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Abstract

We introduce an Almgren frequency function of the sub-p-Laplace equation on the Heisenberg group to
establish a doubling estimate under the assumption that the frequency function is locally bounded. From
this, we obtain some partial results on unique continuation for the sub-p-Laplace equation.
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1. Introduction

We investigate the unique continuation property for a class of quasilinear subelliptic
equations on the Heisenberg group. We recall that the Heisenberg group Hn is a
nilpotent Lie group of step two whose underlying manifold is R2n × Rwith coordinates
(z, t) = (x, y, t) = (x1, . . . , xn, y1, . . . , yn, t) and whose group action ◦ is given by

(x0, y0, t0) ◦ (x, y, t) =

(
x + x0, y + y0, t + t0 + 2

n∑
i=1

(xiy0i − yix0i )
)
. (1.1)

The left invariant vector fields corresponding to the canonical basis of the Lie algebra
are

Xi =
∂

∂xi
+ 2yi

∂

∂t
, Xn+i =

∂

∂yi
− 2xi

∂

∂t

and the only nontrivial commutators are

[Xi, Xn+i] ≡ XiXn+i − Xn+iXi = −4∂t ≡ −4T

for 1 ≤ i ≤ n. The horizontal gradient of a function f is defined by

∇H f = X f = (X1 f , . . . , Xn f , Xn+1 f , . . . , X2n f ).
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For (z, t) ∈ Hn, the gauge norm is defined by

ρ(z, t) =

(( n∑
i=1

(x2
i + y2

i )
)2

+ t2
)1/4
≡ (|z|4 + t2)1/4. (1.2)

(See [4] for more on the Heisenberg group; relevant facts are collected in Section 2.)
The sub-p-Laplace equation on Hn is

∆
p
Hu =

2n∑
i=1

Xi(|Xu|p−2Xiu) = 0, 1 < p <∞. (1.3)

For p = 2, this is the Kohn–Laplace equation

∆Hu =

2n∑
i=1

X2
i u = 0.

The operator ∆H fails to be elliptic at every point. However, thanks to Hörmander’s
celebrated result in [14], ∆H is hypoelliptic. Moreover, ∆H shares many properties with
the Laplace operator onRn, including the mean value formula and the strong maximum
principle. For the Heisenberg group, Mukherjee and Zhong [20, 24] recently proved
the optimal result that weak solutions of ∆

p
Hu = 0 (p , 2) are locally in the class C1,α

for some α ∈ (0, 1); the first published proof valid for p > 4 is due to Ricciotti [22].
The C1,α regularity will play an important role in our paper.

A differential operator L is said to have the unique continuation property in Ω if
every solution u of Lu = 0 which vanishes on an open subset of Ω vanishes throughout
Ω. There are many results on (strong) unique continuation for second order elliptic
operators on Rn with linear primary parts (see, for example, [9]). In addition, there
are some results about the unique continuation property for subelliptic equations
[8, 10, 17]. However, little is known about the unique continuation problem for
nonlinear elliptic equations (such as the p-Laplace equation), except for the planar case
using the theory of quasiregular mappings [13, 19]. Recently, Granlund and Marola
[11] studied the unique continuation problem of the p-Laplace equation by introducing
a generalisation of Almgren’s frequency function and obtained the unique continuation
principle for the p-Laplace equation under the assumption that the frequency function
is locally bounded.

The goal of this paper is to study the unique continuation problem of the sub-p-
Laplace equation (1.3) on the Heisenberg group. In order to describe our results, we
first introduce some definitions. For u ∈ HW1,p(Ω) ∩ C1(Ω) (see Section 2 for the
definition of HW1,p) and Br ⊂ Ω, we define the height

Hp(r) =

∫
∂Br

|u|p

|∇ρ|
ψp/2 dH2n,

where ψ = |z|2/ρ2 (this function will be explained in Section 2), and the sub-p-Dirichlet
integral

Dp(r) =

∫
Br

|Xu|p dz dt.
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The frequency function is

Np(r) =
rp−1Dp(r)

Hp(r)
if Hp(r) , 0.

The frequency function was first introduced by Almgren [2] for harmonic functions.
Garofalo and Lin [9] showed the applications of the frequency function in the strong
unique continuation problem. Here Np(r) is a generalisation of the frequency function

N2(r) =
r
∫

Br
|Xu|2∫

∂Br
u2ψ/|∇ρ|

for the sub-Laplace equation ∆Hu = 0 on Hn introduced by Garofalo and Lanconelli
[8]. On the other hand, Np(r) is also a generalisation of the frequency function for the
p-harmonic functions on Rn defined by Granlund and Marola [11]. To the best of our
knowledge, Np(r) (p , 2) in the subelliptic setting has not been previously studied.

Our main results are the following two theorems.

Theorem 1.1. Let u be an arbitrary function in C1(Ω). Assume that there exist
two concentric balls Br0 ⊂ BR0 ⊂ Ω such that the frequency function Np(r) is well
defined, that is, Hp(r) > 0 for every r ∈ (r0,R0] and ‖Np‖L∞(r0,R0) < ∞. Then, for any
r2 ∈ (r0,R0), there exists some r∗ ∈ (r0,R0) such that for any r1 ∈ [r∗, r2], the following
doubling property holds: ∫

∂Br2

|u|p

|∇ρ|
ψp/2 ≤ 2

∫
∂Br1

|u|p

|∇ρ|
ψp/2. (1.4)

Based on the doubling estimate in Theorem 1.1, we are able to establish the unique
continuation property for the sub-p-Laplace equation.

Theorem 1.2. Let u ∈ HW1,p(Ω) be a weak solution of the sub-p-Laplace equation
(1.3). For arbitrary balls Br0 ⊂ BR0 ⊂ Ω such that Hp(r) > 0 for r ∈ (r0,R0], assume
that ‖Np‖L∞(r0,R0) <∞. Then, if u vanishes on some open ball in Ω, u is identically zero
in Ω.

The rest of the paper is organised as follows. In the next section, we collect some
facts about the Heisenberg group and the sub-p-Laplace equation. In Section 3, we
first study the behaviour of Hp(r) and Dp(r) for weak solutions of the sub-p-Laplace
equation and then prove the main theorems following the argument in [11].

2. Preliminaries
In this section, we gather some notation about the Heisenberg group and well-

known results about the sub-p-Laplace equation.
The Heisenberg group Hn has a family of dilations that are group homomorphisms,

parameterised by λ > 0 and given by

δλ(x, y, t) = (λx, λy, λ2t),

which leads to a homogeneous dimension Q = 2n + 2.
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The gauge norm ρ defined in (1.2) satisfies

ρ(δλ(z, t)) = λρ(z, t),

that is, ρ is homogeneous of degree one with respect to the dilation δλ. The associated
distance between (z, t) and (z0, t0) is defined by

ρ(z, t; z0, t0) = ρ((z0, t0)−1 ◦ (z, t)),

where (z0, t0)−1 denotes the inverse of (z0, t0) with respect to the group action (1.1),
that is, (z0, t0)−1 = (−z0,−t0).

For vector fields X = {X1, . . . ,X2n}, one can usually define the Carnot–Carathéodory
distance dCC in the following way. A Lipschitz path γ : [0, T ]→ Hn is said to be a
subunit with respect to the fields X if there exist measurable coefficients c j(s) such that

γ̇(s) =

2n∑
j=1

c j(s)X j(γ(s)) and
2n∑
j=1

c2
j(s) ≤ 1 for a.e. s ∈ [0,T ].

Then the Carnot–Carathéodory distance dCC is defined by

dCC(ξ, ξ′) = inf{T ≥ 0 | there exists a subunit path γ : [0,T ]→ Hn joining ξ to ξ′}.

By a simple version of the ‘ball–box’ theorem (see, for example, [3]), dCC is equivalent
to the gauge distance.

In the following, we let

Br = {(z, t) ∈ Hn | ρ(z, t) < r}, ∂Br = {(z, t) ∈ Hn | ρ(z, t) = r}

and call these sets respectively the Heisenberg ball and the Heisenberg sphere centred
at the origin with radius r. Since ρ ∈ C∞(Hn\{(0, 0)}), the outer unit normal on ∂Br
is given by −→n = |∇ρ|−1∇ρ, where ∇ρ means the Euclidean gradient of ρ. Balls and
spheres centred at (z0, t0) are defined by left translation, that is,

Br(z0, t0) = {(z, t) ∈ Hn | ρ(z, t; z0, t0) < r}

and
∂Br(z0, t0) = {(z, t) ∈ Hn | ρ(z, t; z0, t0) = r} .

Introducing the function

ψ(z, t) = |∇Hρ|
2 =

|z|2

ρ(z, t)2 (2.1)

allows us to write
|Br | =

∫
Br

ψ dz dt.

Using polar coordinates that match the gauge norm (1.2) forHn (introduced by Greiner
[12]), it is not hard to see that there exists a constant ωQ > 0 depending only on Q such
that

|Br | = ωQrQ.
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We now recall the co-area formula (see [16, Theorem 4.2.1]): if f : Rm → Rn is
Lipschitz and m ≥ n, then∫

Rm
g(x)Jn f (x) dHm

x =

∫
Rn

∫
f −1(y)

g(x) dHm−n
x dHn

y (2.2)

for every integrable function g.
Applying (2.2) with f = ρ(z, t) and g = ψ(z, t)/|∇ρ(z, t)| gives

|Br | =

∫
Br

ψ(z, t) dH2n+1 =

∫ r

0
ds

∫
∂Bs

ψ(z, t)
|∇ρ(z, t)|

dH2n. (2.3)

Next, we collect some basic facts about the horizontal gradient ∇H on Hn. For a
multi-index J = (α1, . . . , α2n) ∈ N2n, let

XJ f = X
αi1
i1

X
αi2
i2
· · · X

αi2n
i2n

f

denote a horizontal derivative of f of order |J| =
∑2n

j=1 α j. The natural volume in Hn is
the Haar measure, which coincides with Lebesgue measure L2n+1 in R2n+1. Let Ω ⊂ Hn

be a bounded domain. If k ∈ N and 1 ≤ p <∞, the horizontal Sobolev spaces HWk,p(Ω)
can be defined in the natural way (see, for example, [23]):

HWk,p(Ω) = { f : Ω→ R | |XJ f | ∈ Lp(Ω) for 0 ≤ |J| ≤ k}.

This is a Banach space with the norm

‖ f ‖HW1,p(Ω) =

( ∫
Ω

( 2n∑
i=1

|Xi f |p + | f |p
))1/p

.

The closure of C∞0 (Ω) in HW1,p(Ω) is denoted by HW1,p
0 (Ω).

Now we recall some properties of the sub-p-Laplace equation (1.3). We say that a
function u ∈ HW1,p(Ω) is a weak solution of (1.3) if∫

Ω

|Xu|p−2 〈Xu, Xφ〉 = 0 for all φ ∈ HW1,p
0 (Ω).

It is easy to show that a function u ∈ HW1,p(Ω) is a local minimiser of the functional

I(v) =

∫
Ω

|Xv|p, 1 < p <∞,

if and only if u is a weak solution of (1.3).
For p = 2, it is now classical that the solutions of the equation ∆Hu = 0 are C∞

[14]. For p , 2, it is well known that weak solutions of the p-Laplace equation in
Euclidean space are of the class C1,α (see [7]). The C1,α regularity is optimal when
p ≥ 2, as shown by examples in [15]. The corresponding optimal regularity of the
sub-p-Laplace equation on the Heisenberg group was resolved recently by Zhong [24]
for p > 2 and Mukherjee and Zhong [20] for 1 < p < 2, following earlier work of
Ricciotti [21, 22].
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Next, we recall some basic identities on Hn. We denote by S the 2n × (2n + 1)
matrix relating the horizontal gradient ∇H in Hn and the standard gradient ∇ in R2n+1,
that is, ∇H = S · ∇, where

S =

(
In×n 0n×n (2y)T

0n×n In×n (−2x)T

)
.

Hence,

∆Hu =

2n∑
i=1

Xi(Xiu) = div(S T S∇u).

It is easy to check that

∆H f (ρ) = ψ
(

f ′′(ρ) +
Q − 1
ρ

f ′(ρ)
)
,

so that

∆Hρ =
Q − 1
ρ

ψ in Hn\{0}. (2.4)

To end this section, we give a simple and basic identity that will be used later.

Lemma 2.1. Let ρ and ψ be the gauge norm and the function defined above. Then

〈Xρ, Xψ〉 ≡
2n∑
i=1

XiρXiψ = 0 in Hn\{0}. (2.5)

Proof. The horizontal derivatives of ρ = (|z|4 + t2)1/4 and ψ = |z|2/ρ2 are

Xiρ =
1
ρ3 (|z|2xi + yit), Xn+iρ =

1
ρ3 (|z|2yi − xit)

and

Xiψ =
2xi

ρ2 −
2|z|2

ρ3 Xiρ, Xn+iψ =
2yi

ρ2 −
2|z|2

ρ3 Xn+iρ.

Therefore,

2n∑
i=1

XiρXiψ =

2n∑
i=1

(2xi

ρ2 Xiρ +
2yi

ρ2 Xn+iρ
)
−

2|z|2

ρ3 |Xρ|
2

=
2
ρ5

n∑
i=1

(xi(|z|2xi + yit) + yi(|z|2yi − xit)) −
2|z|4

ρ5

= 0. �
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3. Proofs of the main results

We first prove some properties of D(r) and H(r) and then prove the main theorems.

Lemma 3.1. Let u be a weak solution of the sub-p-Laplace equation (1.3) in BR. Then,
for any r ∈ (0,R),

Dp(r) =

∫
∂Br

|Xu|p−2u
〈Xu, Xρ〉
|∇ρ|

dH2n. (3.1)

Proof. As in the case p = 2, the proof is based on the divergence theorem. However,
for the general case 1 < p <∞, u is not C2. Hence, we need to use an approximation
argument. Let 0 < ε < 1. For Br ⊂ D ⊂ Ω, we construct a sequence of functions
uε ∈ HW1,p(D) which minimise the variational integral

Iε(v) =

∫
D

(ε + |Xv|2)p/2

over the admissible functions inKu(D) = {v ∈ HW1,p(D) | v − u ∈ HW1,p
0 (D)}. It is well

known that the minimising function uε is unique and uε is a weak solution to

2n∑
i=1

Xi((ε + |Xuε|2)(p−2)/2Xiuε) = 0. (3.2)

Recall that, for ε > 0, weak solutions uε to the above nondegenerate sub-p-Laplace
equation are smooth. This was proved by Capogna in [5] for p ≥ 2 and extended to the
full range 1 < p <∞ in [21] by adapting techniques of Domokos [6].

By integration by parts and (3.2),∫
Br

(ε + |Xuε|2)(p−2)/2|Xuε|2

= −

∫
Br

uε
2n∑
i=1

Xi((ε + |Xuε|2)(p−2)/2Xiuε) +

∫
∂Br

(ε + |Xuε|2)(p−2)/2uε
〈Xuε, Xρ〉
|∇ρ|

=

∫
∂Br

(ε + |Xuε|2)(p−2)/2uε
〈Xuε, Xρ〉
|∇ρ|

. (3.3)

By the recent results on the Hölder continuity of the horizontal gradient of the solution
to the sub-p-Laplace equation on Hn (see [20, 22, 24]), there exists α > 0, depending
only on p, Q and a positive constant M <∞, depending on p, Q and D, such that

max
(z,t)∈D

|Xuε(z, t)| ≤ M (3.4)

and, for each (z1, t1), (z2, t2) ∈ D,

|Xuε(z1, t1) − Xuε(z2, t2)| ≤ Mρ ((z1, t1); (z2, t2))α . (3.5)
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We note that α and M are independent of ε. By (3.4) and the Poincaré inequality for
the horizontal vector fields X (see, for example, [18, Theorem C]),

‖uε‖HW1,p(D) ≤ C,

where the constant C is independent of ε. Then, from the weak compactness of HW1,p,
there exist a subsequence of {uε} (still denoted by uε) and a function w ∈ Ku(D) such
that

uε ⇀ w weakly in HW1,p.

It is not hard to prove that w minimises the sub-p-Dirichlet integral
∫

D |Xv|p overKu(D)
and so w = u.

Furthermore, (3.4) and (3.5) imply that the sequences {Xuε} are uniformly bounded
and equicontinuous. On the other hand, applying the maximum principle of the sub-p-
Laplace equation (see, for example, [1, Lemma 3]) and noting that uε − u ∈ HW1,p

0 (D),
we see that the sequences {uε} are uniformly bounded. The equicontinuity of {uε}
follows from (3.4) and Morrey’s lemma on the Heisenberg group (see, for example,
[5, Lemma 4.5]). Therefore, by the Ascoli–Arzelà theorem, there is a subsequence of
{uε} and of {Xuε} (both still denoted by {uε} and {Xuε}) such that

uε → u and Xuε → Xu uniformly in D.

We get the desired identity (3.1) by taking ε→ 0 in (3.3). This completes the proof of
the lemma. �

Lemma 3.2. Let u be a weak solution of (1.3) in BR. Then there exists r0, depending
only on Q, such that either u ≡ 0 in Br0 or Hp(r) , 0 for every r ∈ (0, r0).

Proof. Suppose that Hp(r0) = 0 for some r0 ≤ R. Then u = 0 on ∂Br0 . Therefore, from
(3.1), Dp(r0) = 0, which implies that Xu = 0 in Br0 . Thus, u ≡ 0 in Br0 . �

Lemma 3.3. Let u be an arbitrary function in C1(BR). Then, for any r ∈ (0,R),

H′p(r) =
Q − 1

r
Hp(r) + p

∫
∂Br

|u|p−2uψ(p/2)−1 〈Xu, Xρ〉
|∇ρ|

dH2n

and

H′p(r) ≤
Q − 1

r
Hp(r) + p

∫
∂Br

|u|p−1|Xu|ψ(p−1)/2 1
|∇ρ|

dH2n. (3.6)

https://doi.org/10.1017/S0004972718001016 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718001016


[9] Unique continuation of p-harmonic functions 227

Proof. From (2.1) and the divergence theorem,

Hp(r) =

∫
∂Br

|u|pψ(p/2)−1 〈Xρ, Xρ〉
|∇ρ|

=

∫
∂Br

|u|pψ(p/2)−1〈S T Xρ,−→n
〉

=

∫
Br

div(S T Xρ|u|pψ(p/2)−1)

=

∫
Br

|u|pψ(p/2)−1∆Hρ + p
∫

Br

|u|p−2u 〈Xu, Xρ〉ψ(p/2)−1

+ ((p/2) − 1)
∫

Br

ψ(p/2)−2|u|p 〈Xρ, Xψ〉

=

∫
Br

|u|pψ(p/2)−1∆Hρ + p
∫

Br

|u|p−2u 〈Xu, Xρ〉ψ(p/2)−1,

where we used (2.5) in the last equality. Then, by the co-area formula (2.3) and (2.4),

H′p(r) =

∫
∂Br

|u|p∆Hρ

|∇ρ|
ψ(p/2)−1 + p

∫
∂Br

|u|p−2u〈Xu, Xρ〉
|∇ρ|

ψ(p/2)−1

=
Q − 1

r

∫
∂Br

|u|p

|∇ρ|
ψp/2 + p

∫
∂Br

|u|p−2u〈Xu, Xρ〉
|∇ρ|

ψ(p/2)−1

=
Q − 1

r
Hp(r) + p

∫
∂Br

|u|p−2u〈Xu, Xρ〉
|∇ρ|

ψ(p/2)−1

and (3.6) follows from this and (2.1). This completes the proof of the lemma. �

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. First fix r2 ∈ (r0,R0]. We can assume that the function Hp(r)
is not decreasing. Otherwise, the desired doubling property (1.4) is obviously true.
Since Hp(r) is continuous and Hp(r) is not decreasing, there exist some r1 ∈ (r0, r2]
such that Hp(r) ≤ Hp(r2) for any r ∈ [r1, r2].

Integrating both sides of (3.6) over (r1, r2),

Hp(r2) − Hp(r1) ≤ (Q − 1)
∫ r2

r1

Hp(r)
r

dr + p
∫ r2

r1

( ∫
∂Br

|u|p−1|Xu|ψ(p−1)/2 1
|∇ρ|

dH2n
)

dr

≤ (Q − 1)Hp(r2) log
r2

r1
+ ε

∫ r2

r1

rp−1
( ∫

∂Br

|Xu|p

|∇ρ|
dH2n

)
dr

+ C(p, ε)
∫ r2

r1

1
r

( ∫
∂Br

|u|p

|∇ρ|
ψp/2dH2n

)
dr

≤ (Q − 1)Hp(r2) log
r2

r1
+ εrp−1

2

∫
Br2

|Xu|p + C(p, ε)Hp(r2) log
r2

r1
,

where we have applied Young’s inequality in the second inequality. We shall fix ε
later. Dividing the above inequality by Hp(r2) gives

Hp(r2) − Hp(r1)
Hp(r2)

≤ (Q − 1 + C(p, ε)) log
r2

r1
+ εNp(r2), (3.7)

where r2 is fixed and Hp(r2) = maxr∈[r1,r2] Hp(r).
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Now, we shall estimate the right-hand side in (3.7). The frequency function Np(r) is
locally bounded by hypothesis, say ‖Np(r)‖L∞(r0,R0) = M. We first set ε = 1/(4M) and
then choose r∗ ∈ (r0, r2] sufficiently close to r2 so that, for any r1 ∈ [r∗, r2],

(Q − 1 + C(p, ε)) log
r2

r1
≤

1
4
.

Therefore, for r1 ∈ [r∗, r2],
Hp(r2) − Hp(r1)

Hp(r2)
≤

1
2
,

which implies that

Hp(r2) ≤ 2Hp(r1).

This completes the proof of Theorem 1.1. �

Proof of Theorem 1.2. Suppose that u is a nontrivial solution to the sub-p-Laplace
equation (1.3) and vanishes in Br1 , but that u is not identically zero in Br2 , where
Br1 ⊂ Br2 ⊂ Ω. For s > 0, define

s∗ = sup{s > 0 : u|∂Bs ≡ 0},

so that s∗ ∈ [r1, r2). By Lemma 3.1, for any radius λ ∈ (s∗, r2], we have Hp(λ) , 0.
Theorem 1.1 implies that there exists r∗ ∈ (s∗, r2] such that

Hp(r∗) ≤ 2Hp(r)

for every r ∈ (s∗, r∗]. This is a contradiction, because Hp(r)→ 0 as r→ s∗. �

Finally, we give a sufficient condition for the boundedness of Np(r).

Lemma 3.4. Suppose that u is a nontrivial solution to the sub-p-Laplace equation (1.3).
Assume that there exists a positive constant A <∞ such that∫

∂Br

|Xu|p

|∇ρ|
dH2n ≤ A

∫
∂Br

|u|p

|∇ρ|
ψp/2 dH2n. (3.8)

Then
Np(r) <∞.

Proof. By using (3.1), (3.8), Young’s inequality and the fact that |Xρ|2 = ψ,

Dp(r) =

∫
∂Br

|Xu|p−2u
〈Xu, Xρ〉
|∇ρ|

≤

∫
∂Br

|Xu|p−1

|∇ρ|1−1/p ·
|u|ψ1/2

|∇ρ|1/p

≤ ε

∫
∂Br

|Xu|p

|∇ρ|
+ C(ε)

∫
∂Br

|u|p

|∇ρ|
ψp/2

≤ (Aε + C(ε))Hp(r).

This gives Np(r) ≤ (Aε + C(ε)). �
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