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Construction of Fourier multipliers

Gavin Brown

The classical Wiener-Pitt phenomenon for measures may be

formulated as an existence theorem for Fourier multipliers with

irregular, spectral properties and the result has been refined in

various ways over the years. The most recent development is due

to Zafran, who exhibits abnormal spectral behaviour in

multipliers whose transforms vanish at infinity and which operate

on L , where 1 < p < °° , p £ 2 . Zafran's methods use

Littlewood-Paley theory, interpolation, and the construction of a

certain class of measures. We show here how the constructive

element of his proof may be considerably simplified and

sharpened.

1. Introduction and notation

The Banach algebra approach to the spectral analysis of L-.~

multipliers, in the guise of the study of convolution measure algebras, has

attained a level of development where the Wiener-Pitt phenomenon appears as

a relatively crude first approximation. See for example the survey of work

up to 1972 in [3]. There exists very little in the nature of a parallel

development for L -multipliers, where 1 < p < 2 , and this is due in

large measure to the difficulty of constructing examples. Zafran's

announcement [4] and subsequent exposition [5] are therefore of

considerable interest and the full consequences of his techniques remain to

be assessed. Our purpose here is limited. It will be shown that the

formidable technicalities of Section 3 of [5] can be replaced by some

simple lemmas which follow the same general lines but which achieve
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stronger results with economy of effort.

So that results can be stated quickly, we introduce the minimum of

notation. Attention will be restricted to the one dimensional torus, T ,

and its dual group, Z , regarded as the discrete additive group of

integers. Given an integrable function / on T , we write f* for the

Fourier transform of f . Given a bounded measure on T , we write y~

for the Fourier-Stieltjes transform of y . The symbol || || denotes the

L -norm as usual. Given a regular bounded measure y on T , we write

||y||M for the norm of that operator on L (T) which maps the function f

P P

to the function y * f . In particular, IIWIIM denotes the usual total

variation norm. Theorem 3.1 of [5] can be restated as follows:

THEOREM A. Suppose that K p < 2 , and let l/p + l/p' = 1 . Then

there exist measures {y.} . and a positive measure y on T , a
3 3~i

sequence {rc(j')} of positive integers tending to infinity, and a positive

constant c (depending only on p ) suoh that

d) (HuSllJ2 2 2X~nU) ,

V

(Hi) | y . | s y ^ j = 1, 2 , . . . .
3

The result which we regard as the most natural sharpening of Theorem A

and which is given a simple proof in this note is the following:

THEOREM B. Suppose that K p < 2 ) and let l/p + l/p' = 1 . Then

there is a sequence of measures {y } , and a probability measure y

suoh that

(Hi) \vn\ £ u , w = 1, 2,
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The simple methods used here make it possible to sharpen Theorem A

still further. In fact one is at liberty to specify the sequence
00 *

{w(j)}-_i in advance. Moreover the estimates in the inequalities labelled
3 ~^~

(ii) can be improved. To make this precise we introduce the quantity,

B (j, n) , defined by the formula

Sp(J» n) = 2 j

where the vector (m.) . is a list of the multiplicities of the distinct

words with j letters on 2 j commuting symbols. [For example, in the

case where n = 1 , 3=3, one sees that N = 56 and that the vector

(m.) ._, has the entry 1 six times, the entry 3 thirty times, and the

entry 6 twenty times.]

Because B [3, n(j)) is (much) larger than [jl/^)2~^3^p< , the

following result improves both Theorem A and Theorem B.

THEOREM C. Suppose that K p < 2 , and let 1/p + 1/p' = 1 .
00

Suppose further that {n(j)} . is an arbitrary sequence of positive
u~-*-

integers and that {a .} . is an arbitrary sequence of positive real

numbers such that o.< B (j, «(«/)) for each j = 1, 2 Then there

is a sequence {u .} ._, of measures and a probability measure \i such that
3 3~*-

(i) (Uut.llJ 2^

(ii) V \\M 3
P

(Hi) |u.| < u , 3 = 1, 2, ... .
3

Before passing to the proof of Theorem C, we indicate briefly how the

result relates to the Wiener-Pitt phenomenon. Of course this point is

covered in both [4], [5], and Theorem A suffices. The object is to define a

Fourier multiplier S on L (T) whose Fourier transform £~ vanishes at

infinity but whose spectrum is strictly larger than the closure of the
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range of S" . This is achieved by matching S~ with translates of

2 u~ (where u is given by Theorem B) on successive dyadic blocks.

It is immediately clear that property (i) of Theorem B ensures that S*

vanishes at infinity. Meanwhile property (ii) of that result leads readily

to the appropriate spectral radius estimate. The problem is to show that

the recipe does indeed define a Fourier multiplier on L (T) . Of course

this depends on the classical Littlewood-Paley Theorem, but the crucial

estimate depends on a simple but ingenious interpolation result ([5],

Theorem 2.1) which makes essential use of property (iii) in Theorems A, B,

or C. Accordingly one function of our simplification of Theorem A and its

proof is to underline the significance of Zafran's interpolation theorem.

In that sense the intent of this note is largely expository.

2. Proofs of Theorems A, B, C

The proofs are given in a sequence of lemmas. We suppose throughout

that p is a fixed real number lying strictly between 1 and 2 and that

p' is the conjugate index defined by l/p + l/p1 = 1 • A major freeing

manoeuvre is that we do not allow property (Hi) of the theorems to worry

us until the last moment. The first lemma is almost banal. 6(x) denotes

the probability atom at x .

N
LEMMA 1. Let w = £ m.&[x.) , where the points x. are distinct.

Then

Proof. For any <f> in L(T) such that = 1 , we have

I M L 2 II" * <HI,
P k

N
E

i

where <f> ( t ) = <j>(t-x.) . Now choose § = #Xr0 r i > where K i s a
Xi

normalizing constant, *i

[0,6]

denotes the indicator function of the

interval [0, 6] , and the positive number 6 is less than half the

https://doi.org/10.1017/S0004972700023522 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700023522


Fourier multipliers 467

minimum distance between the x.'s . Then the functions d> havet- x.̂

disjoint supports, so that

At = y f I m d> (t)\Prff- = V I I P
J v x ^ x.

The required result follows immediately.

The next lemma is merely the standard application of the Rudin-Shapiro

construction ([/], pp. 3^-36). The statement is slightly adapted to our

needs.

n
LEMMA 2. Suppose that u= * %(6(s .)+S(t.)) , and that the support

of \i has 2 distinct points. Then there exists a measure T

absolutely continuous with respect to u such that -r- = £L everywhere

and

Proof. For the sake of completeness we note that one defines

Po = o0 = 6(0) ,

for i = 0, 1, ..., n-X . Now one observes that

and defines

Lemmas 1, 2 have been simple versions of Lemmas 3.3, 3.U of [5]. Now

we avoid the effort of 3.5-3.8 of that paper.

LEMMA 3. Let j, n be positive integers and suppose that the subset

{s.,, t.. : i = 1, , n, k = 1, — , j] of T is independent (over the
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*{6(eik)+&[tik)) , k = 1, . . . , J .

rationals). Let

n

k i=l

dx.
Then there exist measures { T , } ? . such that -,— = ±1 everywhere and

suoh that the measure v , defined by v = v . = j ~ ^ T, J satisfies

(U) \\J\\M 2 B ( j , «) > (j!/<7J')
P

««-> l|v|L s l .
l

Proof. We choose T, corresponding to y, as in Lemma 2. The

hypothesis concerning the support is satisfied because of independence. It

follows immediately that (i) and (Hi) hold. Moreover the measure \P is

of the form

• £ - 1

where the x. are the distinct words written (additively) using j

letters chosen from the points of support of v . Once more we have used

independence. It now follows from Lemma 1 that

K ) p , n) .

The crude lower estimate for B (j, n) is obtained by considering only

those x. which use points of support from every T, . [There are 2^"

words of this type, and each occurs with multiplicity j \ . Accordingly

these terms contribute j !2"" ^ to the p-norm of the multiplicity
vector.J

The proof of the next lemma follows closely the Riesz product
construction used on pp. 367-369 of [5]. The flexible use of related

https://doi.org/10.1017/S0004972700023522 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700023522


Four i e r m u l t i p l i e r s 469

techniques is well known to harmonic analysts (of. [2 ] , p . 100). However

the simple observation that the result may be isolated in some generality

i s what led us to the broad simplification of Theorem A. Accordingly we go

through the detai ls of the proof.

LEMMA 4 . Let {v .} ._ be a sequence of measures on T 3 and
3 3—*-

[a •} -_n > {^ •} •_•, i {a •} -_n sequences of positive constants such that
3 3— -L 3 J-J- 3 3-1-

c . < b . , and
3 3

(i) ' ||vX s a ,
*J d

(ii)' b>-)3'\ - b • '

P

««<>' llvJL 2 1 , 3 = 1, 2, . . . .
1

Then there is a sequence {p .} ._ of measures and a probability measure y
3 3—1.

such that

(i) lllOIL 2 a . ,

»Mp 3 '

(Hi) |u . | s y , 3 = 1, 2, . . . .
3

Proof. Let {a.} . , denote the Fejer kernel (regarded as a sequence
3 3~i-

of measures). Using the fact that {a.} ._, is an approximate identity for
3 3—*-

L (7) together with hypothesis (ii)', choose a sequence {<)>.} ._-, of

trigonometric polynomials in the unit ball of L (T) and an increasing

sequence {r(j)} . , of positive integers such that

(1) (a / . %) J * (v .) 3 * <t> .11 2 c . , , 7 = 1 , 2 , . . . .
P

How let m denote Haar measure on 'T and, for each 3 , choose some

probability measure (0. with |v.| 2 a). . (The choice is guaranteed by
3 3 3

(Hi)'.) Set
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(2) orU) *^

w h e r e t h e Radon-Nikodym d e r i v a t i v e s f . , g . c an b e t a k e n a s t r i g o n o m e t r i c
3 3

polynomials in view of the fact that {a.}. , is the Fejer kernel.
3 3~^-

Observe that

(3) g.. > 0 , f g At)dm(t) = 1 , \f.\ 5 g. , j = 1, 2

Now we choose positive integers {N.} . _ such that

' 3 = 1, 2, ... ,

where e(j) is the maximum of the degrees of the polynomials f.,g. .
3 3

For a l l posit ive integers n, j , l e t us define trigonometric polynomials
h , h . b y the formulaen n,3

(5) hn{t) f

(6) h .(*) = /,(».*) f r

For each j , the measure p . is chosen as the vague (weak*) limit of
3

the sequence {h ..m\ . The measure p is chosen as the vague limit of the

sequence {h .m) .

It is necessary to check that these limits do exist but this follows

readily from the lacunarity condition (k) together with the norm condition

embodied in (3). The point is that the constant term in each " g. is one,
3

and the orthogonality relations resulting from [h) show that

h (t)dm(t) = 1 for each n . Taking account of the remaining statements
J «
in (3), we see first that each measure h -m is a probability measure, and

n
then that each measure h ..m lies in the unit ball. We are now

n,3

guaranteed at least one vague limit point for each of the sequences under

discussion but, in fact, we can use the lacunary orthogonality relations to

write down explicitly the unique possible Fourier-Stieltjes transforms
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u~, y~, for limit points u,., P • Each of \i"., v~ vanishes on any
3 3 3

integer which fails to be a "word" of the form

M
£ ejNk , with \ek\ < 8(%) ,

and, on such a word, y^ takes the value
3

while p~ takes the value

Of course we are now able to verify property (i), because

It is also straightforward to check property (ii). To this end it seems

easiest to fix j and introduce some more notation. We let

and note that

(8) fa)3 * i>. =q..m .

One verifies (8) by comparing Fourier-Stieltjes transforms. The

definitions of ty., q. given in (7) show that both t|i~, q". vanish off the
3 3 3 3

multiples of J, . On the other hand, on an integer of the form mN. , ty*.
3 3 3

takes the value <C^(w) , and q". takes the value p".(m) which in turn
3 3 3

equals f .M3<t>".(m) . Equality (8) is now obvious. From (l), (7), (8), we
3 3

obtain

while

This establishes property (ii) and the proof is complete.
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It remains to remark that the combination of Lemmas 3 and k yields

Theorem C. Suppose that we have been given the sequences {c.}._ ,
3 3 —1

(«(j)} •_-, as in the statement of the theorem. The existence of

independent sets presents no problem so we apply Lemma 3 for each pair

3, n(j) and relabel the resulting measure v. / .> as v. . Now we
3 9^w' 3

simply apply Lemma h with (a.)2 = 21~n(k0") , b . = B (j, n{j)) . We
3 3 P

showed in the proof of Lemma 3 that

' <BpU,n) ,

so it is clear that Theorems A and B are consequences of Theorem C. All

assertions have now been verified.
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