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Summary

Information on the genetic correlation between traits provides fundamental insight into the

constraints on the evolutionary process. Estimates of such correlations are conventionally obtained

by raising individuals of known relatedness in artificial environments. However, many species are

not readily amenable to controlled breeding programmes, and considerable uncertainty exists over

the extent to which estimates derived under benign laboratory conditions reflect the properties of

populations in natural settings. Here, non-invasive methods that allow the estimation of genetic

correlations from phenotypic measurements derived from individuals of unknown relatedness are

introduced. Like the conventional approach, these methods demand large sample sizes in order to

yield reasonably precise estimates, and special precautions need to be taken to eliminate bias from

shared environmental effects. Provided the sample consists of at least 20% or so relatives,

informative estimates of the genetic correlation are obtainable with sample sizes of several hundred

individuals, particularly if supplemental information on relatedness is available from polymorphic

molecular markers.

1. Introduction

The field of quantitative genetics has long been

concerned with the partitioning of variances and

covariances of complex characters into components

influenced by various genetic and environmental

sources. Literally thousands of studies report estimates

of heritabilities for characters of evolutionary and}or

economic interest (Falconer & Mackay, 1996; Roff,

1997; Lynch & Walsh, 1998). When sample sizes are

adequate, nearly all such studies reveal the existence

of additive genetic variation for the traits involved.

Such an observation is not surprising since we now

know that mutation is a fairly powerful source of

genetic variation for most traits (reviewed in Lynch &

Walsh, 1998, chapter 12). Thus, for univariate

analysis, the only serious question concerns the actual

magnitude of the components of variance and the

nature of the forces that determine them.

Less straightforward is the genetic correlation

between traits, as both the magnitude and the sign of
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this parameter depend on the general pleiotropic

effects of genes and, in some cases, on the pattern of

gametic-phase disequilibrium. Genetic correlations

between traits are of substantial interest because,

depending on their sign, they can either facilitate or

impede the joint evolution of the characters involved.

A conflict arises when two negatively genetically

correlated traits are both selected in the same direction,

as the selective advance of each character tends to pull

the other character in the opposite direction. A perfect

genetic correlation (equal to ³1) between two traits

presents an absolute evolutionary barrier, since no

change in either character can occur without a parallel

change in the other. Falconer’s influential text book

greatly elevated our understanding of the evolutionary

consequences of genetic correlations in natural and

domesticated populations.

Estimation of quantitative-genetic parameters is a

demanding enterprise even with nicely balanced

designs in the most controlled environments. How-

ever, compared with univariate parameters, genetic

correlations are particularly difficult to assess because

they require accurate estimates of three parameters –

the genetic variances of the two traits, and the genetic
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covariance between them. Because all three estimates

are generally obtained from the phenotypic covari-

ances of relatives, they can take on any value. Thus,

contrary to the situation with the well-known product–

moment correlation, estimates of the genetic cor-

relation can fall outside of the parametric limits (³1)

or can be undefined when one of the genetic-variance

estimates is negative (Hill & Thompson, 1978). Sample

sizes of a few thousand pairs of relatives are often

necessary to achieve estimates that can confidently be

interpreted at the level of even single significant digits

(Van Vleck & Henderson, 1961 ; Brown, 1969; Klein,

1974; Visscher, 1998), although a simple knowledge

of the sign of the genetic correlation can be achieved

with less, but still substantial, effort.

The classical approach to estimating genetic com-

ponents of variance and covariance relies on the

phenotypic resemblance between individuals of known

relatedness. Thus, the vast majority of studies in

quantitative genetics involve controlled breeding

programmes in which individuals are raised in

artificial, and often unusually benign, environments.

Such treatment raises two significant problems. First,

since genetic components of variance and covariance

can differ dramatically among environments (Falconer

& Mackay, 1996; Roff, 1997; Lynch & Walsh, 1998),

the ideal setting for the estimation of quantitative-

genetic parameters is the environment of interest ; for

evolutionary studies, the preferred setting is the

natural environment. Secondly, even if the environ-

mental conditions can be made to match those in

nature, the conventional known-pedigree approach to

quantitative genetics is not an option for species that

cannot be raised easily in the laboratory, barnyard or

greenhouse in reasonable amounts of time.

The purpose of this paper is to explore the feasibility

of two new methods for estimating genetic correlations

between characters in natural populations. The first of

these methods uses samples of individuals for which

the degrees of relationship are completely unknown,

whereas the second uses molecular markers to estimate

relationship coefficients.

2. Estimation in the absence of pedigree information

Consider two characters, x and y, whose genetic basis

is entirely additive, and denote the genetic variances

of the two traits as σ#
A
(x) and σ#

A
(y) and the genetic

covariance between the traits as σ
A
(x, y). Assuming

for the time being that shared environmental effects

do not contribute to the phenotypic resemblance

between relatives, then from well-established results

(Falconer & Mackay, 1996; Lynch & Walsh, 1998)

the expected phenotypic covariance between indi-

viduals is a function of these genetic components of

variance and covariance and of the relationship

coefficient, r, which equals 0±5 for full-sib and

parent–offspring relationships, 0±25 for half-sib and

grandparent–grandchild relationships, etc.

Letting the mean population-wide phenotypes of

the two traits be µ
x

and µ
y
, and denoting the

phenotypes of individual i as z
i
(x) and z

i
(y), the

expected phenotypic covariance for character x across

pairs of individuals (i and j) with relationship r is

σ
z
(x,x r r)¯E [(z

i
(x)®µ

x
) (z

j
(x)®µ

x
) r r]¯ rσ#

A
(x),

(1a)

whereas that for character y is

σ
z
(y, y r r)¯E [(z

i
(y)®µ

y
) (z

j
(y)®µ

y
) r r]¯ rσ#

A
(y),

(1b)

and the expected covariance between the two traits,

one in each individual, is

σ
z
(x, y r r)¯E [(z

i
(x)®µ

x
) (z

j
(y)®µ

y
) r r]¯ rσ

A
(x, y).

(1c)

The key to estimating the genetic correlation among

traits is the fact that the expected values of all three

types of phenotypic covariance across individuals are

preceded by the relationship coefficient, which cancels

out in the function

ρ
G
(x, y)¯

σ
z
(x, y r r)

o[σ
z
(x,x r r)σ

z
(y, y r r)]

¯
σ

A
(x, y)

o[σ#
A
(x)σ#

A
(y)]

.

(2)

Thus, the estimate of the genetic correlation, which is

obtained by substituting the observed phenotypic

covariances for the expectations in this formula, does

not directly incorporate the relationship coefficient.

Equation (2) embodies the standard approach to

estimating genetic correlations when, for example, i

and j represent the members of sets of individuals with

constant r, e.g. two sibs or parents and offspring.

This same principle applies to a set of individuals

with mixed degrees of relatedness. Suppose, for

example, that the sample consists of a series of pairs of

individuals (with members again being denoted by i,

j) with different relationships, such that r
ij

is the

relatedness between the members of a pair. The

expected phenotypic covariances involving these pairs

of individuals then have expectations

σ
z
(x,x)¯ raσ#

A
(x), (3a)

σ
z
(y, y)¯ raσ#

A
(y), (3b)

σ
z
(x, y)¯ raσ#

A
(x, y), (3c)

where ra is the mean relationship coefficient between

the pairs of assayed individuals. The ratio of pheno-

typic covariances, σ
z
(x, y)}o[σ

z
(x,x)σ

z
(y, y)], again

eliminates the unknown parameter ra , thereby reducing

to σ
A
(x, y)}o[σ

A
(x)σ

A
(y)], the genetic correlation.

Thus, the proposition presented here is that the

genetic correlation might be estimable in the absence
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Fig. 1. Mean estimates of the genetic correlation as a function of the fraction of pairs of individuals that are full sibs
(the remaining pairs consisting of nonrelatives). Results are given for three genetic correlations (0±2, 0±5 and 0±8, denoted
by the continuous horizontal lines), three heritabilities (denoted by the different symbols, and three sample sizes (2500,
500 and 100 pairs of individuals, shown in different panels). The environmental correlation within individuals is equal to
zero, and the environmental and genetic values of the two traits are bivariate normally distributed with zero
genotype–environment covariance.

of known relationships by compiling a list of pairs of

individuals and computing the three phenotypic

covariances involving characters x and y. Provided

that some of the pairs consist of relatives, then the

expected values of all three covariances will be non-

zero assuming there is genetic variance (covariance)

for the traits, and all three will be proportional to ra .
The unknown parameter ra is then eliminated by

dividing the phenotypic covariance across traits by the

square root of the product of the phenotypic co-

variances within traits. Letting Cov denote an ob-

served covariance across the members of pairs of

individuals, the proposed estimate for the genetic

correlation becomes

ρW
G
(x, y)¯

Cov[z
i
(x), z

j
(y)]

o²Cov[z
i
(x), z

j
(x)]\Cov[z

i
(y), z

j
(y)]´

(4)

Statistical properties

The general utility of the proposed technique will

depend on a number of issues. First, as noted above,
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Fig. 2. Sample standard deviations of the genetic correlation as a function of the fraction of pairs of individuals that are
full sibs (the remaining pairs consisting of non-relatives). Results are given for three genetic correlations (denoted by the
different symbols), three heritabilities (0±2, 0±5 and 0±8) and three sample sizes (2500, 500 and 100 pairs). The
environmental correlation is equal to zero, and the environmental and genetic values of the two traits are bivariate
normally distributed with zero genotype–environment covariance.

even with a balanced experimental design with known

relatives, the sample size requirements for accurate

estimates of genetic correlations are substantial. They

must be even greater for samples of individuals of

uncertain and distant relationships. Secondly, the

sample composition is expected to be an important

determinant of statistical power, with the latter

increasing with the fraction of relatives and the

affinity of their relationships. Thirdly, even if samples

with adequate numbers of relatives are achievable, it

is unclear whether the preceding estimator will yield

unbiased estimates when the degree of relatedness

varies. Fourthly, characters with higher heritabilities

are expected to yield more accurate estimates of

genetic correlations because the phenotype more

accurately reflects the underlying genetic values.

To evaluate the power of the proposed technique,

computer simulations were used to generate the joint

distributions of two characters in pairs of individuals

with known degrees of relatedness. The environmental

variances of the characters were scaled to σ#
E
(x)¯

σ#
E
(y)¯1 throughout, the environmental correlation

between traits within the same individual was assumed

to be equal to zero, and the expected character means

were set equal to zero. The genetic correlation between

traits, ρ
G
(x, y), was treated as a free parameter, as were

the genetic variances for the two traits. The distri-

butions of genotypic and environmental values were
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Fig. 3. Upper panel : Proportion of genetic correlation estimates that are undefined as a consequence of a negative
variance-component estimate. Results are given as a function of the heritabilities of the two traits and of the proportion
of sampled pairs of individuals that are full sibs. Each set of conditions involves samples of 500 total pairs and assumes
an environmental correlation equal to zero. Lower panel : Proportion of genetic correlation estimates that exceed the
parametric bounds of ³1. Results are given for the conditions in the upper panel, using the same symbols for the
different heritabilities. Within each set of heritabilities, there are three sets of points ; the lines with the lowest,
intermediate and highest values denote the results for genetic correlations equal to 0±20, 0±50 and 0±80 respectively.

always multivariate normal, and the subroutine for

generating the four phenotypic values in pairs of

individuals was tested extensively to ensure that it was

generating the expected levels of genetic and en-

vironmental variances and covariances within and

between individuals. All the following analyses involve

sets of mixtures of various proportions of full sibs and

non-relatives.

For each set of parameter values explored, 10000

random data sets were generated and assayed for the

genetic correlation, as estimated by (4). Thus, for each

simulated data set there was a list of pairs of

individuals (i and j), each with phenotypic values of

the two characters, x and y. The phenotypic means for

each character were estimated for each column of

individuals, and then the four covariances of charac-

ters (z
i
(x) vs z

j
(x), z

i
(x) vs z

j
(y), z

i
(y) vs z

j
(x), and z

i
(y)

vs z
j
(y)) were estimated. The covariance across

characters, in the numerator of (4), was estimated as

the average of the reciprocal covariances involving

z
i
(x) versus z

j
(y) and z

i
(y) versus z

j
(x). The sample

standard deviation of ρW
G
(x, y), i.e. the standard

deviation among estimates derived from independent

samples of the same population, was derived from the

10000 replicate estimates.

As noted above, genetic correlation estimates are

undefined if by chance the estimate of one of the

entries in the denominator of (4) is negative. Thus, for

each set of parameter values, the frequency of

undefined correlation estimates was estimated. In the

computation of the means and standard deviations of

ρW
G
(x, y), undefined estimates were ignored, but those
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outside the ³1 bounds were employed except in the

rare event that they exceeded ³10, the latter treatment

being primarily a precaution to prevent bias from rare

outliers.

The average estimated genetic correlation does not

always strictly coincide with the expected value when

the preceding method is applied, although sets of

conditions do exist in which the bias is negligible

compared with the substantial sampling variance of

the estimates (Fig. 1). In general, estimates of ρ
G

tend

to be biased downwards when the number of

informative pairs of individuals in the sample is low

(either because of a small fraction of pairs of relatives

or because of a small total sample size), and biased

upwards when the fraction of shared relatives is high

but the heritabilities of the trait are low. For example,

when the sample consists of a mixture of full sibs and

non-relatives and a total sample of 500 pairs of

individuals, estimates of ρ
G

are nearly unbiased

provided at least 20% of the pairs of individuals are

sibs and the heritabilities of the two traits are on the

order of 0±5 or greater (Fig. 1). With very low

heritabilities and a large fraction of relatives, the

average estimate of ρ
G

can be as high as 1±00 when the

true value is 0±80 or as high as 0±65 when the true value

is 0±50. It should be noted, however, that this upward

bias in estimates of ρ
G

also exists when the sample size

consists entirely of pairs of relatives (in which case the

estimate is equivalent to that obtained by conventional

quantitative-genetic analysis).

The standard deviations of ρ
G

estimates are very

high and increase with decreasing genetic information

content in the sample, i.e. with decreasing frequency

of pairs of relatives and with decreasing trait herita-

bilities (Fig. 2). For example, when 500 pairs of

individuals are assayed, regardless of ρ
G
, approxi-

mately 60% of the sample must consist of close

relatives (full sibs in the example provided in Fig. 2)

before the standard deviation drops below one if h#¯
0±20; and for h#¯ 0±50 and 0±80, respectively, the

critical fractions of full sibs are on the order of

25% and 15%. With 2500 pairs, standard errors of

approximately 0±5 canbe achievedwith fractions of full

sibs of 50% when h#¯ 0±02, 20% when h#¯ 0±5 and

10% when h#¯ 0±8.

As noted above, undefined estimates of ρ
G

arise

when sampling error results in a negative estimate of

the phenotypic covariance of the same trait among

pair members. Because this problem is a function of

univariate analysis, its incidence does not depend on

the magnitude of the genetic correlation, but it does

depend on the frequency of related pair members

(upper panel, Fig. 3). With 500 pairs of measured

individuals, the problem is negligible when the fraction

of relatives exceeds 30% when the traits have

heritabilities equal to 0±80, but is non-negligible even

when all pairs consist of relatives when heritabilities

equal 0±20. In addition, the frequency of out-of-

bounds estimates (ρW #
G
"1±00) can be considerable

unless heritabilities are high, even when all pairs

contain related individuals (lower panel, Fig. 3).

3. Marker-assisted estimates

The method introduced in the previous section

assumes zero knowledge about the degree of related-

ness of pairs of individuals. However, even when it is

not possible to ascertain relationships with certainty

from direct observation, it is often feasible to estimate

relatedness by using polymorphic molecular markers.

In principle, use of this additional information should

increase the precision of estimates of the genetic

correlation.

A regression method, modified from Ritland (1996),

provides a marker-assisted means for estimating the

genetic variances and covariances of two traits. Again

letting z
i
(x) be the phenotypic value of character x in

individual i, and µ
x
be the population mean phenotype

for the trait, an index of the phenotypic covariance for

trait x in two individuals is

C
ij
(x,x)¯ [z

i
(x)®µ

x
] [z

j
(x)®µ

x
].

Likewise, indices of phenotypic covariance can be

defined for character y,

C
ij
(y, y)¯ [z

i
(y)®µ

y
] [z

j
(y)®µ

y
],

and for character x in individual i and character y in

individual j,

C
ij
(x, y)¯ [z

i
(x)®µ

x
] [z

j
(y)®µ

y
].

The expected values of these quantities are equal to

the products of the relationship coefficient for the two

individuals and the respective genetic variances or

covariance:

E [C
ij
(x,x)]¯ r

ij
σ#

A
(x), (5a)

E [C
ij
(y, y)]¯ r

ij
σ#

A
(y), (5b)

E [C
ij
(x, y)]¯ r

ij
σ

A
(x, y). (5c)

Letting # denote an estimate, the preceding expres-

sions suggest that linear regressions of CW
ij
(x,x), CW

ij
(y,

y), and CW
ij
(x, y) on rW

ij
fit through the origin will

provide least-squares estimates of the genetic variances

and covariance:

Var
A
(x)¯3 rW

ij
CW

ij
(x,x)

3 rW #
ij

, (6a)

Var
A
(y)¯3 rW

ij
CW

ij
(y, y)

3 rW #
ij

, (6b)

Cov
A
(x, y)¯3 rW

ij
CW

ij
(x, y)

3 rW #
ij

, (6c)

where the summations are over pairs of individuals.

Although these three estimates are all downwardly
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Fig. 4. Sampling standard deviation of the genetic correlation in marker-assisted analysis for two conditions involving
equal effort in genotyping – 20 marker loci and 250 pairs of individuals, and 10 marker loci and 500 pairs of individuals
(continuous lines). Five equally frequent alleles}loci are assumed to be in Hardy–Weinberg and gametic-phase
equilibrium. Results are given for three different heritabilities (assumed to be the same for both traits) as a function of
the fraction of related pairs of individuals (full sibs) in the total sample. The genetic correlation is equal to 0±50 in all
cases, and the environmental correlation is equal to 0±00. The dashed lines give the results for analysis using 500 pairs of
individuals and no markers, and comparison of them with the lines denoted by 10 provides insight into the reduction in
the standard deviation that is expected with the addition of 10 molecular markers to the analysis.

biased by sampling variance in the estimates of r

(Ritland, 1996), the magnitude of the bias is identical

in all three cases. Thus, a potentially unbiased estimate

of the genetic correlation is given by

ρW
G
¯ 3 rW

ij
CW

ij
(x, y)

o[3 rW
ij
CW

ij
(x,x)\3 rW

ij
CW

ij
(y, y)]

, (7)

which is equivalent to the estimator presented by

Ritland (1996).

Statistical properties

To evaluate the potential utility of marker-assisted

analysis in the estimation of genetic correlations, sets

of computer simulations identical in all respects to

those described above were run, with the addition of

molecular markers in the surveyed individuals. In all

cases reported on here, the marker loci were assumed

to have five co-dominant alleles in equal frequencies

(i.e. 0±20) and to be autosomal, unlinked, and in

Hardy–Weinberg and gametic-phase equilibrium. The

pairs of sampled individuals were again assumed to

consist of either non-relatives or full sibs, and upon

drawing the multilocus marker genotype of one

individual, the markers in the other member of the

pair were drawn conditional on the relationship. A

number of methods exist for the estimation of

relatedness with co-dominant markers. The following

analyses utilize the estimator of Lynch & Ritland

(1999), which is computationally simple and, relative

to other estimators, has near minimal sampling

variance.

The properties of bias with marker-assisted es-

timation are very similar to those illustrated above for

analysis in the absence of markers. That is, there is

downward bias if the incidence of pairs of related

individuals is less than 20% or so, and upward bias in

other cases, with the latter being generally very minor

unless the heritabilities of the traits are very low (data

not shown). Of greater interest is the behaviour of the

sampling error.

Results for two sets of combinations of numbers of

marker loci and numbers of pairs of individuals, both

involving the same total amount of effort in geno-

typing, are given in Fig. 4 (continuous lines) – 20

marker loci and 250 pairs, and 10 marker loci and 500

pairs. It is clear that a higher degree of precision is

achieved by maximizing the number of pairs at the

expense of markers. A comparison of the results for

10 marker loci with the average results for zero

marker loci, with 500 pairs being assayed in both cases

(the dashed lines in Fig. 4, taken from Fig. 2), clarifies

the relative advantages of a marker-based approach.

If the trait heritabilities are moderately high and the

fraction of pairs of related individuals in the sample is

fairly low, then dramatic reductions in the standard

deviation of ρW
G

arise when the phenotypic information

is supplemented with marker information. However,

as the fraction of pairs of related individuals increases,

the gain in precision from the use of markers becomes

diminishingly small. When the fraction of related
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individuals exceeds a threshold (generally " 90%),

the use of markers actually induces a small increase in

the sampling standard deviation.

4. Discussion

The goal of this paper has been to explore the

feasibility of some new methods for estimating the

genetic correlations between characters expressed in

individuals in completely undisturbed natural popu-

lations. Previous attempts to estimate quantitative-

genetic parameters in natural populations include

cross-fostering procedures (reviewed on pp. 696–700

in Lynch & Walsh, 1998) and regression of phenotypes

of laboratory reared progeny on wild parents (Coyne

& Beecham, 1987; Riska et al., 1989). However, there

are few organisms other than nest-box inhabiting

birds for which the first method can be applied, and

the second method can yield extremely biased results

in the presence of genotype¬environment interaction.

In addition, both methods require accurate infor-

mation on parentage for the assayed individuals,

which can be difficult to near impossible to acquire for

many organisms. For many species, such as long-lived

trees, there are added problems concerning the time-

scale necessary for conventional quantitative-genetic

investigation.

The procedures outlined above provide a potential

means for estimating genetic correlations in the

absence of any direct observations on relatedness and

without requiring any manipulations of individuals

(other than those necessary for obtaining phenotypic

measurements, and for obtaining molecular-marker

profiles in the case of marker-assisted analysis).

Provided certain conditions are fulfilled and large

sample sizes are available, it appears that genetic

correlations can be estimated successfully with col-

lections of paired individuals taken from natural

environments. Two key issues are the spatial scale of

sampling of individuals and the optimal allocation of

effort to sampling markers as opposed to individuals.

Both proposed methods require samples containing

a moderate number of relatives. Generally, related

individuals tend to be more closely associated geo-

graphically than random members of a population.

Thus, a logical sampling scheme would involve the

procurement of data on pairs of individuals that are

not so distant from each other as to eliminate any

possibility of relatedness. On the other hand, a key

assumption of the proposed methods is that indi-

viduals exhibit phenotypic similarity only because of

shared genes. Shared environmental effects can be

important in well-designed laboratory experiments,

due for example to shared maternal environment, but

they may be especially important in samples drawn

from natural populations where individuals are non-

randomly distributed across the landscape. Such

effects can bias estimates of genetic variances and}or

covariances by causing phenotypes of relatives to be

more similar than expected on the basis of genes

alone.

There are a number of ways in which the influence

of shared environmental effects can be ascertained

and minimized in the analysis of natural populations.

For example, as noted above, such effects would be

expected to result in a dependence of phenotypic

covariance on geographic distance separating pairs of

individuals. Quantification of the magnitude of such

spatially dependent effects would be difficult in

situations in which there is no information on

relatedness, because geographic distance will typically

be correlated with both relatedness (shared genes) and

shared environment, thereby confounding the two.

However, in a marker-assisted study, it should be

possible to isolate the two effects by performing a joint

regression of pairwise phenotypic covariance on the

estimated degree of relatedness and geographic dis-

tance. Consider, for example, the regression of C
ij
(x,

x) (the estimated phenotypic covariance of character x

in pairs of individuals) on estimated relatedness (r
ij
)

and physical distance (d
ij
) :

C
ij
(x,x)¯ a­b

r
r
ij
­b

d
d
ij
­e

ij

(cf.Ritland, 1996). The estimated regression coefficient

b
r
is proportional to the genetic variance for character

x and is unbiased by shared environmental effects

(under the assumption that such effects decline linearly

with distance), whereas the coefficient b
d
quantifies the

degree of spatially dependent phenotypic similarity.

In principle, other indicator variables (differences in

temperature, light intensity, etc.) would be added to

such a regression, and the independent variables could

be transformed to allow for non-linear responses.

Alternatively, with certain types of organisms, it may

be possible artificially to transplant pairs of individuals

of fixed relatedness (e.g. full sibs or clonemates) into

sites with a range of geographic distances in order

directly to quantify the effect of spatial location on

pairwise phenotypic covariance.

A second assumption in the preceding analyses is

that all members of the population are equivalent with

respect to the ability to express the characters under

consideration. In reality, differences in mean pheno-

types may exist among members of the different sexes,

among individuals inhabiting different microhabitats

within the total sampling area, and for populations

with overlapping age distributions, among individuals

in different cohorts. In principle, all such differences

may be eliminated by the computation of fixed effects

associated with sex, spatial location and time. Once

the individual phenotypic measures are standardized

with respect to these fixed effects, the pairwise

comparisons outlined above can then be computed

and subjected to the proposed methods of analysis.
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Assuming that problems of shared environmental

effects and fixed effects can be dealt with adequately,

one is still confronted with the fact that estimates of

the genetic correlation in natural populations can

have much greater sample size requirements than

those derived from controlled experiments with sets of

known relatives. For many situations (e.g. most

vertebrates and long-lived plants), it is actually much

easier to procure large collections of data on individual

phenotypes in the field than to perform large numbers

of controlled matings, but a further limitation of

methods for estimating the genetic correlation without

known pedigrees is the need for a minimum fraction

of pairs of relatives in the total sample in order to

avoid substantial downward bias. The results noted

above suggest the need for on the order of 20% for

samples of 500 pairs consisting of either non-relatives

or full sibs, and limited simulations suggest a similar

threshold value when the sample consists of non-

relatives and half sibs. Such levels may be difficult to

achieve when samples are random over the entire

range of a population. However, when the biology of

the study population is reasonably well understood, it

will often be possible to enrich the sample with pairs

of relatives. For example, exploratory molecular

analysis can provide a very useful means for deter-

mining the distribution of relatedness in the field, and

hence for identifying the geographic scale beyond

which pairs of individuals are unlikely to be close

relatives (Lynch & Ritland, 1999).

The simulation results presented above indicate

that although estimates of the genetic correlation can

be biased downwardly when the incidence of relatives

is low, upward bias occurs when the incidence of

relatives is high. However, this upward bias, which is

most pronounced when heritabilities are low and

genetic correlations are high, is not unique to the

methods introduced herein, as it even occurs in the

ideal case in which all pairs consist of related

individuals. Although such bias has been noticed (Van

Vleck & Henderson, 1961 ; Brown, 1969), it has

received little attention in previous studies of the

statistical behaviour of the genetic correlation, and

given its magnitude relative to the sampling variance

of estimates, however, it will not generally be an

overwhelming concern.

Despite the fact that marker-based estimates of

pairwise relatedness are notoriously noisy (Lynch &

Ritland, 1999), the supplementation of a field study

on the genetic correlation with information on

molecular markers can lead to a substantial gain in

precision of estimates, particularly when a large

segment of the sample consists of non-relatives. For

example, when the incidence of close relatives in a

sample is on the order of 30%, the standard deviation

of estimates can be reduced by as much as 50% when

only 10 markers are used to infer relatedness. More

markers will further increase the degree of precision.

However, when there is a tradeoff between the number

of markers and the number of individuals that can be

assayed, it appears that greater precision is achieved if

more effort is put into sampling individuals and less

into sampling loci. Multilocus DNA profiles involving

co-dominant markers, such as those generated by

DNA-fingerprinting, may be useful in this regard, as

they generate large amounts of data that, when

applied to the formula of Lynch (1988), can yield

estimates of r that can be equally or more precise than

those generated with locus-specific probes (Lynch &

Ritland, 1999). In addition, a substantial amount of

efficiency can be gained by utilizing loci with large

numbers of alleles. For distant relatives, the sampling

variance of relatedness estimates derived with the

method of Lynch & Ritland (1999) is approximately

1}[n(m®1)], where n is the number of loci and m the

number of alleles per locus, so a doubling in the

number of alleles per locus reduces the sampling

variance of r by nearly 50%.

It should be noted that the gain in precision from

the incorporation of molecular markers can often be

minor. In extreme cases, when most pairs of indi-

viduals consist of relatives, the use of markers can

actually be counterproductive. This latter behaviour is

a consequence of the crudeness of estimates of

relatedness unless very large numbers of multiallelic

loci are assayed. When most pairs of individuals are

related, the error in inference of relatedness can

overwhelm the small gain in precision that would

occur with perfect knowledge of pedigrees.

To provide insight into the principles underlying

the estimation of genetic correlations in natural

populations, the examples presented above contained

many simplifications including the assumptions that

all pairs of individuals contain either non-relatives or

full sibs, that the molecular markers all have equal

allele frequencies, that the environmental correlation

between-individuals is equal to zero, etc. In reality,

samples from natural populations will generally

present a range of relationships, marker loci will

exhibit a diversity of uneven allele-frequency distri-

butions, and shared environmental effects will be non-

zero. Although such conditions are likely to result in

higher sampling error of the genetic correlation than

noted above and therefore call for even larger sample

sizes, they do not alter the utility of the basic

methodology.

Finally, it should be noted that the sampling

standard deviations of the genetic correlation obtained

by computer simulation in this study denote the

expected standard deviation of estimates derived from

replicate samples taken from the same population.

Empirical studies almost always rely on single samples.

Although analytical expressions exist for the sampling

variance of the genetic correlation under standard
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balanced designs (Lynch & Walsh, 1998, chapter 21),

for the most part these are only rough approximations,

and they are not easily extended to natural populations

with heterogeneous mixtures of relationships.

For the current purpose, bootstrap analysis would

appear to be a reasonable approach for constructing

confidence limits – either sampling over n individuals

and randomly constructing pairs when the total sample

has been acquired randomly, or sampling over n}2

fixed pairs when pairs have been intentionally selected

based on suspected relationships. Each resampling

will generate different sets of n}2 pairs of relatives, so

that averaging estimates over the full resampling

procedure should fully utilize the information con-

tained within the entire sample, while avoiding non-

independence problems that would arise from a single

analysis involving all n(n®1)}2 possible pairs of

individuals.

Helpful comments were provided by W. Bradshaw, W. Hill,
D. Roff, and two anonymous reviewers. This work was
supported by NSF grant DEB-9629775.
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