
PROJECTIVE GEOMETRY IN THE 
ONE-DIMENSIONAL AFFINE GROUP 

HANS SCHWERDTFEGER 

Introduction. The idea of considering the set of the elements of a group 
as a space, provided with a topology, measure, or metric, connected somehow 
with the group operation, has been used often in the work of E. Cartan and 
others. In the present paper we shall study a very special group whose space 
can be embedded naturally into a projective plane and where the straight 
lines have a very simple group-theoretical interpretation. I t remains to be 
seen whether this geometrical embedding in a projective space can be extended 
to other classes of groups and whether the method could become an instru­
ment of geometrical investigation, like co-ordinates or reflections. In the final 
section it is shown how a geometrical theorem may lead to relations within 
the group. 

1. Let ® denote the affine group on a real straight line (x-axis), i.e. the group 
of all transformations 

x —» ax + ctj a, a real, a ^ O , 

Each of these mappings may be represented by an ordered pair of real numbers 
A = (a, a). If B = (b, 13) represents also an element of ®, then the product 
of A and B corresponding to the composition of the two mappings (first B, 
then A) is given by 

AB = (ab,a/3 + a). 

The unit element of ®, corresponding to the identity map, is represented by 
the symbol I = (1,0) and A'1 = (a""1, —arl a) is the inverse of A. It will 
be shown how the structure of @ can be described geometrically. 

As pairs of real numbers the elements A = (a, a) of © may be interpreted 
as points in a cartesian co-ordinate plane with a horizontal a-axis (a = 0) 
and a vertical a-axis (a = 0). The points of the second axis do not represent 
group elements; with regard to @ it is therefore an exceptional line in the 
plane. I t will be of advantage to turn the plane into a projective plane by 
completing it with a straight line at infinity which, with regard to the group 
@, must also be considered as exceptional. The plane minus these two excep­
tional lines will be called a ©-plane. 

Two straight lines 81,82 are said to be parallel, or rather 00 -parallel, 
81 I |oo 82, if they are parallel in the usual sense, i.e. if their common point lies 
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on the line at infinity. They are said to be O-parallel, 81 ||o 82, if their common 
point lies on the a-axis. With regard to these parallelisms the two exceptional 
lines may be considered as the "absolute" or the ' 'infinite" of the geometry of 
the plane of the group ©. (By removing from the plane all straight lines 
through the common point of the two exceptional lines one obtains the 
ilframmento autoduale" introduced by K. Menger (1).) 

By adding the two exceptional lines to the plane of © the latter becomes a 
projective plane. By applying a suitable projective transformation it will be 
possible to reduce the two exceptional lines into any two preassigned lines 
of the plane; we may call them the » -line %œ and the 0-line 80 of the ©-plane. 
Two straight lines will be said to be » -parallel ( ID if they meet on 8œ, and 
O-parallel (||0) if they meet on 80. 

Points on the exceptional lines will be denoted by bold face letters. The 
point U is the intersection of these two lines. 

The following propositions are easily established: 

1. Any two points in the ®-plane can be joined by a unique straight line in 
the ©-plane, 

2. Any two straight lines in the %-plane have exactly one common point in 
the ®-plane except when they are &> -parallel or O-parallel. 

3. To any line passing through U, there is one and only one parallel line 
through each point of the ®-plane (both parallelisms coincide). 

4. To any line 8 not passing through U, there is exactly one O-parallel and 
exactly one 00 -parallel line through each point not on 8; both are always distinct. 

5. Each of the two parallelisms is reflexive, symmetric, and transitive. 

6. To any two non-parallel lines 81, 82 none of which passes through U there 
is exactly one line 8 such that 

8 IL 81 and 8| |082 . 

7. With regard to either of the two parallelisms the theorem of Desargues is 
valid: If ABC and A'B'C1 are two triangles and D another point such that 

JIT, BWD, CCD 

are collinear sets of three points, if further 

ABWTW', BC\\WC, 
then 

Ci || CT. 
Apart from 7 it may be pointed out that, of course, the theorem of Desargues 

and all the other theorems of projective geometry can be applied freely even 
if their interpretation in terms of the ©-geometry proper is not immediate. 
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2. We shall now define straight lines and parallelisms in ® algebraically. 
Let A = (a, a)y a 9e 0, a 9e 1. We consider the normalizer 31A of A in ©, 
that is the subgroup of all T such that TAT~l = A. Obviously, I £ 3lA 

and A G 9^. Let T = ft, r). The condition TA = A T yields 

ta + r = ar + a, i.e. aft — 1) = {a — l ) r ; 

hence 

r = ft, *>ft - 1)), v = a/(a - 1), / 5* 0. 

Thus 9ÎA consists of all the points of the straight line through 7 and A. 
Every normalizer 31A is the normalizer of each of its elements T, T 9e I 

(i.e. / j* 1): 

3iA = 3iT are STL. 

Indeed, if 5 = (s, a) Ç 9î r, then ST = TS yields o- = v(s - 1); thus 5 G 9^. 
Every line through 7, except the one through U, is a conjugate of 3lA. 

Indeed, for any B = (ô, 0) G ® the conjugate subgroup B^U*"1 consists of 
the elements 

BTB-i = ft, (bv - # ft - i)) ( r e 9 U . 

Conversely, by a suitable choice of B, the factor bv — /? can be given any 
prescribed value. In order to obtain all those lines through 7 as conjugates to 
3lAy it is sufficient to choose b = 1, that is, to take B on the line § through 7 
and U. Every conjugate of %lA is, of course, a normalizer; indeed 

£ 9 ^ B-i = S t t ^ - i . 

The elements H = (1,77) of § form a normal subgroup of ©. This § is 
the only line through 7 which is not a normalizer 31A. The composition law in 
§ is the addition in the second component: 

(1,771) (1,772) = (1,171 + 172). 

All the other straight lines in the ©-plane are defined as the left or right 
cosets of subgroups $lA (A £ § ) and of § . Indeed, if B is any fixed element 
of ®, then the elements of B%lA are 

# r = (M, ^ f t - l) + 0) « ft', „(*> - i) + 0) ft' = M), 

evidently the points of the line passing through B (put t' = b) and 00 -parallel 
to yiA. Indeed the lines carrying ^SlA and ByiA have a common point in ® 
if and only if 

that is, if B Ç 9ÎA> or B^SlA = SHA- They have also no common point on the 
0-line. Hence they meet on the line 8œ. 
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We notice that there is a unique element H = (1, rj) G £ such that 

because there is a unique H G | ) where 59IA meets § . Thus, each line, not 
parallel to § , meets § in a unique point of the ©-plane. 

The right coset 31AB consists of the elements 

TB = (tb, W + v(t - 1)) = (t't ^ - t'-v), 

which are the points of the straight line that meets the line carrying %lA on 
the 0-line (put / = 0). Hence yiA ||o %lAB. Again there is a unique element 
H G § such that 

WAB = SSlAH. 

Finally, we have the straight lines carrying § and the cosets of £>. They 
all pass through the point U. The elements of the coset QB are 

HB = ( l ^ K M ) = ( M + 1?). 

We point out that &B = B& is also the class of all elements conjugate to 
B, if B i § . Indeed 

XBX-i = (*, £)(J, « (a r 1 , - x - 1 f) = (6, (1 - J)£ + *0) (* ^ 0), 

and for each conjugate XBX~X of B (B $ § , i.e. b ^ 1) there is a unique 
H G § such that 

J O X - 1 = 2ÎRH"-i. 

In fact, there is a unique 77 such that (1 — b)% + x/3 = (1 — 0)77 + /3. Among 
the cosets of § we mention, in particular, the class § / o f all involutory elements 
of ®, that is the set of all J 9* I such that J2 = 7. Evidently J = ( - 1 , co); 
we put ( - 1 , 0 ) = J'. 

We also notice that § is the commutator group of @. Indeed every 
commutator 

ABA^B-1 = HBH^B'1 

with a suitable if G § , whatever ^ G ®. Conversely, if 5 is some fixed element 
of ©, JB $ § , then every i£ G § can be respresented as a commutator 
HBH^B'1. Indeed, KB G § £ is a conjugate of B and there is a unique 
H £ & such that 

From these properties follows that © is a so-called Frobenius group, more 
precisely, a TYgroup; cf. (2). 

Since the factor group © / § is abelian, we conclude that for all A, B G ©: 

&AB = &BA ; 
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thus AB and BA are elements of the same coset of § . This also follows from 
the relation B(AB)B~1 = BA. 

Concentrating entirely on the algebraic definitions of points as group 
elements and straight lines as cosets of normalizers and of the greatest normal 
subgroup § , we may replace the group @, that is the one-dimensional affine 
group over the real field, by the one-dimensional affine group ©F over an 
arbitrary field F. The @F-plane is the set of the elements (a, a), a, a Ç F, 
a 9^ 0, of @F. By adjoining to it the two exceptional lines 2œ (the "line at 
infinity") and 2o (the set of all symbols (0,77), this plane becomes the pro­
jective plane over the field F. Operating with the same composition law as in 
@ the whole discussion can be carried over to the more general case of the 
group ®F. 

This group can be represented as the semi-direct product of the multiplica­
tion group Fx and the addition group F+ of the field F. Indeed if Ao = (a, 0), 
a 7e 0, fl^l, then 

P< ~ VlAo ~ VlA for any A i £ F , F+ O^ §F, 

and since (a, 0)(ô, 0) = (aft, 0), every element of &F can be written in the 
form 

A = (a, a) = ( l ,a)(a , 0) = HA0. 
It follows that 

®F = $ , 9 U = ®FWA = KA $F. 

3. In the following discussion we shall emphasize the equivalence between 
geometrical constructions with the ruler and group operations in the ©-plane. 
For this reason we restrict ourselves to the case of the group ® over the real 
field. Its elements are the points of an ordinary projective plane from which 
two lines £OT and ?0 have been removed. A point I off these lines is distinguished 
by its association with the unit element. On L0, not on Sœ, we mark a certain 
point 0; the straight line through 0 and I carries the normalizer 9Î(0) = 3tAQ 

(Ao = (a, 0), a * 0, a * 1). Put 2œ H SR<°> = 00, g0 n 8œ = U. 
We shall now deal with a number of problems concerning group operations 

and the corresponding geometrical constructions in the modified projective 
plane of the group @. 

(i) Group multiplication. For two elements A,B G ®, find the product 
AB and the inverse A~l. 

(a) Neither A nor B is an element of § nor are they both elements of the 
same normalizer $lA. Then AB is obtained as the intersection 

AB = U 5 R a ) n (WAB). 

Indeed AyiB and $lA B both contain the element AB and they have one 
and only one point in common. For the actual construction (cf. Fig. 1) draw 
the lines through / and A, and through / and B ; then the line through A, 
00-parallel to 9^s, and the line through B, 0-parallel to yiA; these two lines 
meet at AB. 
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FIGURE 1 

(b) A e § , Bi§, B$ WA. Then, similarly, 

AB = (A WB) n ( § 5 ) . 

(c) A G § , 5 6 § . The multiplication corresponds to the addition of the 
second co-ordinates a, fi. This can be carried out by means of the projective 
segment addition process (3, pp. 141-144) effected by the parallel displace­
ment of a triangle over the segment I A into the position over the segment BC\ 
then C = AB = BA. The process can be carried out on any of the lines 
parallel to § , e.g. on § itself (cf. Fig. 2). Select a point A' $ § , find ^4 '§ . 
Determine the triangle L4^4 with its sides on 5ftA/, ^49fl(0), and § . The parallel 
displacement is carried out by drawing the three oo-parallel sides B3lAi, 
B'W°\ and £ respectively, where B' = (A' §) C\ (B SJlA,). Then 

(B' 5R<°>) n £ = C = i4J5. 

Similarly, we find by segment subtraction the inverse A~l of a given A £ § : 
Let £>' = S R ^ n ( 4 ' £ ) ; then 

(zr S M n § = i 
Here the triangle I A'A is shifted into the position A~lD'I. 
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FIGURE 2 

(d) Now let A i§ and B G 9tA. Then AB = BA G SSiA and the product 
is denned by its first component ab. In this case one has to apply the projective 
segment multiplication on the line 0°°, i.e. on 9fl(0) (3, pp. 144-149). For the 
construction draw an arbitrary line through 0, e.g. through Ay that is the 
coset W0)A. Let 

(W°> i ) H § = £ , (A$) H 5ft<°> = 4 0 

(cf. Fig. 3). The line through E and A0 is given by ES^ - IAO? cf. (i) (c) and 
(ii). Now shift the triangle IE A o 0-parallel to itself so that the point originally 
at I falls into 

B0 = (B$) H 9t<°>. 

Further, find 

F = (9Î<°> A) n (£§), (rar-in) n SK«» - c0. 
Then 

9ÎA r\ (Co $ ) = C = 4 5 . 

https://doi.org/10.4153/CJM-1964-066-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1964-066-9


690 HANS SCHWERDTFEGER 

FIGURE 3 

For the inverse of A ($§), one has the following construction: Find 

A' = £ 5 R , - i A o n (W»A); 

then 

A-1 = (Af § ) H 91A. 

The following construction of ^4_1 is often preferable: Write A = /L40 with 
(unique) H € £ , 4 0 € 9l(0). Then ^~x = ^ o ^ i ? " 1 , and since WA-i = 31A, 
it follows that i 7 - 1 £ A0 ?flA. Hence, construct 

AQ = gfl(o) n ( $ 4 ) , H-i = $ n (Ao 5RA). 

Then 
4 - i = (9fi«» fjr-i) n 9U. 

Thus, the construction of product and inverse is settled in all cases so that 
all group operations can be carried out graphically in the ©-plane, completed 
by the two exceptional lines, with a ruler only. 
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The solution of the following problem was used in (i) id). We state it for 
reference: 

(ii) Given two elements A, B Ç @. Find the coset through A and B. 
Let A~l B $ § . Then the line through A and B is given by 

AWA-IB = BVIA-IB = WAB-IB = WAB-IA. 

(Note that WA-IB = WB-IA- If ^ " " ^ £ § , then ^ S = 5 § is the line through 
A and B.) 

As an application, we construct Ï ÏA- 1^ I L ^ ^ A - I B and 

A^B = ( ^ 5 ) H WA-iB, 

observing that A"1 £ 9ÎA. 

I t has been noted that all the normalizers of elements A $ § are conjugate 
subgroups in ©. Thus the following question arises: 

(iii) Given two normalizers 9Î and 9Î'. Find all elements T such that TWIT"1 

= W. (Cf. Fig. 4.) 
Using a notation, not quite accurate, but as we hope, readily understood, let 

9î n sœ = B, w n go = A. 

Then every T on the line AB has the property 

m = WT = SB r\ ©. 
Indeed, T9Î is the unique line which is <» -parallel to 9Ï and at the same time 
O-parallel to 9t'. On the line AB, there is a unique element H £ § such that 

#$ft = $ft'# = ÂB. 

For the sake of symmetry we consider also the line A'B', where 

Sft r\ 2o = B', SR' H 8œ = A7. 

Then 

VIT-1 = r-19p = srtff-i = ij-131' = Â 7 ^ n ®. 
There is an intersection 

ÂB H AÏB7 = IT. 

We shall show that 

W2 = / . 

For this purpose consider an arbitrary point T = HN on the line ÂB = iJ9î. 
It defines its normalizer yiT, the line through / and T which meets A'B' 
= 9WJ-1 at r = N'H-1; VlT contains T'1 and so does SUff-1. Hence, V = T~K 
Since PF lies on both lines AB and A'B', it follows that W = W"\ and the 
statement is proved. 
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Let us repeat the construction for a second normalizer sJl* in place of 31 
(with the same 9^)- We find the points 

c = w* n gœ, c = SR* n So. 
Let 

F = AG H A C . 

Then V2 = / . Thus the three points U, V, W are collinear on the involutory 
line £ / ' . 

This can also be obtained as a consequence of the (general) theorem of 
Desargues. Indeed, a look at Fig. 4 shows that the two triangles ABC and 
A'B'C' are perspective with the centre I: 

Â57 n BB7 n cc7 = / 
according to the construction. Thus the three points 

BG n B C = u, GÂ n c w = 7, AS n Â7^ = IF 

are collinear. 

FIGURE 4 
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(iv) For given normalizer 9t and element T, to find TNT'1, find BT Hi g0 

= A. Then AI = 5ft' = mT~K 
(v) For given A and T find the point TAT~\ 
(a) Let 4 $ §. Draw SKA and T^lAT~\ Then 

r^r-1 = (^©n (r^r-1). 

(6) If 4̂ Ç §, the construction is as follows (Fig. 5): Find T& and 

TA = (r§) n (9^), r^r-i = (ftrA r-1) n £. 

FIGURE 5 
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(vi) For given A and T, find the commutator 

C = [T,A] = TAT^lA~\ 

(a) A i § . With reference to Fig. 6, find 

(mAT-i)n ($A) = TAT-1; 

then 

(TAT-1 WA) r\ £ = TAT-1 A"1 = C. 

Any element of T9IA used instead of T gives the same result. 

FIGURE 6 

Here we may mention a relation between C and A"1: 

(mA T-1 c)nwA= A-1 

or 

(r9L r-i^-i) n § = c. 
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(b) A Ç § . With reference to Fig. 5, multiply TAT~l graphically by A~l 

from the right (or left). This, according to (i) (c), is done by parallel dis­
placement of the triangle IAA (where A = 31T r\ 8o) into the position 
CBiTAT-1), where 

B = (TAT^A-imTA)r\20. 

If, then, we denote by 8 the line which is oo -parallel with 3lT, and O-parallel 
with (TAT-l)(A~l3lTA), then 

c = £ r\ 8. 
The element T may be replaced by any element of &T. 

From the discussion in (iii) we obtain the following general fact. Let 8i, 82 
be two lines, not parallel in any sense and neither of them passing through U; 
let 

8 IU81 and 8 ||o 82. 
Then 

8 Pi § = H, where H3li = 3l2H 

if 311, 312 are two normalizers such that 

81 = Ht 5Ri, 82 = 3l2 H2j Hu H2 e ©. 

In the present case, we have 

8X = 5»1 = SRr, 82 = ( r ^ T - 1 ) ^ - 1 5 R r 4 ) . 

Hence, 
% = {TA^)(A-^yiTA)(TAT-^ = C 3lT C~K 

Thus, # = C. 

4. It was seen that by group multiplication in @ every straight line is 
turned into a straight line. Hence for every fixed i f ® , the mappings 
X —> AX and X —» X 4 are collineations. They are even affine transformations 
in the sense that they turn 00 -parallel and O-parallel lines respectively into 
00- and O-parallel lines. In fact, B(A31) = (BA)3l\\œ3l\ hence B{A31) |\œ A31. 
Also (9W)£ =-9fl(45) HoSR; hence (314 )B \\031A. 

Also the conjugacy X —> TXT*1 represents a collineation for every fixed T, 
but not an affine one. Indeed, 

(4.1) T(A3l)T-1 = {TAT^){T31T^). 

Thus, the conjugate of a left coset of 31 is a left coset of the corresponding 
conjugate of 31. There is obviously a corresponding statement for right cosets. 

Every normalizer 31 is invariant by transformation with any one of its 
own elements and no others. For which elements T is 

T(A3l)T~1 = A31 
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if A3l^3l? By (4.1) this condition implies that A3t \\œ TÏÏT-1; hence 
T3lT~l IL % and therefore T31T'1 = 31; thus T G 91. But then 

H ^ r - 1 = T(A3i) =A% 

which means that TA £ A^l, i.e. 

A-* TA e % 

whence either A 6 31 or T = / . Thus the (proper) cosets of a normalizer are 
not invariant under any conjugacy except the identity. 

Geometrically this is evident since by conjugacy the elements X Ç A3Ï 
are moved within their cosets § X . It also follows that if T(A3l)T"1 

= S(A3l)S~l (A i St), then T = S. 
This might suggest the following theorem. 

THEOREM. Let 8, 9)1 be two cosets of normalizer s in ©, both not normalizer s 
themselves. Then there is always a unique T £ ® such that 

TXT-* = 3JI. 

This will be proved algebraically. I t is sufficient to show that for A Ç 3l{0) 

and arbitrary 331 there is a unique T such that 

(4.2) T(AW»)T-* = a». 

For a suitable H = (1, rj) 6 § , we have 49l<0) = jff9l<°>. Thus, an arbitrary 
element of this coset, co-parallel to 9l(0), is given in the form (x, rj), where 
x is variable, rj fixed. If T = (/, r ) , then 

r(x, ^ r - 1 = (x, -T(X - I) + /*?). 
On the other hand, with a suitable normalizer 31 and a certain element K 
= (1, /c) € § the line 9JÏ can be represented by the coset K31. Thus, its elements 
are 

(1, K)(X, V(X — 1)) = (x, v(x — 1) + K). 

In order to have (4.2) satisfied with 331 = K31, we have to determine t and r 
such that 

trj = K, — r = Ï>, 

which is always possible in exactly one way because rj ^ 0, that is H ?± I. 

Under the same assumptions concerning 2 and 3)1 we now consider the 
intersection 

c = 2 n 5m. 
Since 7XT- 1 = 9JÎ H (£C), we conclude that 

(4.3) TCT-1 = C, 

if T is the element mentioned in the theorem. Hence, T £ 3lc or C £ 9î r . 
Now let 9 ,̂ 9 '̂ be normalizers such that 

2 = C9Ï', 90? = SRC. 
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According to §3 (iii), we find all 5 such that Sft' = ftS on the line passing 
through the points 80 H ft = 80 H 9K and 8^ H ft' = 8*, H 8. In particular, 
let To be the point where this line meets the normalizer ftc. Then also 

ft = To ft' 7V1, 

and since To is the only S commuting with C, we have 

gjj = 3ic = To ft' To'1 C = To ft' CTo~l 

= To C-1 C ft' C7Y-1 = r 0 C-1 8 C7V1 

= ToC-^croC-1)-1. 

Thus, we have 

T = To C-1 

as an expression for the unique element T transforming 8 into 9JÏ. Therefore 

(4.4) C = T-1 To. 

Another expression for T can be found by means of the following construc­
tion. Let Ay B be two points on 8; find 

so that 

Let 

Then 

* = ($A) n aw, £* = ($5) n 5 

ftA n 8œ = A, ftA* n 8o = A', 
ft* n 8œ = B, iv** n 8o = B'. 

T = ÂÂ' H BB7. 

We note the principal result of these considerations : Whereas all normalizers 
of elements A £ ®, A $ & form a complete set of conjugate subgroups and 
any two of them are conjugate in many ways (cf. §3 (iii)), all non-normalizer 
cosets of normalizers also form a family of conjugate sets and any two of them 
are conjugate in one and only one way. 

5. In order to have full reciprocity between the group and the corresponding 
geometry it is necessary to express the intersection C of two lines 8, 9K by 
means of group operations. A first approach in this direction is contained in 
formula (4.4). 

Assuming, again, 8 and 3)? to be two non-parallel cosets of normalizers 
ft' and ft respectively, we shall determine two points A Ç ft, B £ ft' such that 

(5.1) C = AB. 

Indeed this relation will be satisfied if we take 
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A = 8 n 5Rf 5 = 2ft n 9Î', 

where again 8 = CSW', 9JÎ = 5ftC. This then involves that $1 = WA and 5ft' 
= yiB ; hence 

whence (5.1) (cf. §3 (ii)). 
To complete the solution of the problem, it remains to determine A and B. 

This is always possible by the co-ordinate method. Let 5ft, 5ft' be given by 
the slopes v, v1 so that their elements are 

SR: X = (x, v(x - 1)), Sft': F = (y, / ( y - !))• 

Let 8 = HSR!, where H = (1, rj). Then every element of 8 appears in the 
form 

Z = ( s , / ( s - l ) + 7 7 ) . 

Hence, 4̂ = 8 ^ 5ft implies that z = x and 

/ ( # — 1) + rç = p(# — 1) 

or 

x= l + - ^ - 7 , 
V + V 

and thus 

A = (v-v' + \-^~). 
\ v — v v — v / 

Similarly, we find if 2tt = $»#', H' = (1, i /): 

n _ ( y "" v' vr! \ 

On the basis of these formulae it is possible to carry out all the geometrical 
constructions with ruler by group operations within the group ®. 

6. As an example for the transfer into © of a more involved statement of 
projective geometry we mention the theorem of Desargues as stated under 
§1, Proposition 7 (cf. Fig. 7). The assumptions concerning the two triangles 
ABC and A'B'C are expressed as follows: 

(6.1) 9tD-iA. = WD-iAl SRD-I*' = SKz,-!*, ïïîz>-ic = 5Wz>-i<7. 

Assuming, further, that no two of the points A, B, C are together in one and 
the same coset of § , we conclude from 

(6.2) <3lB-ic = 5R*-i<7 and 5ftC'-U' = 5ftc-u 

that 

SRA'-1B' = 9ÎA-1B. 
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FIGURE 7 

It will be no restriction to put D into / . Then (6.1) becomes 

(6.3) WA> = SRA, WB> = 31B, 5»C = 5RC. 

An application arises if we choose 

A' = A~\ B' = B~\ C = C~\ 

Then the relations (6.3) are obviously satisfied and instead of (6.2) we have 
the conditions 

(6.4) WBc-i = 5K*-ic, SftcA-i = S«C-IA. 
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The first relation (6.4) is equivalent to BCr1 6 WB-IO i-e. 

(BC-^iB-^C) = (B-iQiBC-1). 

Thus, we obtain the following commutator relation in ©: 
If [B, C~l] = [B~\ C] and [C, A^] = [C"1, 4 ] , then also [il, B~*] = [A~\ B]. 
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