ON THE RATE OF GONVERGENCE OF PROBABILITIES OF MODERATE DEVIATIONS

V. K. ROHATGI ${ }^{1}$
(Received 22 July 1968)
Communicated by P. D. Finch

1. Introduction

Let $\left\{X_{n}: n \geqq 1\right\}$ be a sequence of independent random variables and write $S_{n}=\sum_{k=1}^{n} X_{k}$. Let

$$
\begin{equation*}
E X_{i}=0, \quad E X_{i}^{2}=\sigma_{i}^{2} \tag{1}
\end{equation*}
$$

and let

$$
\begin{equation*}
s_{n}^{2}=\frac{1}{n} \sum_{i=1}^{n} \sigma_{i}^{2}, \quad 0<a \leqq s_{n} \leqq A<\infty \tag{2}
\end{equation*}
$$

Suppose that $n^{-\frac{1}{2}} s_{n}^{-1} S_{n}$ converges in law to the standard normal distribution (see $[5,280]$ for necessary and sufficient conditions). Let $\left\{x_{n}\right\}$ be a monotonic sequence of positive real numbers such that $x_{n} \rightarrow \infty$ as $n \rightarrow \infty$. Then $x_{n}^{-1} n^{-\frac{1}{2}} S_{n}^{-1} S_{n} \rightarrow 0$ in probability. In particular, choose $x_{n}=\sqrt{\log n}$. Then

$$
\begin{equation*}
\operatorname{Pr}\left\{\left|\frac{S_{n}}{n}\right|>\varepsilon s_{n} \sqrt{\frac{\log n}{n}}\right\} \rightarrow 0 \tag{3}
\end{equation*}
$$

as $n \rightarrow \infty$ for all $\varepsilon>0$. In [6] Rubin and Sethuraman call probabilities of the form $\operatorname{Pr}\left\{\left|S_{n}\right|>\varepsilon s_{n} \sqrt{n \log n}\right\}$ probabilities of moderate deviations and obtain asymptotic forms for such probabilities under appropriate moment conditions.

In this note we study the convergence rate problem for the sequences $\operatorname{Pr}\left\{\left|S_{n}-a_{n}\right|>\varepsilon s_{n} \sqrt{n \log n}\right\}$,

$$
\operatorname{Pr}\left\{\max _{1 \leq k \leq n}\left|\frac{S_{k}}{s_{n} \sqrt{n \log n}}-b_{k}\right|>\varepsilon\right\} \text { and } \operatorname{Pr}\left\{\sup _{k \geqq n}\left|\frac{S_{k}}{s_{k} \sqrt{k \log k}}-c_{k}\right|>\varepsilon\right\}
$$

where a_{k}, b_{k}, c_{k} are appropriate centering constants. The corresponding problem for the special case of identically distributed summands has

[^0]recently been treated by Davis in [2] where he considers only the first and the third of above sequences.

In Theorems A and B in section 2 we assume that (1) and (2) hold and that the sequence of normed sums $n^{-\frac{1}{2}} s_{n}^{-1} S_{n}$ converges in law to the normal distribution so that, in particular, (3) holds. $L(\cdot)$ is a nonnegative, nondecreasing and continuous function of slow variation [3].

2. Results

Theorem A. For $t \geqq 0$ the following statements are equivalent:
(a) $n^{t} L(n) \operatorname{Pr}\left\{\left|S_{n}\right|>\varepsilon s_{n} \sqrt{n \log n}\right\} \rightarrow 0$ for all $\varepsilon>0$.

If $t>0$, the above statements are equivalent to
(c) $n^{t} L(n) \operatorname{Pr}\left\{\sup _{k \geqq n}\left|\frac{S_{k}}{s_{k} \sqrt{k \log k}}\right|>\varepsilon\right\} \rightarrow 0$ for all $\varepsilon>0$.

Theorem B.
(a) For $t \geqq 0, \sum_{n=1}^{\infty} n^{t-1} L(n) \operatorname{Pr}\left\{\left|S_{n}\right|>\varepsilon s_{n} \sqrt{n \log n}\right\}<\infty$ for all $\varepsilon>0$ if, and only if

$$
\sum_{n=1}^{\infty} n^{t-1} L(n) \operatorname{Pr}\left\{\max _{1 \leqq k \leqq n}\left|\frac{S_{k}}{S_{n} \sqrt{n \log n}}-\operatorname{med}\left(\frac{S_{k}-S_{n}}{s_{n} \sqrt{n \log n}}\right)\right|>\varepsilon\right\}<\infty
$$

for all $\varepsilon>0$.
(b) For $t>0$,

$$
\sum_{n=1}^{\infty} n^{t-1} L(n) \operatorname{Pr}\left\{\left|\frac{S_{n}}{s_{n} \sqrt{n \log n}}-\operatorname{med}\left(\frac{S_{n}}{s_{n} \sqrt{n \log n}}\right)\right|>\varepsilon\right\}<\infty
$$

for all $\varepsilon>0$ if, and only if

$$
\sum_{n=1}^{\infty} n^{t-1} L(n) \operatorname{Pr}\left\{\sup _{k \geqq n}\left|\frac{S_{k}}{s_{k} \sqrt{k \log k}}-\operatorname{med}\left(\frac{S_{k}}{s_{k} \sqrt{k \log k}}\right)\right|>\varepsilon\right\}<\infty
$$

for all $\varepsilon>0$.
(c) For $t \geqq 1$ the following statements are equivalent.

$$
\begin{array}{ll}
\left(c_{1}\right) \sum_{n=1}^{\infty} n^{t-1} L(n) \operatorname{Pr}\left\{\left|S_{n}\right|>\varepsilon s_{n} \sqrt{n \log n}\right\}<\infty & \text { for all } \varepsilon>0 . \\
\text { (c, } \left.c_{2}\right) \sum_{n=1}^{\infty} n^{t-1} L(n) \operatorname{Pr}\left\{\max _{1 \leqq k \leqq n}\left|S_{k}\right|>s_{n} \sqrt{n \log n}\right\}<\infty & \text { for all } \varepsilon>0 .
\end{array}
$$

(c_{3}) $\sum_{n=1}^{\infty} n^{t-1} L(n) \operatorname{Pr}\left\{\sup _{k \geq n}\left|\frac{S_{k}}{s_{k} \sqrt{k \log k}}\right|>\varepsilon\right\}<\infty \quad$ for all $\varepsilon>0$.
Theorem C. For $t \geqq 1$,

$$
\sum_{n=1}^{\infty} n^{t-1}(\log n)^{t} \operatorname{Pr}\left\{\left|S_{n}\right|>\varepsilon \sqrt{n \log n}\right\}<\infty
$$

for all $\varepsilon>0$ implies $E\left|X_{k}\right|^{2 t}<\infty$ for all k.
Remark 1. The $L(n)=\log n$ case of part (b) of Theorem B has been obtained by Davis [2] in the special case of identically distributed summands.

Proofs. The (a), (b) equivalence part of Theorem A and part (a) of Theorem B follows from the inequalities
(4)
$\operatorname{Pr}\left\{\left|S_{n}\right|>\varepsilon s_{n} \sqrt{n \log n}\right\}$

$$
\begin{aligned}
& \leqq \operatorname{Pr}\left\{\max _{i \leq k \leqq n}\left|\frac{S_{k}}{S_{n} \sqrt{n \log n}}-\operatorname{med}\left(\frac{S_{k}-S_{n}}{s_{n} \sqrt{n \log n}}\right)\right|>\varepsilon\right\} \\
& \leqq 2 \operatorname{Pr}\left\{\left|S_{n}\right|>\varepsilon s_{n} \sqrt{n \log n}\right\} .
\end{aligned}
$$

The first of these inequalities is trivial while the second follows from Lévy's inequality [5, 247].

The $\left(c_{1}\right),\left(c_{2}\right)$ equivalence part of Theorem B follows since

$$
\sum_{n=1}^{\infty} n^{t-1} L(n) \operatorname{Pr}\left\{\left|S_{n}\right|>\varepsilon s_{n} \sqrt{n \log n}\right\}<\infty
$$

for all $\varepsilon>0$ implies

$$
\operatorname{med}\left(\frac{S_{k}-S_{n}}{s_{n} \sqrt{n \log n}}\right) \rightarrow 0 \text { as } n \rightarrow \infty .
$$

For (a), (c) equivalence part of Theorem A and part (b) of Theorem B the proof can be constructed on the lines of [4] and we do not intend to repeat the computations.

The (c_{1}), (c_{3}) equivalence in Theorem B follows similarly using once again the fact that for $t \geqq 1$

$$
\sum_{n=1}^{\infty} n^{t-1} L(n) \operatorname{Pr}\left\{\left|S_{n}\right|>\varepsilon s_{n} \sqrt{n \log n}\right\}<\infty
$$

for all $\varepsilon>0$ implies

$$
\operatorname{med}\left(\frac{S_{k}-S_{n}}{s_{n} \sqrt{n \log n}}\right) \rightarrow 0 \text { as } n \rightarrow \infty .
$$

In the case of Theorem C we use the methods of Baum, Katz and Read [1] and Lemma 1 of Davis [2]. We omit the details.

Remark 2. In Theorems A and B we may replace $L(n)$ by an arbitrary non-negative, non-decreasing function of n.

Remark 3. The result of Theorem C cannot be improved. This follows trivially by considering the sequences for which $X_{k}=0, k=2,3, \cdots$ and $E \mid X_{1}{ }^{12 t}<\infty$ but $E\left|X_{1}\right|^{2 t+\delta}=\infty$ for $\delta>0$.

References

[1] Baum, L. E., Katz, M. L., and Read, R. R., 'Exponential convergence rates for the law of large numbers', Trans. Amer. Math. Soc., 102 (1962), 187-199.
[2] Davis, James Avery, 'Convergence rates for probabilities of moderate deviations', Department of Mathematics and Statistics, The University of New Mexico, Tech. Report No. 147, (1967).
[3] Feller, W., An Introduction to Probability Theory and its Applications, Vol. II. (Wiley, New York, 1966).
[4] Heyde, C. C., and Rohatgi, V. K., 'A pair of domplementary theorems on convergence rates in the law of large numbers', Proc. Cambr. Phil. Soc., 63 (1967), $73-82$.
[5] Loève, M., Probability Theory. (Van Nostrand, 3rd Ed., New York, 1963).
[6] Rubin H., and Sethuraman, J., 'Probabilities of moderate deviations', Sankhȳa, 27 (1965) Series A, 325-346.

The Catholic University of America
Washington, D.C.

[^0]: ${ }^{1}$ This work was supported by the Office of Naval Research, Contract No. Nonr-2249 (05).

