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COMMENSURABILITY AND ELEMENTARY EQUIVALENCE OF
POLYCYCLIC GROUPS

DEBORAH RAPHAEL

It is shown that two polycyclic-by-finite groups G and H, satisfying the same
sentences with one alternation of quantifiers, are commensurable. In fact we show
something stronger: given n > 1 there is a subgroup Hn of H and a subgroup <?„
of G such that Hn~G, Gn~H and the indices [G : Gn] and [H : Hn] are finite
and prime to n.

1. INTRODUCTION

This work is motivated by a problem proposed by G. Sabbagh: to find an algebraic
characterisation of elementary equivalence in the class of polycyclic-by-finite groups.
F.Oger solved this problem for finitely generated finite-by-nilpotent groups; in [7], he
proves that two finitely generated finite-by-nilpotent groups G and H satisfy the same
sentences if and only if G x Z ~ 2 T x Z . This result can not be generalised to polycyclic-
by-finite groups: there exist polycyclic-by-finite groups G and H such that G = H and
G x Z ^ 5 x Z . Here we give a necessary condition for any two polycyclic-by-finite
groups to satisfy the same sentences with one alternation of quantifiers.

THEOREM. Let G and H be polycydic-by-finite groups satisfying the same sen-
tences with one alternation of quantisers. Given an integer r > 1, tiere is a subgroup
Hr of H and a subgroup GT of G such that HT~G, GT~H and the indices [G : G>]
and [H : HT] are finite and prime to r.

This Theorem is a generalisation of [5], where Oger proves the same result in the
case G and H are finitely generated finite-by-nilpotent groups. The techniques used in
[5] do not work for polycyclic-by-finite groups and we do not suppose this result known
in the proof of the Theorem.

The aim of Sections 2, 3 and 4 is the proof of the Theorem. In Section 2, we prove
a few lemmas concerning subgroups defined by formulas. Section 3 deals only with
polycydic-by-finite groups: we give a sufficient condition for a subgroup to have finite
index prime to a given integer and we show how to arrive at this condition applying
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426 D. Raphael [2]

the lemmas of Section 2. All we need in the proof of the Theorem is given in this
section; the proof itself is given in Section 4. In Section 5 we discuss the connections
between some equivalence relations in the class of polycyclic-by-finite groups (the two
equivalence relations appearing in the Theorem, commensurability, = , "having the
same finite images"); in particular, we give an example showing that the converse of
the Theorem is not true.

[12] is our basic reference for polycyclic-by-finite groups. If G is a group, H <G

means that H is a subgroup of G; if n ^ 1 is an integer, Gn is the subgroup (gn |
g£G)\ G' is the derived subgroup [G, G]; ((G) denotes the centre of G; f(G) is the
set of isomorphism classes of the finite images of G; if G is polycyclic-by-finite, h(G)

is the Hirsch number of G.

The definitions of formula (existential, universal, quantifier free), sentence and lan-
guage can be found in [2]. The formulas considered here are in the first-order language
of groups, L = {•,*~1,1}, where • is a binary function for the group operation, * - 1 is
an unary fuction for the inverse and 1 is a constant for the identity element.

2. DEFINABILITY

A formula <f> with one alternation of quantifiers can be written either in the form
(3Xa) . • • (3*»)(V Yi)... (V Ym)6, or in the form (V Y{)... (V Ym){3X1)... (3Xn)$,

where 9 is a formula without quantifiers. The first one is called an 3 V formula and
the last one a V3 formula. Given a formula <f)(Xi, ..., Xn) with n free variables and
a group G with </i, . . . , gn in G, we say that gi, ..., gn satisfy <f> in G, and we write
GN^( j i , . . . , gn), if <f>(gi, . . . , gn) is true in G. Given groups G and H we write
G = H if G and H are elementary equivalent; we write G=\H if G and H satisfy
the same sentences with one alternation of quantifiers.

DEFINITION: Let <f> be a formula with one free variable and let G be a group. We
denote by G^, the set {g £ G | G1= <f>(g)} • Clearly, G$ is a subgroup of G if and only
if <t>{\) and (VX)(Vy)((<£(X)A<£(r))-^(Xy-1)) are true in G. In this case, we say
that § defines the subgroup GQ in G.

From now on we shall often make use of formulas with one free variable defining
subgroups in a given group G. When it is clear from the context that the formula must
have one free variable we do not state this hypothesis explicitly.

LEMMA 2 . 1 . Let <j> and ij> be formulas. Tie following four statements hold.

(i) For any group G, if G$ is a subgroup of G then G,p is a characteristic

subgroup of G (in particular, G^ <G).

(ii) For any group G such that GQ and G$ are subgroups of G, we have
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(iii) TAere is a formula 7 such that G7 = GQG-^, for any group G in which
G$ and G-0 axe subgroups. If <j> and ifr are existential, so is 7 .

(iv) If <j> and rf> are existential, then there is an existential formula A such
that G\ = {Gj,)^, for any group G with G$ subgroup of G and ( G ^
subgroup of G$.

PROOF: In order to prove (i), it suffices to observe that formulas are preserved by
automorphisms (and in particular by the inner automorphisms). The proof of (ii) is
straightforward. For (iii), set y(Z) equal to (3X)(3Y)((j>(X) A ip{Y) A (Z = XY)).

To prove (iv), we write ij> in the form ( 3 y i ) . . . (3Yn)if>'(Y!, ...,Yn,Y), where ij>'

is a formula without quantifiers. The statement follows easily if we set X(Z) equal to

The fact that subgroups defined by formulas are normal (Lemma 2.1 (i)) will often

be used without any further comment.

LEMMA 2 . 2 . Let (f> and ip be existential formulas and let G and H be groups

such that G=i H. The following statements hold:

(i) G,j,<G if and only if H^-^H .

(ii) G$ C G4, if and only if ff^C^.

PROOF: Since <j> is existential, <£(1) and (VX)(Vy)((<£(X) A^Y^^XY'1))

are V3 formulas. This proves (i). For any group K, the sentence (VX)(ip(X)—><}>(X))

is satisfied in K if an only if K^ C K$. Statement (ii) follows from the fact that this
sentence is V 3 if -0 and <j> are existential. D

In Chapter 3, we deal with several situations in which we have to describe finite
groups by formulas. In order not to repeat slighty variations of the same argument, we
state Lemma 2.3 bellow.

LEMMA 2 . 3 . Let <j> and ij> be formulas and let G be a group such that G-^, and
G^, are both subgroups of G with G-$ C G^ and |G^/G^| = n finite. Then, there is a
formula f3(Xi, ..., Xn) satisfying the following two conditions.

(i) For every group H with subgroups Hj, and H^, such that H-^, C H$, we
have Ht=/3(bi, ..., bn) if and only if {biH^,... ,bnH^,} is a subgroup of
H^/H^ isomorphic to G^/G-^ .

(ii) If <f> and if) are existential then /? is 3 V; if <j> and ip are quantifier free

formulas then /3 is quantifier free.

Moreover, if <j> and ip are existential and H is a group with G=\B we have also:

(iii)

(iv)
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PROOF: Set Gt/Gj, = {a 1 G v . , . . . , a n G^} and let a : { 1 , . . . ,n} x { 1 , . . . , n } — >

{ 1 , . . . , n } be such that OiOjo"^^-) G G^ for l^.i,j^.n. Denote by Sn the permutation
group of { 1 , . . . , n} and define /?(Xi, . . . , Xn) as:

/ \ *(*.)) A ( / \ ^ V ( ^ X r 1 ) ) A ( \ / / \) (
t < j $ n «ES. l<

Proof of (i). Suppose H is a group in which Hj, C 27^ are both subgroups of H
and let bi, ... ,bn be in 27. By interpretating )9i(fri, . . . , &„) and f32(bi, • • • > &n) in
27, we conclude that 27 t=/?(&i, . . . , frn) if and only if the two following conditions hold:

(a) {biHj,,... ,bnH^,} is a subset of H^/H^ which has n elements.
(b) There is n £ Sn such that bibjH.^ is equal to b^o^ij^H^, for 1 ̂  i,j ^n.

So, if H t= /?(&i, . . . , &n), by (a) we can define the function /„. : G^/G-^—*H,j,/H^ given
by the equalities /^(aiGi/,) = b^^H^j,, for 1 ^ i ^ n; moreover, this function is injective
and S( / ) is faHj,,... ,bnH^,}. By (b) we know that fv £
Therefore, {biH$,... ,bnHj,} is a subgroup of H^/H^ isomorphic to

Conversely, suppose {b^Hy,... ,bnHj,} is a subgroup of H^/Hy isomorphic to
Gf/Gj,. It is clear that (a) holds. So, we only have to prove that (b) holds. Let
/ : Gf/Gj, •—» H^/H^ be a monomorphism whose image is {b\H-$,..., bnH^,} and take
7T G Sn such that /(a,-G^,) = b^^H^, for 1 ^ i ^ n. Since aidjG^ is equal to aa(i)7)Gy,,
/ sends a.iajG-$ to bKOtT^itj)H^. As / is a group homomorphism we conclude that
bibjH-^ is equal to bnOa(i,j)IIj, for l^i,j ^n. Then (b) is true and (i) is proved.

Proof of (ii). This is a direct consequence of the definition of f).
Proof of (iii). Suppose that G=iH. Recall that, by Lemma 2.2, H^dH^, and they

are both normal subgroups of H. From (i) and (ii) we know that G satisfies the 3 V
sentence (3-X"i) ... (3Xn)0. Then, there are bi, ...,bn such that 27 h/?(&i, . . . , bn).
Again by (i), there is a group monomorphism from G^/Gj, to 27^/27^. So, to prove that
these two finite quotient groups are isomorphic, it is enough to show that |27^/27^| ^ n.
Consider the sentence 9 given by:

V

When interpreted in a group K such that K,/, C Kq, are both subgroups of K, 0 says
"Kt/Kj, has < n elements". The sentence 9 is V3 and G\=9. Therefore, if 27 =i G
then 27 satisfies 9, and so, |27^/27^| ^ n .

Proof of (iv). Since |G^/G^| = n, (iv) is a direct consequence of (i) and (iii). D
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COROLLARY 2 . 4 . Let L be a finite group and suppose \L\ — n. Then, there ex-

ists a quantifier free formula. /?i,(Xi , • • •, Xn) and an umVersaJ formula PL(XI > • • • I Xn)

such that, for every group H, the following statements hold:

(1) H^0L{h\t • • • i hn) if and only if {hi, ..., bn} is a subgroup of H iso-
morphic to L.

(2) H t= P L ( / I I , . . . , An) if and only if {hi, ..., bn} is a normal subgroup of
H isomorphic to L.

PROOF: (i) In Lemma 2.3, take X = X and X = 1 as being <j>(X) and il>(X) re-
spectively, and take G equals to L. Now, for every group H, H.^ = H and Hj, = 1. By
Lemma2.3-(iii), the formula (3(X\, ..., Xn) is quantifier-free. Taking (3L{XI, . . . , Xn)
equal to the this formula, Lemma 2.3-(ii) proves (i).

(ii) Take pL(X) as (VJQ( ( A V XXiX'1 = Xj) A/3L(X)) , where X

is (Xi, . . . , Xn). We have added to the formula 0L a formula saying "the conjugate
of Xi by any element is among Xi, ..., Xn". Now (ii) follows from (i). U

COROLLARY 2 . 5 . Let <f> and tj> be existential formulas and let G be a group

such that G+ and G$ are both subgroups of G. Suppose that G-QCGJ, and that

|GV/G^| is finite. Let j / i , . . . , y* be elements of G such that G# C (yi, . • •, y* )G,p.

Then, there exists an 3 V formula 7(Yi, . . . , K*) satisfying the following two conditions:

(i) Gt=j(yi, ...,yk);
(ii) H N 7(^1, . . . , yk) implies Hj, C ( zi, . . . , zk )Hj,, for every group H with

G=iH.

PROOF: Put n = |G^ /G^ | and consider the 3 V formula /3(Xi, . . . , Xn) given in

Lemma 2.3. Item (iv) of the same lemma implies that, for every group H with G = i H,

we have: /?(&!, . . . , bn) is true in H if and only {bi H^,,..., bnHj,} is equal to H^/H^,.

Let oi , . . . , a n in G be such that G^/Gy = {aiGj,,... ,anGj,}, and set y =

(j/i, . . . , yjt) and Y = (Yi, ...,Yk). Since G^C (yi, ..., yk )G^, there are n words,

«i ( F ) , . . . , u n ( F ) , such that ui(y)G^ = aiG^,,... ,u n (y)G^ = anGj,. Define -y(Y) as

being /?(«i ( F ) , . . . , « n ( F ) ) • This formula is 3 V because /? is 3 V . As £ ( a i , . . . , zn)

is true in G, we know that Gl=7(j7). This proves (i).

Now, let J? be a group for which G=iB and let 1 — (zi , ..., zk) be such

that JI l=7(z) . Then, H P/3(ui(z),... ,« n (z)) and we have that H^/H^, is equal to

{ui(j)H^,,... ,un{z)H^,}. Consequently, H$ is contained in ( z i , . . . , zk)H^,. D

3. POLYCYCLIC-BY-FINITE GROUPS

We begin this section with a result on polycyclic-by-finite groups that gives a
sufficient condition for a subgroup to have finite index prime to a given integer.
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PROPOSITION 3 . 1 . Consider a polycyclic-by-finite group G, an integer c ̂  1
and a chain of normal subgroups of G, 1 — Gc+i <\GC<3 • • • <3 G\ <3 G, such that G/Gi

is finite and Gi/Gi+i is Abelian for 1 ̂  i ^ c. Suppose K is a subgroup of G and r ^ 1
is an integer. If G = KG\ and Gt-C KG!-, for l^i^c, then [G : K] is finite and

prime to r.

PROOF: We first treat the Abelian case.

(i) Given finitely generated Abelian groups B<A and an integer r > l , if A —

BAr, then [A : B] is finite and prime to r.

Given a finitely generated Abelian group H, write H as the direct sum of a free Abelian
group and a finite group. Now it is easy to show that, if Hr = H, then \H\ is finite
and prime to r. Setting H equal to A/B, (i) follows.

We prove the proposition by induction on c. If c = 1, then G\ is Abelian and
d = KG^nGi = (-KTlGi)GJ; from (i), it follows that [Gi : KnGi] is finite and
prime to r. Since G = KG\ and G\ is normal in G, then [G : K] is [Gi : KC\G{\.

Now suppose c> 1. Set TC = KGC/GC, G - G/Gc and G~i = G,/Gc, for 1 < i < c. By
the induction hypothesis, we know that [G : K] is finite and prime to r . As [G : K]

is equal to [G : KGC], it is enough to prove that [KGC '• K] is finite and prime to r.

The subgroup Gc is finitely generated Abelian and Gc = KGr
cP\Gc = {KC\GC)GT

C.

Therefore, by (i), the index [Gc : K C\ Gc] is finite and prime to r . As [KGC : K] is
equal to [Gc : K D Gc], the proposition is proved. D

In the proof of the Theorem, one of the things we need is: a 3 V formula 7 with n

free variables and such that if H N f{hi, ..., h-k) then Hr — (hi, ..., hk ) is a subgroup
of H whose index is finite and prime to r. We shall use the proposition above to achieve
this. So, the next results clear the way to build a formula implying the proposition's
hypothesis. The formula itself is given in Corollary 3.6, at the end of this section. We
recall two results that allow us to describe certain subgroups by existential formulas:

(i) Let G be a polycyclic group. There exists a positive integer k such that

every g belonging to G' can be written as a product [<7i,<72] • • • [<72*-i)ff2*],

where gi, ..., gzk are in G.
(ii) Let G be a polycyclic-by-finite group and let m Jsl be an integer. There

is an integer r such that every g in Gm can be written as g = g™ • • • g™,

with pi, . . . , gT in G.

The first result is a consequence of a theorem proved by Rhemtulla in [10]. A proof
of (ii) can be found in [6]. See also [11], where Romankov generalises these results to
any verbal subgroup provided the group G is polycyclic. A direct consequence of these
results is the following lemma.
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LEMMA 3 . 2 . (i) If K and H are polycyclic groups, there is an existential for-

mula X such that Kx = K' and HX = H'.

(ii) If K and H are polycyclic-by-Gnite groups and m > 1 is an integer, there

is an existential formula 7 such that K-, — Km and H^ = Hm.

P R O O F : (i) Define X(X) as ( 3 ^ . . . 3Y2i)(X = \YUY2] ••• [Y2i-i,Y2l}), where each
element of H' and each element of K' is a product of I commutators.

(ii) Similarly, define j(X) as (3Yi... 3Y.)(X = Y? • • • Y,m), where each ele-
ment of Hm and each element of Km is a product of s m-th powers.

Now we apply the results of the preceding section to polycyclic-by-finite groups. In
order to make notation lighter we have chosen to write G™ instead of (G^)m (where
G is a group, m is an integer and <f> is a formula).

LEMMA 3 . 3 . Let G and H be polycyclic-by-finite groups such that G=iH.
Let tp and <j> be existential formulas such that G^ and G^ are subgroups of G with
G$ C G^. If G^/Grj, is Abelian then H^/E^ is isomorphic to G^/G^.

PROOF: Before beginning the proof, we remark that H^/H^, makes sense since,
by Lemma 2.2, H$ C H$ and these two sets are normal subgroups of H. The sentence

(VX)(Vy)((<£(X)A<£(y))->V'(Xrj*'~ly~1)) i s V 3 i t h i s sentence means "Kt/Kj, is
Abelian" in any group K for which K^<\K, K^,<K and K^cKj,. Thus, G^/G^
Abelian implies H^/H^ Abelian.

Two finitely generated Abelian groups A and B are isomorphic if and only if, for
each integer m > 1, the finite groups A/Am and B/Bm are isomorphic. Moreover, we
have:

G?) and

Thus, it is enough to show that G4,/ {G^G™} ~ H+/ (H^,H^\ for each m > 1.

It follows from Lemma 3.2 and Lemma 2.1-(iii) and (iv) that, for each m > 1, there
is an existential formula 0 such that Ge = G^G^ and He = Hj,H£. As G^/Ge and
H^/Ho are finite, Lemma 2.3 yields G^/Ge ~ H^/Hg. D

PROPOSITION 3 . 4 . Let G and H be polycyclic-by-finite groups such that
G =1 H. Then, there are two positive integers m and c and there are existen-
tial formulas (j)1,... ,4>c+1 such that 1 — G^c+i < G^c < ••• <G^i = G m and 1 —

< Hp < • • • < ! Hp = Hm are the derived series of Gm and Hm. Moreover,

^i+i ^ Hp /Hfi+i ,for l^i^c.
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PROOF: There is an integer m > 1 such that Gm and Hm are polycyclic and there-
fore soluble. Let c ^ l be the minimal integer such that Gm and Hm are soluble of class
^ c. Consider 1 = Gc+1 < Gc < •• • < Gx - Gm and 1 = Hc+1 <3 Hc < • • • < Hi =
Hm, where Gi+i - [Gi,Gi] and Hi+1 = [Hi,Hi], for l ^ t ^ c . By Lemma 3.2, there
is an existential formula that defines Gm in G and Hm in H. Also, for each integer
i > 1, there is an existential formula that defines Gi+i in Gi and Hi+i in Hi. Us-
ing induction and Lemma 2.1-(iv), we see that, for each t6 {1 , . . . ,c + 1}, there is an
existential formula 4>x such that Gi — Gp and Hi = Hp .

By Lemma 3.3, we know that G^i/G^i+i ~ Hp /Hp+i, for 1 ̂  i ^ c. The existence
of these isomorphisms implies that G^i = 1 if and only if Hp = 1 and so, Hm and
Gm are both soluble of class c. U

COROLLARY 3 . 5 . Let G and H bepolycyclic-by-finite groups such that G=iH.
Then G and H have the same Hirsch number.

PROOF: We follow the same notation of the preceding proposition. The groups
G/Gm and H/Hm are finite and so h(G/Gm) = h{H/Hm) = 0. Proposition 3.4
implies that

h(G) - h(Gm) = J^hiG^i/G^ =J2H^i/H^+l) = h(Hm) = h(H).
»=i t=i D

Now, we can finally show that the hypothesis of Proposition 3.1 can be expressed
by a formula.

COROLLARY 3 . 6 . Let G and H be polycych'c-by-finite groups with G=\H
and let r ^ 1 be an integer. Suppose {<7i,. ..,(?*} is a set of generators of G. Then,
there is an 3 V formula "f(Xi, ..., Xk) satisfying the following conditions:

(i) 7(ffi. • • • > 9k) is true in G;
(ii) if H\= *f(hi, ..., hk) then (hi, ..., hk) is a subgroup of H whose index

is finite and prime to r.

PROOF: By Proposition 3.4, there exist integers m ^ l , c ^ l and existencial for-
mulas (f)1,... ,<f>c+1, such that the derived series of Gm and Hm are

- •• <G^i =Gm and 1 = H^+i <H^ < • •• <Jfy = Hm.

We write JC = (Xi, ..., Xk). The group G/G^i = G/Gm is finite and G =
(5i> • • - > 9k )G(j>i • By Corollary 2.5, there exists an 3 V formula, 7o(^) , such that
G\= 7 0 ( 5 1 , •••,9k) a n d , if H\=-yo(hi, ...,hk), t h e n H = (hu ...,hk)H<t>i .

By Lemma 2.1-(iv) and Lemma 3.2, for each t G {1 , . . . , c}, there is an existential
formula V7* such that (G^i) — G^,i and (H^i) = H^i. The group Gp/G^i is finite
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and Gp is contained in (gi, ..., k )G^%. Therefore, Corollary 2.5 implies that there is

an 3 V formula 7;(X) , such that: G1= 7i(«7i, . . . , gk) and, if H t= "fi(hi, . . . , hk), then

Denote by y(X) the 3 V formula f\ n(~X). Clearly G satisfies 7(31, . . . , flr*)-
i=0

Moreover, H t= 7(^1, .. •, hk) imphes that H = (hi, ..., h/, )Hm and that H^i is con-
tained in (hi, ..., hk) {Htpi)r for 1 ^ i ^ c. So, (i) is proved and (ii) is a direct conse-
quence of Proposition 3.1. D

Following the notation of the Corollary above, we would like to have HT =
(hi, ..., hk) isomorphic to G. Using the above results, it is not dificult to obtain
Hr isomorphic to a quotient of G by a finite normal subgroup (this is detailed in the
theorem's demonstration). So, what we need is a formula that forces HT to be isomor-
phic to G, knowing that Hr~G/S with \S\ <oo. Finite subgroups can be described
by formulas; consequently, we can oblige Hr to contain a subgroup isomorphic to a
certain finite subgroup of G. So, we are done if we have a finite subgroup Ta of G
such that TG '-* G/S with 5 finite obliges 5 = 1. Then, it is enough to take TQ as
the maximal finite normal subgroup of G.

DEFINITION: Given a polycyclic-by-finite group G, we shall note by TQ the unique
maximal finite normal subgroup of G. (The existence of such a group is guaranteed
because G satisfies the maximal condition on subgroups; uniqueness follows from the
fact that the product of two finite normal subgroups is a finite normal subgroup).

4. PROOF OF THE THEOREM

Let G and H be polycyclic-by-finite groups and let r ^ 1 be an integer. As the
hypothesis of the Theorem are symmetrical on G and H, it is enough to show that
there exists HT subgroup of H such that G ~ Hr and \H : Hr] is finite and prime to
r. So, the Theorem is a consequence of the following two facts.

FACT 1. There is a subgroup Hr of H such that:

(i) Hr is an homomorphic image of G;
(ii) [H : Hr] is finite and prime to r;

(iii) there exists T < H such that T C Hr and T~TG.

FACT2. If HT is a subgroup of finite index in H, satisfying conditions (i) and (iii) of
Fact 1, then HT~G.

PROOF OF FACT 1: Consider a finite presentation of G:

G = ( g i , . . . , g k - R i ( g i , •••, 9 k ) = ••• =
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From now on, we write X = (Xi, . . . , Xk) and g = (gi, •.., gk) • Let f(X) be the 3 V

formula given by Corollary 3.6 for the generators gi, ..., gk of G and for the integer r.

We know that G satisfies j(g). Suppose {xx, . . . , xn} = Ta and consider the universal

formula pTa(X\, . . . , Xn) given by Corollary 2.4. Let ui (X), •.. ,un(X) be n words

such that Xi = Ui(g), for l ^ i ^ n . Then G satisfies /JTG(MI(<7)> • • • j ^n

Define the formula 0(X~) as

= 1) A7(x) APTG(UI(X),... ,un(x)).

and 6(~X) is an 3 V formula. Since G=iH, the 3 V sentence (3X)0(X)

is satisfied in H. Let hi,...,hk be such that JET i= 0(hi, ..., hk) and set JTr =

( hi, ..., hk ) • As H (= ( f\ Ri(hi, ..., hk) — 11 , the map g,—>hi induces a group

homomorphism from G to H. Since H\=-y(hi, . . . , hk), Corollary 3.6 implies that

[H : Hr] is finite and pr ime to r . As H \= pTa(ui(hi, ..., hk),.-. ,un(hi, . . . , hk)),

Corollary 2.4 implies that T = {ui(hi, ..., hk),... ,un(hi, ..., hk)} is a normal sub-

group of H isomorphic to TQ . Q

PROOF OF FACT 2: By (i), we can take S<\G such that G/S~HT. By Corollary

3.5, G and H have the same Hirsch number. Since [H : HT) is finite, we have h(G) =

h(Hr) and so, h(S) = 0, that is, 5 is finite.

By (iii), there is T<H such that T~Ta and TcHr. The isomorphism between

G/S and HT, implies the existence of T* < G such that S C T* and T*/S ~ TG. Since

5" and Ta are finite, so is T*; hence, T* C Ta, by the maximality of Ta • Now we have

Ta^T*/ScTa/S and so, 5 = 1. D

5. SOME EQUIVALENCE RELATIONS

We begin by giving the definition of commensurability and giving a name for the

equivalence relation that appears in the Theorem.

DEFINITION: TWO groups G and H are said to be commensurable if there exist

G, and H*, subgroups of G and H respectively, such that G» ~ 27, and the indices

[G : G»] and [H : H+) are finite. This notion has been introduced by Baumslag [1, p.9].

DEFINITION: TWO groups G and H are said to be strongly commensurable if,

for each n > 1, there are Gn and Hn, subgroups of G and H respectively, such that

Gn ~ H, Hn ~ G and the indices [H : Hn] and [G : Gn] are finite and prime to n.

Let G and H be polycyclic-by-finite groups and consider the following six equiv-

alence relations:

(1) GxZ~H xZ;
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(2) G = H;

(3) G^H;

(4) G and H strongly commensurable;
(5) G and H commensurable;
(6) T{G) = F(H).

(1) => (2) is a result of Oger and holds in the class of groups (see [8]). An example
showing that
(2) T̂ => (1) can be found in [9, Proposition].
(2) implies (3) is evident. To the best of the author's knowledge it is not known if (2)
and (3) are equivalent.
(3) ==> (4) is the Theorem we have proved here and (4) ^=> (3) is a consequence of
the example at the end of this section.
(4) => (5) is clear from the definitions and (4) => (6) can be easily proved (a proof
is given in next lemma).
Neither (5) implies (6) nor (6) implies (5) (see [1, p.9]). Consequently (4) is not implied
by either (5) or (6).

LEMMA 5 . 1 . Suppose G and H are polycyclic-by-finite groups strongly com-
mensurable. Then T(G) = F(H).

PROOF: It is enough to show that Jr(G)C!F(H). Moreover, we remark that
F{G) C T(H) if and only if, for each integer m > 1, we have G/Gm G T{H). The
proof of this is straightforward once we use that G/Gm and H/Hm are finite.

For each integer m > 1, there is K < G such that K ~H and [G : K] is finite and
prime to m. By the first paragraph, it is enough to show that G/Gm is isomorphic to
a quotient oi K. If p is a prime that divides \G/Gm\, there exists an element of order
p in G/Gm and so, p divides m. We conclude that \G/Gm\ is prime to [G : K]. As
the index [G : KGm] divides [G : Gm) and also divides [G : K], we have G equals to
KGm. Then G/Gm is isomorphic to K/(Gm C\K). D

EXAMPLE. Following [3], given a commutative ring R with 1 and a faithfull iZ-module
M, we define

I v n\
eR, m,n£M\.

J

Z, M) is a group under the usual matrix product. We identify T(R,M) to the set
Rx M x M with multiplication defined by:

(r,Tn,n)(r',m',n') = (r +r',m + m',rm' +n
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We have lr(H,M) = (0,0,0) and [(r,m,n),(r',m',n')] = (0,0,rm' - r'm). The cen-

tre C,(Y(R,M)) and the derived subgroup T(R,M)' are both equal to (0,0,M). So,

Y(R,M) is nilpotent of class 2.

Let R be Z[\/5i], the ring of algebraic integers in Q(y/Ei), and let M be the

R ideal generated by 2 and 1 + V5i. Then M is a non principal ideal of R. The

group T(R,R) is generated by (1,0,0), (\/5i,0,0), (0,1,0) and (0,y/5i,0). The group

T(R,M) is generated by (1,0,0), (v^t,0,0), (0,2,0) and (0,1 + V$i,0) . So, both

groups are finitely generated and nilpotent, therefore polycyclic. Proposition B of [3]

shows that T(R,M) and F(R,R) have the same finite images and are not isomorphic.

Here we prove that T(R, M) and T(R, R) are strongly commensurable but they do not

satisfy the same sentences with one alternation of quantifiers.

LEMMA 5 . 2 . Let R be Z[%/5i], the ring of algebraic integers of Q(\/5i) , and let

M be the ideal of R generated by 2 and 1 + y/Ei. Then T(R,M) and T(R,R) do not

satisfy the same sentences with one alternation of quantifiers.

PROOF: Let a(X) be the universal formula (VY)([X,Y] = 1). The formula a(x)

is true in T(R, R) (in T(R, M)) if and only if x is in F(R, R)' (in T{R, M)'). Now con-
sider the V3 sentence (VX1VX2)(3F1... 3YA)4>{X1,X2,Yl,... ,y4) where <f> is given
by:

A h°{YiYi+2) A MYiYi~+2))
»=1,2

A [YUY3] = 1 A [Y2,Y4] = 1 A [YUY2] = [XuX^Y^Y,] - [Xa,Jt2]3.

We shall show that this sentence is true in T(R,M) but is not true in T(R, R).

We first work in T(R, M). Clearly M is equal to {x + y\/hi £ R \ x + y is even }.
Moreover, for all r G R, each of the complex numbers r (l ± \/5»)/2 belongs to R if and
only if r belongs to M. We shall use these facts without stating. Given X\ and x2 in
T(R, M), the commutator [351,2:2] is equal to (0,0, a) with a in M. So, a( l ± \/Bi)/2

belongs to R. Consider the following elements of F(R, M):

Vl =( l ,0 ,0)y 2 =(0 ,a ,0) y3 - ( a ( l + %/5i)/2,O,o) Vi = (0,1 - VEi,0).

We have y^1 = ( - a ( l + \/5i) /2,0,0) and y^1 = (0, - 1 + y/Ei, 0) . Therefore, we know

that

yiy3 = ( l + a ( l + v/5i)/2,0,0) yu,,"1 = ( l - o ( l + v/5i)/2,O,o)

y2V4 = (0,0 + 1 - \/5t,0) jfei/-1 = (o,a - 1 + \ /5t ,o) .
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As a belongs to R, either 1 + a(l + \/5i)/2 and 1 — a(l + \ /5i) /2 are different from
zero and so, yiyj £ T[R, M]' and yiyj"1 £ F[iZ, Af]'. Also if we have a ^ — 1 + y/Ei and
a ^ 1 — y/hi, we know that y2yi and y2yT1 are not in T[R, M]'. Direct computations
show that

\yi,V»] = (0,0,a), [yi,y3] = (0,0,0), [2/2,1/4] = (0,0,0) and

[l/3,y4] = (0 ,0 ,o ( l + v/5i) ( l - V5t) /2) = (0,0,3a) = (0,0,a)3.

So, we have proved that if [xi,X2] ^ —1 + V^i and [xi,a;2] 7̂  1 — VK, then
^(xi,x2,J/i,--- ,1/4) is true in T(R,M). In the case [xi,x2] = — 1 + VEi or [xi.s^] =
1 — \/5t, we take

Zl= (1,0,0) z 2 = ( 0 , a , 0 ) zs = (a(l-VEi)/2,O,o) z4 = ( o , l + v/5i,o),

and we have that ^(xi, 23,21, . . . ,24) is true in T(R,M). Consequently T(R,M)
satisfies the sentence (VXX VX2)(3r!. . .3y4)<A(Xi,X2,YU.. . ,Y4).

Now we work in T(R,R). For 1 ̂ i ^ 4 , take W{ — (wn,Wi2,t(ii3) in F(.R,fl) and
call wl the element (wii,w«2) in -R x J?. Then [IW^IUJ] is equal to (0,0,det(wi,Wj)).
Suppose that [101,102] = ( 0 , 0 , 1 ) , [103,w>4] =(0 ,0 ,3 ) and [topics] = [tu2)u>4] = (0,0,0).
We have det(wi,ws) — det(vJ2,wl) = 0 and so, there are a u and <*24 in Q(\/5t)
such that WJ3" = ai3i«i" and w± = aaw^- As [103,102] is in (0,0,R), we know that
det(v>3,w~2~) is in R; moreover, det(wi,W2) = 1 implies 0:13 = det(w3, W2) and so, a\s
is in R. The same argument shows that <*24 is in R. Since [103,104] = (0,0,3), we
have:

3 = det(ws, W4) =

As ai3 and c*24 are in R and 0:13024 = 3, we conclude that either 013 = ±1 or
<*24 = ± 1 . So, we have either uJJ = ±wJ7 or WJ4 = ±107. Since (iti,i*2>W3)~ =
(—ui,—ii2,wiit2 —1*3) for every (1*1,1*2,1*3) in T(R,R), we conclude that one of the
four elements ioii«s, iciioij"1, tt>2«>4 or w2w^1 must be in (0,0, R) = T(R,R)'. What
we have proved above is that if 101, 102, 103 and 104 are elements of T(iZ, R) such that
[101,102] = (0,0,1), [103,104] = (0,0,3) and [101,103] = [102,104] = (0,0,0), then one of
the four elements 101103, iviw^1, 102104 or -u t̂o,̂ 1 must be in T(R,R)'. This shows
that if we put «i = (1,0,0) and x2 = (0,1,0) then [x i ,^ ] = (0,0,1) and, for any
1/1,... ,y4 in I \ R , R ) , the formula ^(x i ,x 2 ,y i , . . . ,y4) is not true in T(R,R). D

LEMMA 5 . 3 . Let R be the ring of algebraic integers of a finite Galois-extention
o/Q. Let M and N be non zero ideals of R. Then T(R,M) and V(R,N) are strongly
commensurable.
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PROOF: By the hypothesis of simmetry, it is enough to show that for each integer
m > l , there exists a subgroup H of T(R,N) such that H~T(R,M) and the index
[F(i?, N) : H] is finite and prime to m. We first prove the following fact:

FACT (A). For each integer TO > 1, there is an integer k which is prime to m and there
is an ideal M' of R such that M'~M and kNcM'cN.

Consider the ring Rm = {r/n : r£R and n £ Z is prime t o r n } . Since R is a
Dedekind domain, so is Rm. Moreover, Rm is a principal domain because it has a finite
number of prime ideals ( see [4, Corollary on page 13]). Consequently, there exists a Rm-

isomorphism / : RmM—* RmN. As M and N are finitely generated iZ-ideals, there
exists an integer t ^ 1 which is prime to m and such that tf(M) C N and tj~x (N) C M.

Therefore, f'1 (t2N) C iM and this implies t2N C f(tM) = tf{M) CN. Setting k = t2

and M' = tf(M), we obtain (A).

Now, put H = T(R, M'). It remains to prove that the index [T(R, N) : H] is prime
to 77i. Direct computations show that if L is an /Z-submodule of N then the index
[F(R,N) : T(R,L)] is equal to [N : L]2. Hence, it is enough to show that [N : M'] is
prime to TO. By (A), we know that [N : M'] divides [N : kN]; moreover, the index
[N : kN] is prime to m because it has the same prime divisors as A;. So, [N : M'] is
prime t o r n . D
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