that every group embeds 2-step subnormally into a binate group, we
show that this cannot hold.

THEOREM 1.5 (Theorem 4.5). There exists a boundedly acyclic group T with
a normal subgroup H such that T'/H is boundedly acyclic, but Hj(H;R) is
continuum-dimensional for every n > 2.

We also look at directed unions of boundedly acyclic groups, and show that these
are boundedly acyclic under an additional technical requirement (Proposition 4.13),
which is however not needed in degree two (Corollary 4.16).

1.2. Application to Thompson groups. The advantage of Theorem 1.3 is that the
class of binate groups is flexible enough that one can construct several concrete
examples of boundedly acyclic groups. We use this to study the bounded cohomology
of certain analogs of the classical Thompson groups F, T, and V. The amenability
question for F' is one of the most influential open questions in modern group theory.
It is therefore natural to wonder whether F is at least boundedly acyclic. It is known
that F is 2-boundedly acyclic, but nothing seems to be known in higher degrees. Using
Theorem 1.3, we show that a countably singular analog of the Thompson group F is
boundedly acyclic (Proposition 6.7).

Moreover, we prove that if F is n-boundedly acyclic, then the bounded cohomology
of T is generated by the real Euler class and its cup-powers, up to degree n (Corollary
6.17). In particular, we obtain the following theorem.

THEOREM 1.6 (Corollaries 6.17 and 6.18). If the Thompson group F is boundedly
acyclic, then H,(T; R) (with the cup-product structure) is isomorphic to the polynomial
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ring R[x] with |x| = 2 and the bounded Euler class of T is a polynomial generator of
H, (T;R). Moreover, the canonical semi-norm on Hy(T;R) is a norm.

Therefore, the bounded acyclicity of F would make T into the first group of
type Fs that is not boundedly acyclic, and whose bounded cohomology ring can
be completely and explicitly computed. Similarly, if F is boundedly acyclic, then the
bounded cohomology ring of 7> is a polynomial ring in r generators of degree two
(Corollary 6.18).

Independently, Monod and Nariman recently established analogous results for
the bounded cohomology of the group of orientation-preserving homeomorphisms
of S! [46].

1.3. A note from the future. After this paper was finished, Monod proved that the
Thompson group F is boundedly acyclic [45]. Therefore, Theorem 1.6 shows that the
bounded cohomology of the Thompson group 7 is isomorphic to the polynomial ring
R[x] with |x| = 2 and that the bounded Euler class of T is a polynomial generator of
H,(T;R).

1.4. Organization of this article. We recall the definition of bounded cohomology
and the uniform boundary condition in Section 2. Binate groups are surveyed in
Section 3. In Section 4, we study hereditary properties of boundedly acyclic groups.
Section 5 is devoted to universal bounded acyclicity. The applications to Thompson
groups are discussed in Section 6. Finally, Appendix A contains the proof of
Theorem 1.3.

2. Bounded cohomology

We quickly recall basic notions concerning bounded cohomology.

2.1. Definition of bounded cohomology. LetI be a group and let R — £=(I™**!) be
the bounded simplicial I"-resolution of R. More generally, if V is a normed I'-module,
we consider the complex £*(I"**!, V) and set

C;([T; V) := (T, vyl
The bounded cohomology of T with coefficients in V is defined as
H,(T; V) := H(C,I; V).

The norm on C,(I'; V) induces a semi-norm on H;(I'; V), the so-called canonical
Semi-norm.

The canonical inclusion C,(I'; V) < C*(I'; V) induces a natural transformation
between bounded cohomology and ordinary cohomology, the comparison map

compy., : Hy(I'; V) — H'(T; V).

Further information on the bounded cohomology of groups (and spaces) can be found
in the literature [24, 28, 32].
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In Section 5, we also deal with bounded cohomology over different valued fields.
Recall that an absolute value on a field K is a multiplicative map |- | : K — R such
that [x| = 0 if and only if x = 0; and the triangle inequality holds: |x + y| < |x| + [y|. We
say that K is a complete valued field if the metric induced by the absolute value is
complete. One can then define bounded cohomology over K in exactly the same way.

If the strong triangle inequality |x + y| < max{|x|,|y|} holds for all x,y € K, then
K is said to be non-Archimedean. Concerning the bounded cohomology over
non-Archimedean fields [20], we only use the following result.

LEMMA 2.1 [20, Corollary 9.38]. Let I" be a group, let n > 1, and suppose that
H,_1(T; Z) is finitely generated. Then the comparison map

compf . : Hy(I[; K) — H'([;K)
is injective.
2.2. The uniform boundary condition. We recall the uniform boundary condition,
originally due to Matsumoto and Morita [42], and some of its variations [39].

DEFINITION 2.2 (Uniform boundary condition). Let n € N and let k € R.y. A group
I" satisfies the (n, «)-uniform boundary condition, or simply (n, k)-UBC, if for every
z € im 0,41 C C,(I'; R), there exists a chain ¢ € C,.(I'; R) with

Opric=z and |lclh <« llzlh-
A group I satisfies n-UBC if it satisfies (n, k)-UBC for some « € R..
The uniform boundary condition can lead to bounded acyclicity.

THEOREM 2.3 [42, Theorem 2.8]. Let I" be a group and let n € N. Then, the following
are equivalent:

(1) the group T satisfies n-UBC;
(2) the comparison map Comp{'@]’R1 : HZ”(I“; R) » H™(;R) is injective.

In particular: every acyclic group that satisfies UBC in all positive degrees is
boundedly acyclic.

In the proof of Theorem 1.3, it is useful to extend the definition of UBC from groups
to group homomorphisms [39, Definition 4.5].

DEFINITION 2.4 (UBC for homomorphisms). Let n € N and let x € R,y. A group
homomorphism ¢ : H — I satisfies the (n, k)-uniform boundary condition, or simply
(n, k)-UBC, if there exits a linear map

S 0,41(Cpy1(H;R)) = Cpy 1 (I R)
with
Ont1 08 =C,(p;R) and |IS]] < «.

Here ||S]| is the operator norm of S with respect to the £!-norms.
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The uniform boundary condition will be more systematically reviewed in a forth-
coming paper [38].

3. Binate groups (alias pseudo-mitotic groups)

We recall basic notions, properties, and examples of binate (alias pseudo-mitotic)
groups. We begin with the original definition given by Berrick [4].

DEFINITION 3.1 (Binate). Let I be a group. We say that I is binate if for every finitely
generated subgroup H < T, there exists a homomorphism ¢ : H — I' and an element
g € I' such that for every h € H, we have

h=[g,¢(h)] =g ¢(h)" gp(h).

We will rather work with the equivalent notion of pseudo-mitotic groups, introduced
by Varadarajan [55]; here an extra homomorphism H — I' is taken as part of the
structure, which leads to more transparent proofs. We refer the reader to the literature
[8, Remark 2.3] for a proof of the equivalence, and point out that the terminology
binate is more commonly used.

DEFINITION 3.2 (Pseudo-mitosis). Let I" be a a group and let H < T be a subgroup.
We say that H has a pseudo-mitosis in I if there exist homomorphisms ¢y : H = T,
Y1 : H— T and an element g € T such that:

(1) forevery h € H, we have iy (h) = yy(h);
(2) forall h,h' € H, we have [h, ¢ (R')] = 1;
(3) forevery h € H, we have y1(h) = g~ 'y (h)g.

Here is an intuitive interpretation of the definition. There exists a homomorphism
Y1 : H — I’ whose image commutes with H. This induces a homomorphism

HxH T : (i) ).

Precomposing it with the diagonal inclusion & — (h, h), we get a second homomor-
phism ¢ : h — hy(h). In terms of acyclicity, the crucial condition is the third item:
Yo and ¥ are conjugate inside I'.

DEFINITION 3.3 (Pseudo-mitotic group). A group I is said to be pseudo-mitotic if all
finitely generated subgroups of I admit a pseudo-mitosis in .

Varadarajan [55] and Berrick [4] independently showed the following fundamental
result.

THEOREM 3.4 [55, Theorem 1.7]. All pseudo-mitotic groups are acyclic.

In the present article, we prove that pseudo-mitotic groups are also examples of
boundedly acyclic groups (Theorem 1.3).

THEOREM 3.5. All pseudo-mitotic groups are boundedly acyclic.
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Since the proof is rather technical and it closely follows those of Matsumoto—
Morita [42] and Loh [39], we postpone it to Appendix A.

REMARK 3.6. It is an easy consequence of Theorem 3.4 that pseudo-mitotic groups
are 2-boundedly acyclic, namely that if I" is a pseudo-mitotic group, then Hi(l“; R) = 0.
Indeed, if I is a pseudo-mitotic group and % € I, by definition, there exist homomor-
phisms g, ¢ : (h) — T and an element g € I" such that

h = o ()™ = Yo o) g = wo() ™", gl.

In fact, this commutator expression is the one appearing in the definition of binate
groups (Definition 3.1). Hence, every element in a pseudo-mitotic group is a com-
mutator and so the second comparison map is injective [2]. This shows that Hi(l"; R)
embeds into HZ(F; R), which vanishes by Theorem 3.4.

3.1. Examples. We present several examples of pseudo-mitotic groups. A more
detailed discussion of these examples can be found in Berrick’s work [5].

We start with a combinatorial construction of pseudo-mitotic groups containing a
given group.

EXAMPLE 3.7 (Binate tower). Let H be a group. Set Hy := H, and construct H;;
inductively by performing HNN extensions of H; X H; so that the embedding of H; in
the first coordinate is a pseudo-mitosis. More precisely, if

Hivy = (H; X Hi; gi1 | 87 (hh)givt = (1) = h € H),

then /& — (h, 1) is a pseudo-mitotic embedding of H; in H;y.
By construction, the direct limit of the H; is pseudo-mitotic. It is the initial object
in a category of pseudo-mitotic groups containing H [4].

This example shows that every group embeds into a pseudo-mitotic group. We see
in the next section that a less canonical construction leads to embeddings with more
special properties (Proposition 4.4).

The following example allows us to construct new binate groups from old ones.

EXAMPLE 3.8. Let (I';);; be a family of binate groups. Then their direct product
[1:e; Gi is binate [49, Proposition 1.7].

We soon see that Homeo.(R") is binate. Therefore, the previous example shows
that Homeo.(R™")" is binate, whence boundedly acyclic. A direct proof of bounded
acyclicity is given by Monod and Nariman [46].

For comparison, note that an arbitrary direct product of amenable groups need not
be amenable. For instance, if ' is a nonamenable residually finite group, such as a
nonabelian free group, then I' embeds into the direct product of its finite quotients,
which is therefore not amenable.

3.1.1. Dissipated groups. Let us move to more concrete examples. Varadarajan
proved that the group Homeo (R") of compactly supported homeomorphisms of R”
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FIGURE 1. Dissipation, schematically: left, the subsets o*(X;); right, the action of ¢(g).

is pseudo-mitotic [55, Theorem 2.2]. Following Berrick [5], we show here that this
is just an instance of the behavior of a larger class of groups: dissipated boundedly
supported transformation groups.

DEFINITION 3.9 (Boundedly supported group). Let I be a group acting faithfully
on a set X, which is expressed as a directed union of subsets (X;),;. For each i, let
I'; :={g €' | gis supported on X;}. We say that I is boundedly supported if T is the
directed union of the T;.

The key property that makes certain boundedly supported groups pseudo-mitotic is
the following.

DEFINITION 3.10 (Dissipators). Let I' ~ X and (X;, I';);; be as in Definition 3.9. Let
i € I. A dissipator for T'; is an element p; € I such that:

() Qf(Xi) NX;,=0forallk > 1;
(2) forall g € Ty, the bijection of X defined by

()

_Jotgo* ono*(X)), forevery k > 1;
vi(g) == 1.
id elsewhere,
isinT.
If for each i € I there exists a dissipator for I';, we say that I is dissipated.

For o; to be a dissipator, the element ¢;(g) needs to belong to I', and the boundedly
supported hypothesis implies that there exists j € I such that Qi.( (X)) C X; forall k > 1.
Figure 1 illustrates this situation.

The presence of dissipators is enough to ensure that the group is pseudo-mitotic.

PROPOSITION 3.11 [5, Section 3.1.6]. Dissipated groups are pseudo-mitotic.
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PROOF. Let I' ~ X and (X;,17,0)ic; be as in the definition of a dissipated group
(Definition 3.10). Let H < T be a finitely generated subgroup. Since I' is boundedly
supported, there exists an i € I such that H < T';. Notice that H commutes with ¢;(H)
(as defined in Equation (*)) since their supports are disjoint in X. Hence, if we define
Y1 H— T as g (h) := ¢;i(h), it is immediate to check that ¢ is a homomorphism
and that [/, (h)] =1 for all h,/" € H. We then set ¥ := Qi‘lwlgi :H—-T and
g = Qi_l e I'. By construction, this implies that iy (h) = ¥y(h) for all h € H. Hence,
Yo, 1 and g are the witnesses of a pseudo-mitosis of H in I". ]

A more topological version of this criterion is described by Sankaran and Varadara-
jan [50, Theorem 1.5]. Many boundedly supported groups are dissipated, and quite
surprisingly, this is usually easy to check. We list some examples for which dissipators
can be computed directly. More details and further constructions can be found in
Berrick’s paper [5, Section 3.1.6] and the references therein, as well as in that of
Sankaran—Varadarajan [50].

EXAMPLE 3.12 (Dissipated groups). The following groups are dissipated.

(1) The group Homeo.(R") of compactly supported homeomorphisms of R" is
dissipated. This is already contained in a paper of Schreier and Ulam [52], where
they study this phenomenon for the (isomorphic) group of homeomorphisms of
the n-ball in R” fixing a neighborhood of the boundary. Acyclicity was shown
by Mather [40], and the proof serves as a model for the proof of acyclicity of
pseudo-mitotic groups [55].

(2) The previous example generalizes to certain groups of boundedly supported
homeomorphisms of topological manifolds [19] and C'-manifolds [18].

(3) Let C be the standard Cantor set, embedded in [0, 1]. Then the group of
homeomorphisms of C that are the identity in a neighborhood of 0 and 1 is
dissipated [50, Theorem 2.4].

(4) Let Q be endowed with the topology as a subspace of R. Then, the group of
homeomorphisms of Q having support contained in some interval [a, b] with
a < b € Q is dissipated. The same holds for the space of irrational numbers [50,
Theorem 1.13].

(5) Forgetting the topology, denote by Aut(Q) the group of bijections of Q whose
support is contained in some interval (a,b) with a < b € Q. Then Aut(Q) is
dissipated [49, Theorem 3.2]. The same holds for groups of bijections of infinite
sets with similar properties.

3.1.2. Flabby groups. Another source of examples are flabby groups.

DEFINITION 3.13 (Flabby group). A group I is flabby if there exist homomorphisms
®:I'X' > T and 7: T — I such that for every finitely generated subgroup H <T,
there exist a, b, ¢ € I such that for all h € H:

() hel=a'ha
2) l1eh=>b"hb
3) heth) =c'r(h)e.
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Flabby groups were defined by Wagoner [56], who proved that they are acyclic. In
fact, the following stronger result is true.

LEMMA 3.14 [4, Section 3.3]. Flabby groups are pseudo-mitotic.

PROOF. Let I' be a flabby group and H <TI' a finitely generated subgroup. Let
®, T, a, b, c be as in the definition of a flabby group. We define v/ (1) := a(1 ® t(h))a™"'.
Then, since 1 @ I' commutes with I'® 1, we have [/’,y(h)] = 1 for all A, i’ € H. Let
Yo(h) := hy(h) for every h € H. Then,

Yo(h) = ac ' by (Wb~ ca™
for every h € H. By setting g := ac™'b, we get the thesis. ]

The definition of a flabby group is more restrictive than that of a pseudo-mitotic
group, since the homomorphisms @ and 7 impose some uniformity in the choices of
the homomorphisms ¥ and y. Still, there are several examples of flabby groups in
the literature.

EXAMPLE 3.15 (Flabby groups). The following groups are flabby.

(1) To study the algebraic K theory of a ring R, Wagoner [56] embeds R into another
ring CR called the cone over R. Then the direct limit general linear group GL(CR)
is shown to be flabby, whence acyclic.

(2) Building on the work of Wagoner, several other examples of flabby groups are
exhibited by de la Harpe and McDuff [17], and they all have the following flavor.
Let V be an (infinite-dimensional) Hilbert space, and let

V=5%>238>2--28>---

be a chain of closed subspaces such that S;/S;_; is isomorphic to V for all i. Let
GL(V) be the group of continuous linear isomorphisms of V, and let us define
[ := {g € GL(V) | g(S;") = S;}. Then the direct limit of the I'; terms is flabby.
The same holds if one restricts to unitary operators.

(3) Certain groups of automorphisms of measure spaces fall into the framework of
the previous item, and thus are flabby [17].

3.1.3. Mitotic groups. Pseudo-mitotic groups were introduced by Varadarajan [55]
as a generalization of a more restricted class, that of miftotic groups, introduced by
Baumslag et al. [1]. Let us recall the following definition.

DEFINITION 3.16 (Mitosis). Let I' be a group and let H < I be a subgroup. We say
that H has a mitosis in I if there exist elements s, d € I" such that:

(1) foreveryhe H,wehave h-s'hs=d 'hd,
(2’) forall b, € H, we have [h, s 'h's] = 1.
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DEFINITION 3.17 (Mitotic). A group I' is said to be mitotic if all finitely generated
subgroups of I' admit a mitosis in .

The main examples of mitotic groups are algebraically closed groups [1, Theorem
4.3]; moreover, a functorial embedding analogous to Example 3.7 is also possible for
mitotic groups.

If H has a mitosis in I', then H also has a pseudo-mitosis in I': indeed, we can choose
o to be a conjugation by d, ¢ to be a conjugation by s, and g := s~'d. Therefore, every
mitotic group is pseudo-mitotic. However, the class of pseudo-mitotic groups is strictly
larger, as proved by Sankaran and Varadarajan [49]. Since Theorem 1.3 generalizes the
bounded acyclicity of mitotic groups [39] to the class of pseudo-mitotic groups, let us
show an explicit example of a group that is pseudo-mitotic but not mitotic.

LEMMA 3.18. The group Homeo.(R) is not mitotic.

PROOF. Let H be a finitely generated group acting minimally on (0, 1): for concrete-
ness, one could take H to be the Thompson group F. We embed H inside Homeo.(R)
by letting H act trivially on R\ (0, 1). Let s € Homeo.(R) be an element such that
H commutes with s™'Hs. Note that s™'Hs is supported on s~'(0,1) and also acts
minimally. So, to commute, s~!(0, 1) must be disjoint from (0, 1).

It follows that the diagonal group {hs~'hs | h € H} is supported on the disconnected
set (0,1)Us~'(0,1), and therefore cannot be conjugate to H by an element in
Homeo.(R). This shows that Homeo.(R) is not mitotic. O

With a little more work, this kind of argument can be applied to many of the groups
from Example 3.12. Indeed, it is known that Homeo.(R") is not mitotic [49], but it is
pseudo-mitotic (Example 3.12).

3.1.4. Amenable examples. Most of the examples that we have seen so far are
nonamenable, since they contain free subgroups. In particular, their bounded acyclicity
does not follow from the classical result for amenable groups. However, there are some
exceptions. The first one is due to Berrick.

EXAMPLE 3.19. Hall’s countable universal locally finite group [29] is pseudo-mitotic
[4, Section 3.1]. Being locally finite, it is amenable.

Locally finite groups cannot be dissipated, since by construction, the dissipators
must have infinite order. In the next example, we construct a dissipated amenable

group.

EXAMPLE 3.20. We start with I'j = X| = Z, with the action given by left translation.
Of course, I' is amenable.

Next, let X, be the disjoint union of countably many copies of X; indexed by Z,
which contains a distinguished copy of Xj, indexed by 0. The direct product l"% acts
on X, coordinate-wise. Let 0| be the bijection of X, shifting the copies of X;. We set
I'; to be the group generated by the direct product I'f and ;. Note that I'; splits as
a semidirect product F% > {01), so0 it is 2-step-solvable. Moreover, given g € I'}, the
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element ¢;(g) from Definition 3.10 is just (g,)ez € F% <TI', with g, = g forn > 0 and
gn = 0 otherwise.

By induction, if I'; and X; have been constructed, we construct X;.; as the
disjoint union of Z-many copies of X;, we let o; be the shift, and define I';;; as
the group generated by the direct product of the I'; and o;. Then I\ = l"iZ > 7
is (i + 1)-step-solvable. Moreover, given g € I';, the element ¢;(g) again belongs to
% <Ti.

The directed union I' of the I'; acts on the directed union X of the X;. This action is
boundedly supported by definition, and the o; are dissipators by construction. Finally,
I"is a directed union of solvable groups, so it is amenable.

REMARK 3.21. In the construction in Example 3.20, we cannot pick any amenable
group I, since a direct power of amenable groups need not be amenable in general.
Indeed, we strongly use the fact that a direct power of an i-step-solvable group is still
i-step-solvable. By the same argument, we could have started with any group satisfying
an amenable law.

4. Hereditary properties of boundedly acyclic groups

In this section, we discuss the stability of bounded acyclicity under certain
operations. We present new results concerning normal subgroups and directed unions.
The case of normal subgroups makes use of pseudo-mitotic groups, showcasing their
versatility compared with mitotic groups.

4.1. Extensions. We start with the operation of taking extensions of boundedly
acyclic groups. This behaves particularly well.

THEOREM 4.1 [48, Corollary 4.2.2]. Let 1 - N - T — Q — 1 be an exact sequence
of groups, where ¢ : I' — Q denotes the quotient map, and let n € N. Suppose that N
is n-boundedly acyclic. Then T is n-boundedly acyclic if and only if Q is n-boundedly
acyclic.

In particular, the class of n-boundedly acyclic groups is closed under extensions.
This generalizes the classical results for extensions with amenable kernels [28] and
amenable quotients [35, 47].

A natural question is then whether a 2-out-of-3 property holds.

QUESTION 4.2. In an extension 1 > N - I' —» Q — 1, suppose that I' and Q are
n-boundedly acyclic. Is N necessarily n-boundedly acyclic?

A characterization of when this occurs is available [48, Corollary 4.2.1], but it
is given in terms of a vanishing of bounded cohomology with a larger class of
coefficients, and so it does not settle Question 4.2 in either direction. We answer
Question 4.2 in the negative in Theorem 4.5.

4.2. Normal subgroups. Pseudo-mitotic groups are varied enough that they allow
for several strong embedding constructions. The following is the most relevant one.
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EXAMPLE 4.3 (Cone over a group). If T is a group, let T'? be the group of functions
from Q to I' that map all numbers outside some finite interval to the neutral element.
The group CT :=I'? = Aut(Q), where Aut(Q) (defined in Example 3.12) acts on I'?
by shifting the coordinates, is pseudo-mitotic, in fact dissipated [4, Section 3.5]. The
group CT is called the cone overI', and was introduced by Kan and Thurston [36] as a
key step in the proof of their celebrated theorem.

PROPOSITION 4.4 [4, Section 3.5]. Every group embeds 2-step subnormally in a
pseudo-mitotic group. More precisely, for every group T, there exists a group T such
that CT = (I x T'?) = Aut(Q) is pseudo-mitotic.

PROOF. By Example 4.3, it suffices to show that T'? = T x TV, for some group I'°. The
group I' embeds normally in T'? as the subgroup of functions Q — I that map every
nonzero rational to the identity. We then set T to be the subgroup of functions that
map0e€eQtoleT. |

In particular, every group embeds 2-step subnormally in a boundedly acyclic group.
Embeddings into boundedly acyclic groups have been considered before [22, 39],
but Proposition 4.4 goes one step further and provides a strong negative answer to
Question 4.2.

THEOREM 4.5. There exists a boundedly acyclic group T with a normal subgroup H
such that I'/H is boundedly acyclic, but H,(H;R) is continuum-dimensional for every
n>2.

Groups such as H above are said to have large bounded cohomology: countable [39]
and even finitely presented [22] examples are known to exist.

PROOF. Let H be a group with large bounded cohomology. Then, for every group A,
the direct product H X A also has large bounded cohomology (as it retracts onto a
group with large bounded cohomology). By Proposition 4.4 and Example 3.12, this
implies that the pseudo-mitotic group I' := CH provides the desired example. O

Even without the additional hypothesis on the quotient, it seems that Theorem 4.5
gives the first example of a nonboundedly acyclic normal subgroup of a boundedly
acyclic group. Indeed, subgroups of amenable groups are amenable, and several of
the nonamenable examples of boundedly acyclic groups available in the literature are
simple, so they cannot provide counterexamples. For instance, Homeo.(R") is simple,
as are many other groups of boundedly supported homeomorphisms [18].

4.3. Quotients. An intriguing open problem is whether boundedly acyclic groups
are closed under passage to quotients [22, Section 3.2]. One of the main difficulties
about this problem is that mitotic groups behave extremely well with respect to
quotients.

LEMMA 4.6 [1, page 16]. Mitotic groups are closed under passage to quotients.

However, the same behavior does not hold for pseudo-mitotic groups.
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LEMMA 4.7 [49, Theorem 3.3]. Pseudo-mitotic groups are not closed under passage
to quotients.

This suggests that pseudo-mitotic groups might be useful for constructing coun-
terexamples for the problem above. However, the example considered by Sankaran
and Varadarajan [49, Theorem 3.3] still produces a boundedly acyclic quotient.
Indeed, in this situation, the kernel of the epimorphism is the group of finitely
supported permutations of N, which is locally finite and therefore amenable. Hence,
by Theorem 4.1 (or simply by Gromov’s mapping theorem [28]), the quotient is a
boundedly acyclic nonpseudo-mitotic group.

A more interesting situation arises from the context of algebraic K-theory. Indeed,
following Berrick [3], given a (unital, associative) ring R, one can embed it into its
cone CR as a two-sided ideal. This leads to a short exact sequence

1 - GL(R) > GL(CR) > Q0 — 1,

where Q is the direct general linear group over the suspension of R, usually denoted
by GL(SR) [3, page 85]. As discussed in Example 3.15(1), the group GL(CR) is a
flabby group, whence pseudo-mitotic (in fact, this is also a dissipated group as proved
by Berrick [3, pages 84-85]). However, since one can compute the K-groups of the
original ring R in terms of the plus construction over GL(SR), in general, GL(SR) is
far from being acyclic [3]. Hence, the following is a natural question.

QUESTION 4.8. Let R be a ring. Is the group GL(SR) boundedly acyclic?

A negative answer to this question would show that boundedly acyclic groups
are not closed under passage to quotients. However, here we prove the following
proposition.

PROPOSITION 4.9. Let R be a ring. Then, the group GL(SR) is 3-boundedly acyclic.

PROOF. Recall that a group extension provides an exact sequence in bounded coho-
mology in low degrees [43, Corollary 12.4.1 and Example 12.4.3], which in this case
gives

0 — HZ(GL(SR); R) — H;(GL(CR); R) — H}(GL(R); R)“-SK)
— H;(GL(SR); R) — H;(GL(CR); R).

Using the fact that GL(CR) is pseudo-mitotic, whence boundedly acyclic
(Theorem 1.3), we then have

H(GL(SR);R) = 0
and
H}(GL(R); R)°“*F =~ H}(GL(SR); R).

We show that HZ(GL(R); R) = 0, whence the thesis.
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It suffices to show that GL(R) has commuting conjugates [21]; that is, for every
finitely generated subgroup H < GL(R), there exists g € GL(R) such that H and g~'Hyg
commute. Now let H < GL(R) be finitely generated. Then there exists some n > 1
such that H < GL,(R). Let g € GL,,(R) < GL(R) be a permutation matrix that swaps
the basis vectors ey, ..., e, with ¢,,1, ..., ez,. Then g‘ng acts trivially on the span of
e1,...,e, and H acts trivially on the span of e,,1,.. ., ey,; therefore, these subgroups
commute. We conclude that GL(R) has commuting conjugates and so it is 2-boundedly
acyclic [21]. This finishes the proof. ]

4.4. Directed unions. The operations we have looked at so far are known to
preserve amenability. This is not surprising since amenable groups are the most
illustrious examples of boundedly acyclic groups. One further operation that preserves
amenability is that of directed unions. Here we study the behavior of bounded
acyclicity under directed unions, and show that it is preserved under an additional
technical requirement.

To proceed with the proof, it is convenient to consider the following dual version of
UBC.

DEFINITION 4.10. Let n € N and let I be a group such that Hj(I'; R) = 0. We define
the nth vanishing modulus of T as the minimal K € R U {oo} such that the following
holds:

for each ¢ € ker(67}), there exists b € CZ‘I(F; R) such that

7' b)y=c and |ble <K - |c|eo-

EXAMPLE 4.11. Every amenable group I' has an nth vanishing modulus of 1, for all
n > 1. Indeed, the proof of bounded acyclicity of amenable groups [24, Theorem 3.6]
exhibits a contracting chain homotopy 7 for the cochain complex C,(I'; R), which has
norm 1 in every degree. Hence, given ¢ € ker(6}), we can just set b := 7"(c) and obtain:

S b) = 6 (e) + TN (e) = e

In our definition, the vanishing modulus takes values in Ryo U {co}. It turns out that
only finite values are possible.

LEMMA 4.12. Let n € N and let I be such that H,(I'; R) = 0. Then the nth vanishing
modulus of T is finite.

PROOF. This is implicit in the work of Matsumoto and Morita [42]: because of

H}(T'; R) = 0, we have im 8! = ker . Hence, the bounded linear map 67" has closed
range; by the open mapping theorem, 62‘1 induces a Banach space isomorphism

5 IR ker 67— Ker 6.
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Let ¢" be the inverse of 527]. If ¢ € ker ¢}, then the definition of the quotient norm on
C;'(I';R)/ ker 677" shows that there exists a b € C;~'(I'; R) with

' by=c  and  |ble <2 Il el
Thus, the constant 2 - ||¢"]| is a finite upper bound for the nth vanishing modulus. O

PROPOSITION 4.13. Let T be a group that is the directed union of a directed family
(I')ier of subgroups. Moreover, let n € N and suppose that H,(I';; R) = 0 for all i, and
that there is a uniform, finite upper bound for the nth vanishing moduli of all the T’;
terms. Then H,(I'; R) = 0.

PROOF. Let K < +oco be a common upper bound for the nth vanishing moduli of the
I'; terms. We show that the nth vanishing modulus of I" is at most K. Let ¢ € C,(I'; R)
be a bounded cocycle. For each i € I, we set

Bi:={beCy ' (3R | 6, (b)) = clr, and [ble < K - [c|eo}.

It suffices to show that (;; B; # 0. To this end, we use the Banach—Alaoglu theorem:
by construction, each B; is a bounded weak *-closed subset of CZ*' (I';R) and B; C B;
for all j € I with i < j. Moreover, B; # 0: by hypothesis, there exists b; € CZ‘I(D;R)
with 6Z‘l(b,-) = c|r, and |bi| < K - |c|. We now extend b; by 0; this extension lies in B;.

Because the system is directed, the family (B;);; satisfies the finite intersection
property; by the Banach—Alaoglu theorem, therefore, the whole intersection ();; B; is
nonempty. i

The following special case is used when studying the Thompson group F
(Lemma 6.5).

COROLLARY 4.14. Let T be a group that is the directed union of a directed family
(T)ier of subgroups. Suppose that the U;’s are pairwise isomorphic and n-boundedly
acyclic. Then T is n-boundedly acyclic.

PROOF. This follows directly from Lemma 4.12 and Proposition 4.13. ]

In degree two, we may get rid of the uniformity condition in Proposition 4.13, thanks
to the following surprising fact.

PROPOSITION 4.15. Let I be a 2-boundedly acyclic group. Then the second vanishing
modulus of T is 1.

PROOF. This is essentially a dual version of a result by Matsumoto and Morita [42,
Corollary 2.7]. First, the map 6}) is injective, since the only bounded homomorphism
I' = R is the trivial one. We consider the map

Y : ker 67 = im 6, — C}(T';R)
2k+1

— k
[ ((g()s gl) = Z 2 GtD) ° C(19 g(z)l’g()l )’
k=0
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where we use the abbreviation go; := g, I'. g1, and claim that y is the inverse of 5}7. By
definition, ||| < 1; moreover, ||/|| = 1 because 61'7 sends constant functions to constant
functions.

We are left to prove the claim. Let ¢ € im 6}, say ¢ = 6}7(b). We need to show that
Y(c) = b: Using I'-invariance, we obtain for all gg, g; € I':

=S}
2k+l

W0, = Y, 27D - (blghy g5 ) — b(Lghy )+ b(1,g5y))

k=0
= > 2 ® D b1, ) - b1, g, ") + b1, g8y)
k=0

= 22 b = 32 bl )
k=0 k=0
= b(1, go1) = b(go. &1)-

Note that all series involved are absolutely convergent because b is bounded, which is
what allows us to change the order of summation. ]

COROLLARY 4.16. A directed union of 2-boundedly acyclic groups is 2-boundedly
acyclic. O

Proposition 4.15 is essentially equivalent to the fact that the canonical semi-norm
in degree two is always a norm [42, Corollary 2.7]. This fails already in degree three
[23, 53], but such examples also have large bounded cohomology and so are difficult
to control. Therefore, we ask the following question.

QUESTION 4.17. Does the analog of Proposition 4.15 hold in higher degrees?

One can use Lemma 4.12 to show that a direct sum of n-boundedly acyclic groups
with unbounded vanishing modulus cannot be n-boundedly acyclic. Therefore, a
negative answer to this question would imply that, in higher degrees, the uniformity
assumption in Proposition 4.13 is necessary.

5. Universal bounded acyclicity

In this section, we show that the bounded acyclicity of pseudo-mitotic groups is
not a phenomenon confined to real coefficients. Since several different coefficients are
involved in this section, we will be explicit and talk about Z-acyclic groups (Definition
1.2) and R-boundedly acyclic groups (Definition 1.1).

DEFINITION 5.1. Let K be a complete valued field, and let I" be a group. We say that
I" is K-boundedly acyclic if Hy(I'; K) = 0 for all n > 1. If this holds for all complete
valued fields K, we say that I" is universally boundedly acyclic.

We can characterize universal bounded acyclicity in very simple terms.
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THEOREM 5.2. Let I be a group. Then I is universally boundedly acyclic if and only
if it is R-boundedly acyclic and Z-acyclic.

REMARK 5.3. In fact, Theorem 5.2 even holds degree-wise. More precisely, for a
group I' and an integer n > 1, the following are equivalent:

(1) HZ(F;R) =0and H;I;Z) =0foralli e {l,...,n};
(2) H,I;K) = 0 for every complete valued field K and all i € {1,...,n}.

This will be apparent from the proof, but we prefer to state the theorem in global terms
to simplify the notation.

Before giving the proof, we note the following consequence.
COROLLARY 5.4. Pseudo-mitotic groups are universally boundedly acyclic.

PROOF. Pseudo-mitotic groups are both acyclic (Theorem 3.4) and boundedly acyclic
(Theorem 3.5). Therefore, we can apply Theorem 5.2. ]

The proof of Theorem 5.2 is carried out in two steps: the Archimedean and the
non-Archimedean case.

LEMMA 5.5. Let T" be a group. Then T is R-boundedly acyclic if and only if T is
C-boundedly acyclic.

PROOF. Because we have C = R? as normed R-vector spaces, the cochain complex
C,(I';C) splits as the direct sum C, (T’ R)®2. Therefore, we obtain the isomorphism
H,([T;C) = H (T R)®? (over R). The claim easily follows. O

LEMMA 5.6. Let T be a group. Then T is K-boundedly acyclic for every
non-Archimedean field K if and only if it is Z-acyclic.

PROOF. Suppose that I is K-boundedly acyclic for every non-Archimedean field K.
Endowing an arbitrary field K with the trivial norm, we deduce that H*(I'; K) = 0O for
every field K. It then follows from the universal coefficient theorem [10, Ch. I] that
I is K-acyclic for every field K, that is, H,(I'; K) = O for all n > 1. In particular, I is
Q-acyclic and F,-acyclic for every prime p; so I' is Z-acyclic [30, Corollary 3A.7].
Conversely, let us suppose that I" is Z-acyclic, and let K be a non-Archimedean field
K. By Lemma 2.1, the comparison map Hy(I'; K) — H"(I'; K) is injective. So it suffices
to show that H"(I'; K) = 0. This follows immediately from the universal coefficient
theorem; hence, I" is K-boundedly acyclic. |

PROOF OF THEOREM 5.2. By Ostrowski’s theorem [16, Ch. 3], every complete valued
field is either non-Archimedean or isomorphic to R or C. So Theorem 5.2 follows from
Lemmas 5.5 and 5.6. O ]

REMARK 5.7. Corollary 5.4 provides many examples of groups that are universally
boundedly acyclic. One could ask whether something similar could be said for the
stronger notion of universal amenability, defined analogously using the general notion
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of K-amenability for valued fields defined by Shikhof [51]. However, it turns out that
if I' is F,-amenable in the sense of Shikhof for every prime p, then I is trivial [20,
Example 5.5 and Theorem 6.2]. The same holds for the weaker notion of normed
K-amenability [20], which also implies bounded K-acyclicity [20, Theorem 1.3].

COROLLARY 5.8. Let I be a universally boundedly acyclic group. Then, for alln > 1,
we have H;(I'; Z) = 0, with the standard absolute value on Z.

PROOF. The short exact sequence 0 - Z — R — R/Z — 0 induces a long exact
sequence [24, proof of Proposition 2.13]

.. > H'(UR) » H''(T;R/Z) » HI(T;Z) —» HI(T;R) — - .
b b b

By Theorem 5.2, the group I' is R-boundedly acyclic and Z-acyclic. The universal
coefficient theorem and Z-acyclicity give H*(I'; R/Z) = 0 for all k > 0. Therefore, the
long exact sequence and surjectivitiy of the induced map Hg(l"; R) — H(I'; R/Z) show
that Hy(I'; Z) = O for all n > 1. O

6. Thompson groups and their siblings

The groups F, T, and V were introduced by Richard Thompson in 1965; they are
some of the most important groups in geometric and dynamical group theory. These
groups can be realized as groups of homeomorphisms of the interval, the circle, and
the Cantor set respectively; these realizations exhibit inclusions F < T < V. We refer
the reader to the literature [15] for a detailed discussion.

The groups F, T, and V are finitely presented, even of type F. Moreover, T and
V are simple (in fact, they were the first examples of infinite finitely presented simple
groups). However, F has abelianization Z2, but its derived subgroup F’ is simple, and
infinitely generated.

The rational cohomology [9, 26] and, with the exception of 7, the integral
cohomology [11, 26, 54] of these groups has been computed. However, little is known
about their real bounded cohomology. We formulate one question for each group.

QUESTION 6.1. Is the Thompson group F boundedly acyclic?
Question 6.1 is usually attributed to Grigorchuk [27, page 131, Problem 3.19].

QUESTION 6.2. Does the following hold?
The bounded cohomology of the Thompson group T is given by

0 ifnisodd,
R ifniseven,

H,(T;R) = {

where the nontrivial classes are spanned by cup-powers of the bounded real Euler
class.

QUESTION 6.3. Is the Thompson group V boundedly acyclic?
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The rest of this section is devoted to discussing these three questions, how they
relate to each other, and providing some evidence towards positive answers.

One may also formulate corresponding questions for every degree, namely whether
the previous descriptions hold up to degree n. We see that all three questions have
a positive answer up to degree two, while to our knowledge, nothing is known from
degree three onwards.

6.1. On the bounded cohomology of FF'. We recall the definition of F.

DEFINITION 6.4. The Thompson group F is the group of orientation-preserving
piecewise linear homeomorphisms f of the interval [0, 1] with the following properties:

(1) f has finitely many breakpoints, all of which lie in Z[1/2];
(2) away from the breakpoints, the slope of f is a power of 2.

The map F — Z, f — log,(fy), where fy is the slope of f at 0, is a surjective
homomorphism, called the germ at0O. Similarly, there is a germ at 1, leading to a
surjective homomorphism F — Z2. This is the abelianization of F, so the derived
subgroup F’ coincides with the subgroup of homeomorphisms that are compactly
supported in (0, 1).

The most important open question about F is whether F is amenable or not. Since
amenable groups are boundedly acyclic, a negative answer to Question 6.1 would
disprove its amenability. The general philosophy is that F is very close to being
amenable, and so it is likely to satisfy most properties that are somewhat weaker than
amenability.

For example: the group F is 2-boundedly acyclic. This can be deduced from the
explicit description of its rational cohomology [26], by using arguments analogous
to those of Heuer and Loh for the computation of the second bounded cohomol-
ogy of T [31] (although a direct approach is possible [21]). To our knowledge,
nothing is known about the bounded cohomology of F with trivial real coeffi-
cients in higher degrees, although vanishing is known in every degree with mixing
coefficients [44].

The connection between pseudo-mitotic groups and F is more transparent when
passing to the derived subgroup. The following equivalent formulation is relevant.

LEMMA 6.5. Let n € N. Then the Thompson group F is n-boundedly acyclic if and
only if F’ is n-boundedly acyclic.

PROOF. If F” is n-boundedly acyclic, then F is also boundedly acyclic by Theorem 4.1,
or more simply by co-amenability [47].

Conversely, let us suppose that F is n-boundedly acyclic. Let (a;);>; and (b;);s;
be sequences of dyadic rationals in (0, 1) that converge to 0 and 1, respectively.
Then F’ may be expressed as the directed union of the subgroups F; consisting of
elements supported in [a;, b;]. Since each group F; is isomorphic to F, the group F’ is
a directed union of pairwise isomorphic n-boundedly acyclic groups. It follows from
Corollary 4.14 that F” is n-boundedly acyclic. ]
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The derived subgroup F” is a group of boundedly supported homeomorphisms of
the interval. In analogy with Example 3.12, one may ask whether F”’ is pseudo-mitotic.
This is not the case, because F” is not acyclic [26]. Intuitively, F’ cannot be dissipated,
since a dissipator could not possibly have finitely many breakpoints. However, a
countably singular analog of F” is dissipated.

DEFINITION 6.6. Let QF be the group of orientation-preserving homeomorphisms f
of the interval [0, 1] with the following properties:

(1) there exists a closed and countable set K € (0, 1) N Z[1/2] such that f is linear
on each component of [0, 1] \ K;
(2) away from K, the slope of f is a power of 2.

Since the set of breakpoints of each element is contained in (0, 1), the germs at 0 and
1 are still defined, and QF” is the subgroup of homeomorphisms that are compactly
supported in (0, 1).

PROPOSITION 6.7. The groups QF and QF'" are boundedly acyclic.

PROOF. Once again, the bounded acyclicity of QF follows from that of QF’ by
Theorem 4.1.

We show that QF” is dissipated. Let (a;);>; and (b;);>; be sequences of dyadic
rationals in (0, 1) converging to 0 and 1, respectively. For every i > 1, let H; < QF’
be the subgroup consisting of homeomorphisms supported in (a;, b;). We show that
there exists a dissipator o; € QF” for H;, that is:

(1) forevery k > 1, we have of((a;, b)) N (a;, b;) = 0;
(2) forevery g € H;, the element

ofgor*  on o¥(a;, by), forevery k > 1,
vi(g) =

id elsewhere
isin QF’.
To this end, let us set xo := @; and x| := b;. We then pick a dyadic rational x_; in (0, xo)
such that
X1 — X1
X0 — X-1

is a power of 2. Moreover, given a dyadic rational x € (x;, 1), we can extend x_;, xo, x|
to a sequence (x;);>—; of dyadic rationals converging to x and such that for every j > 1,
the ratio

Xjtl — %

Xj - Xj_l

is a power of 2.
Now we define o; : [0, 1] — [0, 1] piecewise as follows:

il ure1] := 1d ljox_ Ui 115

https://doi.org/10.1017/51446788722000106 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788722000106

[22] Bounded cohomology and binate groups 225

0i([x-1,x01) == [x_1,x11,
oi([xj-1,x;]) := [xj, xj41] forj>1,

and let o; be the unique affine isomorphism on each of these pieces. Notice that o,
is supported in [x_j, x] € (0, 1), and the set {x, x_y, xo, X1, ...} of breakpoints is closed,
countable, and consists only of dyadic rationals. Since all the slopes are powers of 2,
this implies that o; € QF".

We claim that g; is a dissipator for H;. First, notice that by construction and the
definition of xy and x;, we have

0 ai, b)) N (ai, bi) = (X, Xie1) N (x0,x1) = 0

for every k > 1. This shows that o; satisfies property (1).

Finally, for every g € H;, the support of the homeomorphism ¢;(g) is contained
in [xo,x]. Moreover, the set of breakpoints of ¢;(g) is still a closed, countable set
consisting only of dyadic rationals. Hence, o; also satisfies property (2).

This shows that QF” is dissipated, whence pseudo-mitotic by Proposition 3.11. The
thesis now follows from Theorem 3.5. ]

We believe that a careful study of the embedding F” — QF” could lead to some
understanding of the bounded cohomology of F”.

6.2. On the bounded cohomology of 7. We recall the definition of 7.

DEFINITION 6.8. The Thompson group T is the group of orientation-preserving
piecewise linear homeomorphisms f of the circle R/Z with the following properties:

(1) f has finitely many breakpoints, all of which lie in Z[1/2]/Z;
(2) away from the breakpoints, the slope of f is a power of 2;
(3) f preserves Z[1/2]/Z.

The stabilizer of O for the canonical T-action on the circle is canonically isomorphic
to the Thompson group F.

Since T acts minimally on the circle, it admits a second bounded cohomology
class, namely the real Euler class [12, 41]. The bounded Euler class is a refinement
of the classical Euler class. All cup-powers of the classical Euler class are nontrivial
in cohomology [26]; and thus, also the cup-powers of the bounded Euler class are
nontrivial in H;;(T; R); this was first noticed by Burger and Monod [13]. Therefore,
Question 6.2 is asking whether these are the only bounded cohomology classes. In
degree two, this is known to be true [31], but again, to our knowledge, nothing is
known in higher degrees.

The main goal of this section is to show that a positive answer to Question 6.1
implies a positive answer to Question 6.2, and this implication holds degree-wise.
To do this, we prove the following general criterion for computing the bounded
cohomology of groups acting highly transitively on the circle with boundedly acyclic
stabilizers.
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PROPOSITION 6.9. Let n € Nyy. Let I be a group acting orientation-preservingly on
the circle, let S be an orbit of T with |S| > n + 1. Suppose that the following hold:

(1) forallke{l,...,n+ 1}, the action of I on the set of circularly ordered k-tuples
in S is transitive;

(2) forallk e{1,...,n}, the stabilizer of a circularly ordered k-tuple is n-boundedly
acyclic.

Then Hi(l“; R) is generated by the bounded Euler class of this circle action of T and

Ry = {0 i odd
R ifiiseven,
forallie{l,...,n}, generated by the cup-powers of Euler class.

Recall that a k-tuple (sy,...,st) in S! is circularly ordered if there exists a point
pe S\ {s,...,s) such that (sy,...,s;) € ST\ {p} = (0, 1) is an ordered k-tuple in the
interval. We follow the convention that circularly ordered tuples are nondegenerate,
that is, they consist of pairwise distinct entries.

For the proof, we follow the general principle of computing bounded cohomology
through boundedly acyclic actions. Boundedly acyclic stabilizers lead to boundedly
acyclic modules.

LEMMA 6.10. Let ' be a group and let T ~ X be an action of T on a set X that has
only finitely many orbits (X;)ic;. Let n € N. If each of the orbits has n-boundedly acyclic
stabilizer, then we have for all k € {1, ..., n} that

HA(T; £7°(X)) = 0.

PROOF. Letk € {1,...,n}. Because I is finite, we have {*°(X) = @ £ (X;) and

i€l
HE(T: £9(X)) = HE (r; D Z”(Xi)) = (P HT: (X)),
i€l i€l

‘We show that each of the summands is trivial. Let i € I and let H; C I” be the stabilizer
of a point in X;. Then, by the Eckmann—Shapiro lemma in bounded cohomology [43,
Proposition 10.13], we obtain

Hy,(T3 £°(X) = Hy(T: £°(D)%) = Hy(Hi R);
the last term is trivial, because H; is n-boundedly acyclic by hypothesis. ]

The effect of boundedly acyclic stabilizers is studied more systematically in a
forthcoming article on boundedly acyclic covers and relative simplicial volume [38].

PROOF OF PROPOSITION 6.9. The given I'-action on § gives a simplicial I'-resolution
R — £2(5**") [24, Lemma 4.21].
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Claim 6.11. The I'-resolution R — £*(S**!) is boundedly acylic up to degree n, that
is, forall k € {0,...,n}and all i € {1,...,n}, we have

Hi(T; £°(S*1) = 0.

To prove Claim 6.11, first note that the I'-space S¥*! consists only of finitely many

I"-orbits. Indeed, every tuple can be permuted to be circularly ordered (possibly with
repetitions), and only finitely many permutations and repetition patterns are possible.
Moreover, I acts transitively on circularly ordered tuples of every given size < k + 1.

The stabilizer groups of the I'-space S**! are all n-boundedly acyclic by hypothesis.
Thus, Lemma 6.10 shows the claim.

Therefore, we can apply the fact that boundedly acyclic resolutions compute
bounded cohomology [48, Proposition 2.5.4] and symmetrization [24, Section 4.10]
to conclude that

Hj (T3 R) = H'(¢*(S*H") = HI(£(S™ ) (6-1)
for all i € {1,...,n}. Here, Z;’t(S*”) denotes the subcomplex of alternating cochains,

that is, functions f with

F o) - s Soy) = sgn(o) - f(So, ..., Sk)
for all (so, . .., sx) € S*! and all permutations o of {0, ..., k}.
Claim 6.12. Letk € {0,...,n}.

(1) Ifkis odd, then £ (S**1)" = 0.
(2) If k is even, then £ (S**1)" = R, generated by the function f; constructed in the
proof below.

To prove Claim 6.12, let f € £ (S**!). We first show that f is determined by its value
on a single circularly ordered tuple: indeed, f vanishes on tuples with a repetition;
all other tuples may be permuted to be circularly ordered. Moreover, since I acts
transitively on the set of circularly ordered tuples, f is constant on the set of all
circularly ordered tuples. In particular, dimg {’E‘l’i’t(SkJrl)r <1

As |S| > n + 1, there exists a circularly ordered tuple (so, ..., s;) € SF*1.

Let k be odd. It suffices to show that f(sg,...,s;) =0. With (sg,...,s), also
(Sk» S0, - - - » Sk—1) 1s circularly ordered. Because k is odd, these two tuples differ by an
odd permutation. As f is both constant on all circulary ordered tuples and alternating,
we obtain

f(S(),...,Sk) :f(skvs()a”-’sk—l) = _f(S(),...,Sk)

and thus f(so, ..., sx) = 0. Therefore, £ (S**1)! = 0.
Let k be even. We define f; : S¥*! — R as follows: on tuples with a repetition, we
define f; to vanish. If (¢ty,..., %) € Sk*1 has no repetition, we set

f(to, ..., 1) = sgn(o),
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where o is a permutation such that (¢, ..., %rx)) is circularly ordered; this per-
mutation o is only unique up to a (k + 1)-cycle, but since k is even, sgn(o) is well
defined. Because I' acts orientation-preservingly and because there exists at least
one circularly ordered (k + 1)-tuple, this gives a well-defined nontrivial element in
€ (S, Therefore, £ (S**1)I = R. This proves our claim.

In view of Claim 6.12, the cochain complex é"fﬂ’;’t(S*’r1 )' is (up to degree n) isomorphic

to the cochain complex
R-0-R—->0-—---

(whose coboundary operator is necessarily trivial) and if k € {0, ..., n} is even, then

[ fi] is nontrivial in HY(£S5,(S**)1). In particular, we obtain

0 ifiisodd,

HI (T R) = H(£S(S™)) =
»(5R) oS0 R ifiis even,

forallie{0,...,n—1}.
As for degree n, under our assumptions, we cannot show that [;’t(S’”l) follows the

same periodic pattern. However, we still have the following claim.

Claim 6.13. The differential £ (S"*")" — £3

S is trivial. O

To prove Claim 6.13, first note that this is obvious if  is odd, since then, t’;’t(S"“)r =
0 by Claim 6.12.

Suppose instead that n is even, and let f € f;‘]’t(S"’rl)r be a function that takes the
constant value A on circularly ordered tuples. Then, if (sg,...,s$,+1) 1S a circularly

ordered tuple, we have

n+1
S (0w sswe) = ) (=D A= 0,
i=0
since n is even. This proves our claim.
Therefore,
0 ifnisodd,

H!T;R) =
ol ) {R if n is even,

as well. It remains to deal with the bounded Euler class and its powers.
Claim 6.14. The bounded Euler class eug € Hi(l"; R) is nontrivial.

To prove Claim 6.14, we first make the isomorphism in Equation (6-1) more explicit.
Let xg € S. For k € N, we consider the map

(Pk . gm(S*-%—l) N goo(l—vk+l)
(o, -7 B f(YoXo, - . . ViXo))-
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Then ¢* : £°(S™*!) — £=(**!) is a degree-wise bounded I'-cochain map that extends
the identity on the resolved module R. Because the resolution £*(S**!) is strong
[24, Lemma 4.21], (¢*)' induces an isomorphism H}(I'; R) = H'(£*(S**1)) for all
i €1{0,...,n} [48, Proposition 2.5.4 and Remark 2.5.5].

As the inclusion i*: €3 (S**") — ¢2(S**!) is a I-cochain map that induces an
isomorphism H*(£5(S**)") = H*(¢2(S**H), we conclude that ¢, := ¢* o i* induces

an isomorphism Hj (I'; R) = H'(£5 (S™HT).
By construction, (gpih)r (f») gives the orientation cocycle or' of the I'-action.

Because of [f>] # 0, we know that the bounded Euler class
ew, = 5 - [or'] = 3 - H (¢} ) LAl

is nonzero in Hi(l"; R). This proves our claim.
Because of Claim 6.14 and HIZ)(I“; R) = R, we conclude that Hi(l"; R) is generated by
the bounded Euler class.

Claim 6.15. For all k € {0, ..., n/2}, the cup-power (eug)Uk € le)k(l"; R) is nontrivial.

To prove Claim 6.15, in view of the relation between eug and [f2] (proof of
Claim 6.14) and the above description of Hik(l“; R), it suffices to show that alt(f>"¥) is
nontrivial, where - U - denotes the standard cup-product on the cochain level (notice
that even if f> is alternating, the nontrivial cup-product f>"* is not so). Indeed, we have

2k k!
It(fH%) = — -
alt(f2™) 20! Jok
(Appendix B), which is nontrivial (Claim 6.12). This proves our claim.
This completes the proof of Proposition 6.9. m|

REMARK 6.16. The second hypothesis in Proposition 6.9 is used to show that
the modules ¢*(S**!) are n-boundedly acyclic, which in turn is used to apply the
computation of bounded cohomology through acyclic resolutions [48, Proposition
2.5.4]. Note however that this result does not require n-bounded acyclicity of all
stabilizers. Indeed, it is enough to ask that the stabilizer of a circularly ordered k-tuple
is (n — k + 1) boundedly acyclic, for k € {1,...,n}. To keep the notation simple, we
chose to state Proposition 6.9 with the stronger hypothesis.

We apply this to I' = T, to show that if F is n-boundedly acyclic, then Question 6.2
has a positive answer up to degree n.

COROLLARY 6.17. If F is boundedly acyclic, then H;(T;R) (with the cup-product
structure) is isomorphic to the polynomial ring R[x] with |x| = 2, and the bounded
Euler class of T is a polynomial generator of Hy(T; R).

PROOF. For each k > 1, the group T acts transitively on the set of circularly ordered
k-tuples in Z[1/2]/Z; the stabilizers of this action are isomorphic to direct powers of
F [15]. In particular, the stabilizers are boundedly acyclic by Theorem 4.1. Therefore,
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Proposition 6.9 is applicable and we obtain that H;(7; R) is isomorphic as a graded

R-algebra to R[x] with x corresponding to the bounded Euler class eug.

Alternatively, in this case, the nontriviality of the powers of the bounded
Euler class is already known through the computations of Ghys—Sergiescu and

Burger—-Monod [13]. O
Corollary 6.17 also holds in a range up to n (with the same proof).
COROLLARY 6.18. If F is boundedly acyclic and r € Ny, then
R[x1,...,x] = H(T™";R)
x; = Hi(n;; R)(eu])
defines an isomorphism of graded R-algebras; here, H;(T*";R) carries the
cup-product structure, |xj| =2, and nj: T*" — T denotes the projection onto the

jth factor for each j € {1,...,r}. Moreover, the canonical semi-norm on HZ(TX’;R)
then is a norm.

PROOF. We combine Corollary 6.17 with suitable Kiinneth arguments. As usual in
bounded cohomology, some care is necessary to execute this.

We first show that the polynomial ring embeds into H;(7;R): the R-algebra
homomorphism R[x] — H*(T; R) given by

x— eul
is injective [26]. Therefore, the Kiinneth theorem shows that
xj Hz(ﬂ'j; R)(eu’)

yields an injective R-algebra homomorphism ®” : R[xy,...,x,] = H*(T*";R). In
combination with the universal coefficient theorem, we obtain: for every polynomial
p € Rlxy,...,x]\ {0}, there exists a class @, € H,(T™"; R) with

(@"(p),ap) = 1.
These nontrivial evaluations show that also the bounded version
@} Rlxy,...,x,] > H(T™;R)
Xj Hi(ﬂj;R)(eug)
is injective; even more, for each p € R[xy,...,x,] \ {0}, we have
(@,(p) ap) = (D' (p),ay) =1

and thus [|®} ()|l # 0. So far, we did not use the postulated bounded acyclicity of F.
It remains to show that @; is surjective. To this end, it suffices to inductively (on r)
establish that dimg H’;}(TX’; R) < dimg(R[x1,...,x,]); holds for all k € N.
The base case is handled in Corollary 6.17; moreover, the evaluation argument above
shows that the canonical semi-norm on H;(7’; R) indeed is a norm.
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For the induction step, let us assume that the claim holds for » — 1. We recall
that for group extensions 1| - N — I' —» Q — 1, there is a Hochschild-Serre spectral
sequence

EY = HI(Q; HI(N; R)) = HIM(TR)

in bounded cohomology, whenever the canonical semi-norm on H,(N;R) is a norm
[43, Proposition 12.2.1]. Applying this spectral sequence to the trivial product
extension

15T ST 71D 5

shows that the degree-wise dimensions of H,(7*";R) are at most the degree-wise

dimensions of R[xy, ..., x,] (with |x;| = 2 forall i € {1, ..., r}). Hence, ®; is surjective.
In particular, again by the evaluation argument above, the canonical semi-norm on all
of H;(T”";R) is a norm. |

REMARK 6.19. Analogous results are obtained by Monod and Nariman [46], who
computed the full bounded cohomology of the groups of orientation-preserving
homeomorphisms of the circle and the 2-disc. In fact, in Proposition 6.9, one can
replace orbits by fat orbits (that is, orbits of fat points [46]). This allows to compute the
full bounded cohomology of Homeo*(S') from the bounded acyclicity of Homeo,(R).
Moreover, again using fat orbits, one can deduce from Proposition 6.7 a positive
answer to Question 6.2 for a natural countably singular analog of Thompson’s
group 7.

6.3. On the bounded cohomology of V. We recall the definition of V.

DEFINITION 6.20. The Thompson group V is the group of piecewise linear
right-continuous bijections f of the circle R/Z with the following properties:

(1) f has finitely many breakpoints, all of which lie in Z[1/2]/Z;

(2) away from the breakpoints, f is orientation-preserving and the slope of f is a
power of 2;

(3) f preserves Z[1/2]/Z.

It was recently proved that V is acyclic [54]: this had been conjectured by Brown [9],
who already proved that V is rationally acyclic. Moreover, V is uniformly perfect [15];
so, using the same argument as in Remark 3.6, we deduce that V is 2-boundedly
acyclic.

While the proof of acyclicity of V is involved, the proof of rational acyclicity
is much simpler and only relies on standard arguments in equivariant homology. A
bounded analog of equivariant homology theory has recently been developed [37], but
it does not seem possible to directly translate Brown’s proof to bounded cohomology.

A positive answer to Question 6.3 would make V the first example of a nonamenable
boundedly acyclic group of type Fo. Moreover, it would make V the first tractable
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example of a nonamenable boundedly acyclic finitely presented group: the only known
example [22] is very implicit.
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Appendix A. Pseudo-mitotic groups are boundedly acyclic

We prove Theorem 1.3. The proof is an adaption of the original proofs for ordinary
cohomology [4, 55] to the setting of bounded cohomology. In bounded cohomology,
we keep additional control on primitives, similar to Matsumoto and Morita for certain
homeomorphism groups [42] and similarly to the case of mitotic groups [39].

The main ingredient in the proof is the following proposition which is an adaptation
for the pseudo-mitotic setting of the mitotic case [39, Proposition 4.6].

PROPOSITION A.l. Let n € N and let k € R.¢. Let
asmSrirse
be a chain of group homomorphisms such that:

(1)  the homomorphism i : T — P is a pseudomitosis of I in P;
(2) foreveryse{l,...,n— 1}, we have Hy(¢') = 0;
(3) foreveryse{0,...,n— 1}, the homomorphisms ¢ and  satisfy (s, k)-UBC.

Then, for all s € {1,...,n}, we have
Hy(i oy o o) =0.

Moreover, there exists a constant ¢, € Ry (depending only on n and k) such that the
composition i o Y o ¢’ o @ satisfies (s, ¢, )-UBC for every s € {0, ..., n}.

We give the proof of Proposition A.l in Appendix A.l. Following the mitotic case
[39], we show first how to deduce Theorem 1.3 from this result.

PROOF OF THEOREM 1.3. Let P be a pseudo-mitotic group. According to Theorems
2.3 and 3.4, it is sufficient to show that for every n € N, the group P satisfies n-UBC.

Let n e N,y and let z € C,(P;R) be a boundary, that is, d,.1c =z for some
¢ € Cp11(P; R). Since both z and ¢ involve only finitely many elements of P, there exists
a finitely generated subgroup I'y of P such that both z and ¢ are supported on I'y. We
show that the inclusion I’y < P satisfies (n, k,)-UBC, where «, € R, only depends
on n. This condition readily implies that P satisfies n-UBC, whence the thesis.

Since P is pseudo-mitotic, [y has a mitosis into P. Let g, : o = P and g € P
be witnesses of such a pseudo-mitosis. Then, Iy also admits a pseudo-mitosis into the
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following finitely generated subgroup of P:
I'y = (T, ¥o(To), ¥1(To), &) C P.

By iterating this construction, we get a sequence [y <T'} <--- < P of finitely gener-
ated groups such that at each step, the inclusion I'; < I'j; is a pseudo-mitosis.
Following verbatim the proof of the mitotic case [39, Theorem 1.2], by induction on
n > 1 and using Proposition A.1, one can show that the inclusion of I into a sufficiently
large I';, satisfies (n, ,,)-UBC, where «, only depends on n.
Using the fact that I';, < P, this implies that there exists ¢’ € C,.{(P; R) with

Onric’ =z and |} <&y - 2hh.

This shows that P satisfies n-UBC for all positive degrees n; whence, P is boundedly
acyclic (Theorem 2.3). O O

A.1. Proof of Proposition A.1. This section is devoted to the proof of Proposition
A.l. The proof is based on a refinement of Varadarajan’s proof [55, Proposition 1.4],
additionally taking the norm of the morphisms involved into account. Our approach
closely follows the mitotic case [39, Appendix A].

PROOF OF PROPOSITION A.l. We prove the statement in degree n € N. For conve-
nience, we write

f=yog op

Since H(¢") = 0 for every s € {1,...,n — 1}, also Hy(f) = 0 in the same degrees. The
fact that Hy(i o f) = 0 for every s € {1,...,n} was already proved by Varadarajan
[55, Proposition 1.4]. To adapt the mitosis proof [39, Appendix A] to the case of
pseudo-mitoses, it is convenient to recall Varadarajan’s argument.

Let Yo, : I’ = P and g € P be witnesses of the pseudo-mitosis i : I' — P. Then,
we define the map

pu:I'xl'—=p
(g.8) — & -yi(g).
Notice that y is a group homomorphism by condition (2) of the definition of
pseudo-mitosis [55, proof of Proposition 1.4].
Let j; : H—> HXH and j, : H— H X H be the inclusions into the first and the
second factor, respectively. Let y, denote the conjugation with respect to g, that is,

Yo(g) = gg'g™! for every g’ € P. Moreover, let Ay : H — H x H denote the diagonal
homomorphism. Then, for every i € H,

Yg oW1 0 f(h) = o o f(h) = o(f(h)
= f(h) -y (f ()
= u(f(h), f(h)
=po (f xf)oAuh).
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However,
po(fxfloji=ufl)=f=iof and
po(fxXfojp=pull,f)=y¢1(f) =¢10f.

Hence, the Kiinneth formula (and its naturality) together with the assumption that
H,(f) =0 for all se{l,...,n—1} imply that the following diagram commutes
(similarly to the mitotic case [39, page 729]):

H,(H x H:R) %) g 1. R) @ H,(H:R)

H, (fxf )J lHn(f )eH,(f)

H (X D R) o Hy(DR) 0 Hy (T R)

Hn(ﬂ)J/ lHn(i)@Hn(w])

H,(P;R) ¢ H,(P;R) @ H,(P; R),

where pi,pr: HXH — H denote the projections and ij,ir: [ > I'XIT the
inclusions. The commutativity of the previous diagram leads to

Hn()/g)oHn(lpl of)=Hu(uo(fXxf)oAy)
:Hn(iof)+Hn(¢’l Of)

Since the conjugation v, is trivial in homology, that is, H,(y,) = id, we obtain
H,(io f) = 0.

We are thus reduced to showing that the previous construction can be controlled in
such a way that i o f satisfies the required UBC condition.

Let z € 0,+1(C,+1(H;R)). We construct a controlled 9,,.-primitive for C,(i o f).
Following the mitotic case [39, page 731], we have

(fX f)* o AH*(Z) = (fxf)* Ojl* + (fX f)* on* + a’l‘FlE,(Z) (A_l)

on the chain level, where E’ is bounded and ||E’|| admits a bound that only depends on
the given x € R, and n (the proof uses hypothesis (3) in the statement).

To complete the construction of a controlled d,.1-primitive for C,(io f), we
consider the following chain homotopy:

®n : Cn(P; R) - Cn+l(P; R)
n+l

(81, 80) P Z(—l)’+1 (818188 81828 88)
j=1

between C.(y,) and the identity. The previous map is in fact such a chain homotopy
and ||®,|| < n+1 is proved as in the mitotic case [39, Lemma A.2] (notice that for
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convenience we changed the sign of ®). We then have:

(io @) = (o (fx[f)ojiz)

= (o (fx[f)oAn)(2)
— (o (f X f)©0)2):(2) = ps © Ops1 0 E'(2)

= (Yg)s 0 (W1 0 f)(2)
= W10 f):(2) = Ops1 0 0 E'(2)

= (041 0O+ 0@ 00,) 0 (1 0 [):(2) = Ops1 0 ps 0 E'(2)

= 0p1(© 0 (Y1 © f).(2) — ps 0 E'(2)),

where we moved from the first line to the second one using the Equation (A-1)

and the last equality holds because z is a cycle. Moreover, using the fact that group
homomorphisms induce norm nonincreasing chain maps, we have that the norm

100 W10 f)z)—p o E'@I <O +IE <n+1+]E]

is bounded from above by a quantity ¢, € R.¢ depending only on n and « (since this
is true for £’ and ®). This shows that i o f satisfies (n, ¢, )-UBC, as claimed. O O

Appendix B. Computation of cup-powers

In the following, we give the combinatorial part of the proof of Claim 6.15
in the proof of Proposition 6.9. We use the notation established in the proof of
Proposition 6.9.

LEMMA B.1. Forall k € {0,...,n/2}, we have
2K k!
(A% = —— - fr.
alt(f2™) 20! Jak
PROOF. Proceeding inductively, it suffices to show that

1
alt(fo U fou-1)) = %1 © fox

This is a purely combinatorial statement. Let (sg,...,s2) be a circularly ordered
(2k + 1)-tuple over S. To simplify notation, we write f(io,...,i,) for f(sj,,.. .,sl-p),
and so on. In this notation, since (s, ..., s;) is circularly ordered, it suffices to show
that A := alt(f, U fou-1))(0, ..., 2k) is equal to

1
2k-1"
By definition of alt and the cup-product on simplicial cochains, we have
1
A= T sgn(o) - f2(0(0), o(1), 0(2))

0€S(0,...2k)
-0 2),...,0(2k)).
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Because 2k is even, we can fix one position and obtain via cyclic permutations that

2k +1
= . sgn(o) - f2(0(0), (1), 2k)
2k + D! Tes(0,2k-1)
Su-n(Ck,o(2), ..., 02k = 1)).

Flipping o(0) and o (1) changes both the sign of o and that of f,(0(0),o(1),2k).
Therefore, we obtain

2k=2 2k-1

2
A=t 2 2y 2y senlifl«o): £(0.).20) fuge(2K] +)
T =0 j=i+] 0ex(X;))
2k-2 2k-1

= % . Z Z Z sgn([i,jl* o) - 1-sgn(o).

i=0 j=i+1 r€X(X;))
Here, we use the following notation: X;; := {0,...,2k — 1} \ {i,}; the permutation/
tuple [i,j] = o on {0,...,2k — 1} is obtained by using i, j in the first two positions,
and then filling up with o, and so on.
Let [X;;] be the sequence of elements in X;;, in order. Then

sgn(o) - sgn([i, j] * o) = sgn([i, /] = [Xi;]) = sgn(j — 1) - sgn(i)
forallie{0,...,2k-2},je{i+1,...,2k — 1}; here, we set sgn(x) of x € Nto +1 if x
is even, and to —1 if x is odd. We distinguish two cases.

e Ifiis odd, then jzi‘;rll sgn(j — 1) is zero, because there are equally many even and

odd numbersin {i + 1,...,2k — 1}.
e If iis even, then {i+1,...,2k — 1} contains one more odd number than even
numbers, whence

2k-1

sgn(@)- ) sgn(j-1)=1.

Jj=i+l
Therefore, since there are k even numbers inside {0, ..., 2k — 2}, we obtain

2 2
A= — k- |Xj|l= — k- Qk-2)!= ——,
(2k)! k- IXi (2k)! k-(2k-2) 2k -1

as claimed. O

Similar computations can also be found in the literature [34].
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