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Exponential asymptotics and the generation of
free-surface flows by submerged line vortices
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There has been significant recent interest in the study of water waves coupled with
non-zero vorticity. We derive analytical approximations for the exponentially small
free-surface waves generated in two dimensions by one or several submerged point
vortices when driven at low Froude numbers. The vortices are fixed in place, and a
boundary-integral formulation in the arclength along the surface allows the study of
nonlinear waves and strong point vortices. We demonstrate that, for a single point vortex,
techniques in exponential asymptotics prescribe the formation of waves in connection with
the presence of Stokes lines originating from the vortex. When multiple point vortices
are placed within the fluid, trapped waves may occur, which are confined to lie between
the vortices. We also demonstrate that, for the two-vortex problem, the phenomenon of
trapped waves occurs for a countably infinite set of values of the Froude number. This
work will form a basis for other asymptotic investigations of wave–structure interactions
where vorticity plays a key role in the formation of surface waves.

Key words: surface gravity waves, vortex dynamics

1. Introduction

In this paper we study the steady-state nonlinear flow of an ideal fluid past a submerged
line vortex. As the vortices have fixed depth and horizontal displacement, they reduce to
point vortices in the two-dimensional flows considered. The inviscid and incompressible
fluid of infinite depth is assumed to be irrotational everywhere, except at the point vortices
themselves. For a flow in the complex z = x + iy plane, with a vortex at z = z1, the
complex potential behaves as

f = φ + iψ ∼ cz − iΓ
2π

log(z − z1), (1.1)
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Figure 1. The two physical regimes of underlying point vortices considered in this paper are shown. (a) A
single point vortex with circulation Γ is placed within the fluid. (b) Two point vortices, each with circulation
Γ , are located at the same depth within the fluid. These solutions have been computed using the numerical
scheme detailed in § 4.

where Γ is the circulation of the vortex, and the background flow is of speed c. The
non-dimensional system is then characterised by two key parameters: Γc = Γ/(cH),
relating vortex strength(s) to inertial effects, and the Froude number, F = c/

√
gH, relating

inertial effects to gravitational effects. Here, H is the depth of the point vortex and g is the
constant acceleration due to gravity.

The study of such vortex-driven potential flows is complicated by the following
fact. The solution of two-dimensional ideal fluid-flow problems involves finding the
velocity potential, φ, and streamfunction, ψ , in terms of the coordinates x and y, in
the functional form of f (z). However, it is often convenient to invert this dependence,
instead calculating z( f ), so that the physical variables now have the forms x(φ, ψ)
and y(φ, ψ). In this formulation, the free surface is a streamline along which ψ is
constant, so that the free surface is parametrised by x(φ) and y(φ). However, near the
point vortex, the local behaviour (1.1) cannot be inverted analytically to give z( f ). This
motivated the work of Forbes (1985), who reformulated the boundary-integral formulation
in terms of a free-surface arclength, s, and a more complex set of governing equations
results.

The imposition of a uniform stream as x → −∞ results in the generation of downstream
free-surface waves, as shown in figure 1(a). As hinted at in the preliminary numerical
investigations of Forbes (1985), the wave amplitude tends to zero as F → 0. In this
work, we confirm this behaviour and demonstrate, both numerically and analytically,
that the amplitude is exponentially small in the low-Froude-number limit. For instance,
the amplitude versus 1/F2 graph shown in figure 2 demonstrates the fit between our
asymptotic predictions of § 3 and the numerical results of § 4. We note that this theory
is nonlinear in the vortex strength, Γc, and the assumption of small Γc need not apply.
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Figure 2. The amplitude, ȳ, of the free-surface waves is shown for log(ȳ) versus 1/F2 for the analytical (line)
and numerical (dots) solutions of § 3 and § 4. These have a fixed value of the non-dimensional vortex strength,
Γc = 0.25. The graph confirms the exponential smallness of the waves. The solid line has a gradient of ≈
0.7395, computed using the exponential asymptotics theory of § 4.

The purpose of this paper is thus to characterise the formation of water waves using
the framework of exponential asymptotics. We show that these exponentially small waves
smoothly switch on as the fluid passes beyond the vortex, resulting in oscillations as
x → ∞ in the far field. When two submerged vortices are considered, the waves switched
on due to each of the vortices may be out of phase with one another and cancel for
certain values of the Froude number. This yields trapped waves between the vortices,
and a free surface whose derivative decays to zero as x → ∞. A trapped wave solution
is depicted in figure 1(b). This phenomenon of trapped waves has previously been studied
both for obstructions within the fluid and for flows of finite depth past lower topography.
For instance, both Gazdar (1973) and Vanden-Broeck & Tuck (1985) detected these
numerically for flows over a specified lower topography. More recent works, such as those
by Dias & Vanden-Broeck (2004), Hocking, Holmes & Forbes (2013) and Holmes et al.
(2013), have focused on detecting parameter values for which these trapped wave solutions
occur in various formulations.

The work in this paper provides a first step towards extending many of the existing ideas
and techniques of exponential asymptotics, previously developed for purely gravity- or
capillary-driven waves (e.g. Chapman & Vanden-Broeck 2002, 2006) to wave phenomena
with vortices. As noted above, because the governing equations require an alternative
formulation to that originally developed by Miksis, Vanden-Broeck & Keller (1981),
the asymptotic formulation we present here can be extended to other wave–structure
interactions where the more general arclength formulation of the water-wave equations is
required. In addition, there has been significant recent interest in the study of water-wave
phenomena with dominant vorticity effects, and we reference the recent extensive survey
by Haziot et al. (2022) and references therein. The exponential asymptotics techniques
developed in this work can also be extended to situations where capillary ripples are forced
on the surface of steep vortex-driven waves. The leading-order solution in these asymptotic
regimes would then be known analytically from the works of Crowdy & Nelson (2010),
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Crowdy & Roenby (2014) and Crowdy (2023), for example. We shall discuss these and
other exciting future directions in § 6.

2. Mathematical formulation and outline

We consider the typical configurations shown in figure 1. Following Forbes (1985),
in non-dimensional form, the system is formulated in terms of the arclength, s, along
the free surface, with unknown velocity potential, φ = φ(s), and free-surface positions,
(x(s), y(s)). Then, the governing equations are given by Bernoulli’s equation, an arclength
relation between x and y, and a boundary-integral equation.

For a single submerged point vortex at (x, y) = (0,−1), the three equations are

F2

2
[φ′(s)]2 + y(s) = F2

2
, (2.1a)

[x′(s)]2 + [y′(s)]2 = 1, (2.1b)

φ′(s)x′(s)− 1 = Γc

π

y(s)+ 1
[x(s)]2 + [y(s)+ 1]2 + I[x, y, φ′]. (2.1c)

In the above, two non-dimensional parameters appear: the Froude number, F, and the
vortex strength, Γc, defined by

F = c√
gH

and Γc = Γ

cH
. (2.2a,b)

Here, c is the speed of the fluid, H is the depth of the submerged point vortex, g is
the constant acceleration due to gravity and Γ is the circulation of the point vortex.
Furthermore, we have also introduced I as the nonlinear principal-value integral defined
by

I[x, y, φ′] = 1
π

−
ˆ ∞

−∞
[φ′(t)− x′(t)][y(t)− y(s)] + y′(t)[x(t)− x(s)]

[x(t)− x(s)]2 + [y(t)− y(s)]2 dt. (2.3)

When the configuration with two point vortices is considered in § 3.5, the
boundary-integral equation (2.1c) will need to be modified to (3.23).

2.1. Analytic continuation
In the exponential asymptotics procedure of § 3, we study the exponentially small terms
that display the Stokes phenomenon across Stokes lines of the problem. These Stokes lines
originate from singularities of the leading-order asymptotic solution, which are located in
the analytic continuation of the domain, the arclength s. The analytic continuation of the
governing equations (2.1a)–(2.1c) is studied in this section.

We now analytically continue the domain s �→ σ , where σ ∈ C. Bernoulli’s equation
(2.1a) and the arclength relation (2.1b) may be analytically continued in a straightforward
manner, with all dependence on s replaced by the complex-valued variable σ . The analytic
continuation of the boundary-integral equation (2.1c) is more complicated, due to the
principal-value integral I defined in (2.3). The analytic continuation of this integral is
given by

I[x, y, φ′] = Î[x, y, φ′] − aiφ′(σ )y′(σ ), (2.4)

where a = ±1 denotes the direction of analytic continuation into Im[σ ] > 0 or Im[σ ] < 0,
respectively, and Î is the complex-valued integral. Equation (2.4) may be verified by taking
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the limit of either Im[σ ] → 0+ or Im[σ ] → 0−, which yields half of a residue contribution
associated with the singular point at t = s of the integrand.

Substitution of (2.4) into (2.1c) then yields the analytically continued equations, given
by

F2

2
[φ′(σ )]2 + y(σ ) = F2

2
, (2.5a)

[x′(σ )]2 + [y′(σ )]2 = 1, (2.5b)

φ′(σ )x′(σ )− 1 + aiφ′(σ )y′(σ ) = Γc

π

y(σ )+ 1
[x(σ )]2 + [y(σ )+ 1]2 + Î[x, y, φ′]. (2.5c)

The analytic continuation for situations with multiple point vortices is done similarly, with
the only difference being the inclusion of additional point vortices in (2.5c).

2.2. Outline of the paper
In this work, we will consider the following two regimes depicted in figure 1:

(a) A single submerged point vortex, which is the formulation originally considered by
Forbes (1985). Imposing free-stream conditions as x → −∞ results in surface waves
generated by the vortex. Their amplitude is exponentially small as F → 0. This is
the limit considered by Chapman & Vanden-Broeck (2006) in the absence of vortical
effects.

(b) Two submerged point vortices of the same circulation. For certain critical values
of the Froude number, F, the resultant waves are confined to lie between the two
vortices. The amplitude of these is also exponentially small as F → 0.

We begin in § 3 by determining these exponentially small waves using the techniques of
exponential asymptotics. This relies on the optimal truncation of an algebraic asymptotic
series for small Froude number, F, and deriving the connection of this to the Stokes
phenomenon that acts on the exponentially small waves. The case for two submerged
point vortices is then studied in § 3.5, where we derive the critical values of the Froude
number for which the waves are trapped. Numerical solutions are computed in § 4, where
comparison occurs with the exponential asymptotics predictions for the single-vortex and
double-vortex cases.

3. Exponential asymptotics

3.1. Early orders of the solution
We begin by considering the following asymptotic expansions, in powers of F2, for the
solutions, which are given by

x(σ ) =
∞∑

n=0

F2nxn(σ ), y(σ ) =
∞∑

n=0

F2nyn(σ ), φ′(σ ) =
∞∑

n=0

F2nφ′
n(σ ). (3.1a–c)

Substitution of expansions (3.1a–c) into (2.5a)–(2.5c) yields at leading order three
equations for the unknowns x0, y0 and φ′

0. The first of these, Bernoulli’s equation (2.5a),
yields y0(σ ) = 0. This may be substituted into the second equation, (2.5b), to find (x′

0)
2 =

1, for which we consider x′
0 = 1 without any loss of generality. This may be integrated

to find x0 = σ , where the constant of integration has been chosen to set the origin at
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x0(0) = 0. Next, φ′
0 is determined from (2.5c). Since y0 = 0, the integral Î does not enter

the leading-order equation. This yields the leading-order solutions as

y0(σ ) = 0, x0(σ ) = σ, φ′
0(σ ) = 1 + Γc

π

1
(1 + σ 2)

. (3.2a–c)

Note that there is a singularity in φ′
0 above whenever σ 2 = −1. This corresponds to the

point vortex within the fluid at σ = −i, as well as another singularity at σ = i, which will
produce a complex-conjugate contribution to the exponentially small solution along the
free surface.

Next, at order O(F2), y1 is found explicitly from (2.5a). We then find the equation x′
1 = 0

from (2.5b), and φ1 is determined explicitly from (2.5c). This yields

y1(σ ) = 1
2 [1 − (φ′

0)
2], x1(σ ) = 0,

φ′
1(σ ) = −aiφ′

0y′
1 + Γc(σ

2 − 1)
π(1 + σ 2)2

y1 + Î1(σ ),

⎫⎪⎬
⎪⎭ (3.3)

where Î1 is the O(F2) component of the complex-valued integral Î, originally defined
along the real axis in (2.3).

3.2. Late-term divergence
Our derivation of the exponentially small terms and associated Stokes phenomenon of
§ 3.4 requires knowledge of the late terms of the solution expansion (3.1a–c), i.e. xn, yn

and φ′
n, as n → ∞. We begin by determining the O(F2n) components of (2.5a)–(2.5c).

The late terms of Bernoulli’s equation are given by

yn + φ′
0φ

′
n−1 + φ′

1φ
′
n−2 + · · · = 0, (3.4a)

for the arclength relation we have

x′
0x′

n + x′
1x′

n−1 + · · · + y′
1y′

n−1 + y′
2y′

n−2 + · · · = 0, (3.4b)

and finally the boundary-integral equation yields

x′
0φ

′
n + x′

1φ
′
n−1 + φ′

0x′
n + · · · + ai[φ′

0y′
n + φ′

1y′
n−1 + y′

1φ
′
n−1 + · · · ]

+ Γc

π

[
yn

1 + x2
0

− 2yn

(1 + x2
0)

2
+ · · ·

]
− În(σ ) = 0. (3.4c)

In (3.4a)–(3.4c) above, only the terms that will appear at the first two orders of n as n → ∞
have been included.

In (3.4c), the O(F2n) component of the complex-valued integral, Î, has been denoted
by În. The dominant components of this integral, as n → ∞, require the integration of
late-term asymptotic solutions that are either a function of the real-valued integration
domain, such as yn(t), or a function of the complex domain, such as yn(σ ). The
first of these, yn(t), is integrated along the real-valued free surface, away from any
singular behaviour. It is thus subdominant to the other terms appearing in (3.4c). This is
analogous to neglecting the late terms of the complex-valued Hilbert transform in similar
free-surface problems in exponential asymptotics (cf. Xie & Tanveer 2002; Chapman &
Vanden-Broeck 2002, 2006). All that remains is to integrate the components of În that
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involve late-term solutions evaluated in the complex-valued domain. Of these, only that
involving yn(σ ) appears in the two leading orders, as n → ∞, of (3.4c). This component
is given by

În ∼ −yn(σ )

π

ˆ ∞

−∞
φ′

0(t)− 1
(t − σ)2

dt = −Γc

π

yn(σ )

(σ + ai)2
, (3.5)

for which the integral was evaluated by substituting for φ′
0 from (3.2a–c). Note that

integration of yn(σ ) was not required due to the lack of any dependence on the domain
of integration, t.

Recall that the leading-order solutions were singular at σ = ±i. For each of the three
solution expansions, this singularity first appeared in φ′

0, y1 and x2. Since successive
terms in the asymptotic expansion involve differentiation of previous terms (for instance,
(3.4a) for yn involves φ′

n−1, whose determination in (3.4c) requires knowledge of y′
n−1),

the strength of this singularity will grow as we proceed into the asymptotic series.
Furthermore, this growing singular behaviour will also lead to the divergence of the
late-term solutions as n → ∞, which we capture analytically with the factorial-over-power
ansatzes of

xn ∼ X(σ )
Γ (n + α − 1)
[χ(σ)]n+α−1 , yn ∼ Y(σ )

Γ (n + α)

[χ(σ)]n+α , φn ∼ Φ(σ)
Γ (n + α)

[χ(σ)]n+α . (3.6a–c)

Here, α is a constant, χ is the singulant function that will capture the singular behaviour of
the solution at σ = ±i, and X, Y andΦ are functional prefactors of the divergent solutions.
It can be seen from the dominant balance as n → ∞ of (3.4a) and (3.4b) that xn+1 = O(yn)
and yn = O(φn), which has motivated our precise ordering in n in the ansatzes (3.6a–c).

Substitution of ansatzes (3.6a–c) into the O(F2n) equations (3.4a)–(3.4c) yields, at
leading order in n, the three equations

Y − φ′
0χ

′Φ = 0, χ ′(X + y′
1Y) = 0, χ ′(Φ + aiφ′

0Y) = 0. (3.7a–c)

While the last two of these equations permit the solution χ ′ = 0, this is unable to satisfy
the first equation in (3.7a–c). The remaining solutions can be solved to give χ ′ = ai(φ′

0)
−2,

which we integrate to find

χa(σ ) = ai
ˆ σ

ai

[
1 + Γc

π

1
(1 + t2)

]−2

dt. (3.8)

Here, we have introduced the notation χa = χ , where a = ±1, to discern between each
singulant generated by the two singular points of φ′

0, which are given by σ = i and σ =
−i. The starting point of integration in (3.8) is σ = ±i to ensure that χa(ai) = 0. This
condition is required in order to match with an inner solution near this singular point.
Integration of (3.8) yields

χa(σ ) = ai
[
σ + Γ 2

c σ

2(Γc + π)(πσ 2 + Γc + π)
− Γc(3Γc + 4π)

2
√

π(Γc + π)3/2
tan−1

( √
πσ√

Γc + π

)]

+ 1 + Γc

2(Γc + π)
− Γc(3Γc + 4π)

2
√

π(Γc + π)3/2
tanh−1

( √
π√

Γc + π

)
. (3.9)

3.3. Solution of the late-term amplitude equations
We now determine the amplitude functions, Φ, X and Y , of the late-term solutions. Note
that, if one of these amplitude functions is known, then the other two may be determined
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by the last two equations in (3.7a–c). Thus, only one equation is required for the amplitude
functions, which we find at the next order of n in the late-term equation (3.4a). This
equation is given by

φ′
0Φ

′ = φ′
1χ

′Φ, (3.10)

which may be integrated to find the solution

Φ(σ) = Λ exp
(

ai
ˆ σ

0

φ′
1(t)

[φ′
0(t)]

3 dt
)
. (3.11)

In the above, Λ is a constant of integration, which is determined by matching with an
inner solution near the singular points σ = ai. Once Φ is known, the remaining amplitude
functions are determined by the equations Y = ai(φ′

0)
−1Φ and X = aiφ′′

0Φ.
We now calculate the constant, α, that appears in the factorial-over-power ansatzes

(3.6a–c). This is determined by ensuring that the singular behaviour, as σ → ai, of each
ansatz is consistent with the anticipated singular behaviours of

xn = O((σ − ai)1−3n), yn = O((σ − ai)1−3n), φn = O((σ − ai)−3n). (3.12a–c)

In taking the inner limit of Φ from (3.11), we have Φ = O(σ − ai)3/2. Furthermore, since
χ = O((σ − ai)3), derived later in (A5), equating the power of the singularities for φn
between the ansatzes (3.6a–c) and the anticipated singular behaviour above in (3.12a–c)
yields the value of α = 1/2. The constant of integration, Λ, that appears in solution (3.11)
for the amplitude function, Φ, is derived in Appendix A by matching the inner limit of the
divergent solution, φn, with an inner solution at σ = ai. This yields

α = 1
2

and Λ = −aie−P(ai)

3
√

3
lim

n→∞

(
φ̂n

Γ (n + α + 1)

)
, (3.13a,b)

where φ̂n, determined via recurrence relation (A10), is a constant appearing in the series
expansion for the outer limit of the inner solution for φ, and P(σ ) is defined in (A13).

To conclude, the late terms of the asymptotic expansions (3.1a–c) diverge in a
factorial-over-power manner specified by the ansatzes (3.6a–c). Evaluation of this
divergence requires the constants α andΛ from (3.13a,b), as well as the singulant function
χ(σ) from (3.9) and the amplitude function Φ(σ) from (3.11). These will be required in
the derivation of the exponentially small terms considered in the next section.

3.4. Stokes smoothing and Stokes lines
The exponentially small components of the solutions are now determined. We truncate the
asymptotic expansions (3.1a–c) at n = N − 1 and consider the remainders, yielding

x =
N−1∑
n=0

F2nxn︸ ︷︷ ︸
xr

+x̄, y =
N−1∑
n=0

F2nyn︸ ︷︷ ︸
yr

+ȳ, φ′ =
N−1∑
n=0

F2nφ′
n︸ ︷︷ ︸

φ′
r

+φ̄, (3.14a–c)

where the truncated asymptotic expansions have been denoted by xr, yr and φ′
r. When N is

chosen optimally at the point at which the divergent expansions reorder as n → ∞, given
by
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N ∼ |χ |
F2 + ρ, (3.15)

where 0 ≤ ρ < 1 to ensure that N is an integer, the remainders to the asymptotic
expansions (3.14a–c) will be exponentially small.

Equations for these remainders are found by substituting the truncated expansions
(3.14a–c) into the analytically continued equations (2.5a)–(2.5c). These are given by

(F2φ′
0 + F4φ′

1)φ̄
′ + ȳ = −ξa, (3.16a)

2x̄′ + 2F2y′
1ȳ′ = −ξb, (3.16b)

φ̄′ + aiφ′
0ȳ′ = −ξc. (3.16c)

In equations (3.16) above, nonlinear terms such as x̄2 were neglected, as they will be
exponentially subdominant. In anticipating that x̄ = O(F2ȳ) = O(F2φ̄), terms of the first
two orders of F2 have been retained on the left-hand side of (3.16a). Motivated by the
late-term analysis, in which equations for the amplitude functions were obtained at leading
order for the last two governing equations, we have only retained the leading-order terms
in (3.16b) and (3.16c). Furthermore, the forcing terms introduced in (3.16) are defined by

ξa = F2

2
(φ′

r)
2 + yr − F2

2
, ξb = (x′

r)
2 + (y′

r)
2 − 1,

ξc = φ′
rx′

r − 1 + aiφ′
ry′

r − Γc

π

yr + 1
(xr)2 + ( yr + 1)2

− Î[xr, yr, φ
′
r].

⎫⎪⎪⎬
⎪⎪⎭ (3.17)

Since each order of these forcing terms will be identically zero up to and including
O(F2(N−1)), each of equations (3.17) will be of O(F2N). Only knowledge of ξa will
be required in the Stokes smoothing procedure of this section, and the leading-order
component is given by

ξa ∼ φ′
0φ

′
N−1F2N . (3.18)

Homogeneous solutions to (3.16), for which the forcing terms on the right-hand sides are
omitted, are x̄ ∼ F2Xe−χ/F2

, ȳ ∼ Ye−χ/F2
and φ̄ ∼ Φe−χ/F2

, where the singulant χ and
amplitude functions X, Y andΦ satisfy the same equations as those found for the late-term
solutions in § 3.2. Next, we solve for the particular solutions of (3.16) through variation of
parameters by multiplying the homogeneous solutions by an unknown function, S(σ ),
giving

x̄ ∼ S(σ )F2X(σ )e−χ(σ)/F2
,

ȳ ∼ S(σ )Y(σ )e−χ(σ)/F2
,

φ̄ ∼ S(σ )Φ(σ)e−χ(σ)/F2
,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.19)

where Y = aiΦ/φ′
0 and X = −y′

1Y . The function S is called the Stokes multiplier, as it will
display the Stokes phenomenon across Stokes lines of the problem, which is demonstrated
next.

An equation for S is obtained by substituting (3.19) into (3.16a), yielding
F2φ′

0Φe−χ/F2S ′(σ ) ∼ −ξa. In substituting for the dominant behaviour of ξa from (3.18)
and the factorial-over-power divergence of φ′

N−1 from (3.6a–c), we change derivatives of
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Im[σ]

2πi

F2α

2πi

F2α

Re[σ]

Y1(σ) exp (–χ1(σ)/F 2)

Y–1(σ) exp (–χ–1(σ)/F 2)

S
to

k
es

 l
in

e

Figure 3. The Stokes lines (bold) lie along the imaginary axis between the two singular points of σ = −i and
σ = i. Branch cuts are shown with a wavy line.

S from σ to χ to find
dS
dχ

∼ Γ (N + α)

χN+α F2(N−1)eχ/F
2
. (3.20)

In expanding as N → ∞, and substituting for N ∼ |χ |/F2 + ρ from (3.15), the right-hand
side of (3.19) is seen to be exponentially small, except for in a boundary layer close to
contours satisfying

Im[χ ] = 0 and Re[χ ] > 0. (3.21a,b)

These are the Stokes line conditions originally derived by Dingle (1973). Across the Stokes
lines, the solution for the Stokes multiplier S ,

S(σ ) = Sa +
√

2πi
F2α

ˆ √|χ |(arg(χ)/F)

−∞
exp(−t2/2) dt, (3.22)

rapidly varies from the constant Sa to Sa + 2πi/F2α . This is the Stokes phenomenon, and
the contours satisfying the Dingle conditions (3.21a,b) are shown in figure 3 to lie along
the imaginary axis. For the one-vortex case studied in this section, the upstream condition
as Re[σ ] → −∞ requires that S1 = 0 and S−1 = −2πi/F2α .

3.5. Trapped waves generated by two submerged vortices
We have so far studied the case of a single submerged point vortex. When multiple point
vortices are placed within the fluid, the only change is to the boundary-integral equation,
previously specified in (2.5c) for a single vortex. In this section we study the formulation
of two submerged point vortices of the same non-dimensional strength, Γc, located at
z = x + iy = ±λ− i, for which the analytically continued boundary-integral equation is
given by

φ′(σ )x′(σ )− 1 + aiφ′(σ )y′(σ )

= Γc

π

[
y(σ )+ 1

[x(σ )− λ]2 + [y(σ )+ 1]2 + y(σ )+ 1
[x(σ )+ λ]2 + [y(σ )+ 1]2

]
+ Î[x, y, φ].

(3.23)

Unlike the case for a single submerged point vortex that produces waves in the far field
for x → ∞, two identical point vortices can produce solutions for which the waves are
confined to lie between the vortices, −λ < Re[σ ] < λ. This occurs for critical values of
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Im[σ]

Re[σ]

2πi

F2α

2πi

F2α

2πi

F2α

2πi

F2α

Figure 4. The Stokes lines (bold) generated by the four singular points are shown.

the Froude number, which we now predict using the techniques of exponential asymptotics
developed in the previous sections.

The first two orders of the asymptotic solution for φ are now given by

φ′
0(σ ) = 1 + Γc

π

[
1

1 + (σ + λ)2 + 1
1 + (σ − λ)2

]
, (3.24a)

φ′
1(σ ) = −aiφ′

0y′
1 + Γcy1

π

[
(σ + λ)2 − 1

[1 + (σ + λ)2]2 + (σ − λ)2 − 1
[1 + (σ − λ)2]2

]
+ În(σ ), (3.24b)

which are singular at the four locations σ = −λ+ ai (from the vortex at z = −λ− i)
and σ = λ+ ai (from the vortex at z = λ− i). Note that we have again defined a = ±1 to
indicate whether Im[σ ] > 0 or Im[σ ] < 0. These four singular points each have associated
Stokes lines, shown in figure 4. In general, the waves switched on across the first Stokes
lines, emanating from the points σ = −λ+ ai, will be out of phase with the waves
switched on across the second Stokes lines, from σ = λ+ ai. However, for certain values
of F, the wave switched on across the first Stokes line is then switched off by the second
Stokes line, yielding solutions with no waves for Re[σ ] > λ. An example of this trapped
solution was shown earlier in figure 1(b).

Thus, in using the Stokes switching prediction for φ̄ shown in figure 4 and writing
ȳ = aiφ̄/φ′

0, we require the two contributions of

ȳ1 ∼ − 2π

F2αφ′
0
Φ1(σ ) exp

(
−χ1(σ )

F2

)
+ c.c.,

ȳ2 ∼ − 2π

F2αφ′
0
Φ2(σ ) exp

(
−χ2(σ )

F2

)
+ c.c.,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (3.25)

to cancel with one another for Re[σ ] > λ. Here, we have denoted χ1 and Φ1 as the
singulant and amplitude function arising from the σ = −λ+ ai singularities, and χ2 and
Φ2 as those arising from the σ = λ+ ai singularities. The first of equations (3.25), ȳ1, is
the contribution switched on as we pass from left to right across the Stokes lines associated
with the singular points σ = −λ+ ai. The second, ȳ2, is the contribution switched on from
left to right by the Stokes lines associated with the σ = λ+ ai singular point. Note that
the specified contributions in (3.25) are from the a = 1 contribution, and the unspecified
complex-conjugate components are from that with a = −1.

We now simplify each of the expressions given in (3.25) by substituting for the
amplitude functions Φ1 and Φ2, which satisfy the same equation as that found previously
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in (3.10). The only difference will be the constants of integration, which we denote by Λ1
and Λ2. This yields

φ̄1 ∼ −4π|Λ1|
F2αφ′

0
exp

(
−Re[χ1]

F2

)
cos

(ˆ σ

0

φ′
1(t)

[φ′
0(t)]

3 dt + arg[Λ1] − Im[χ1]
F2

)
,

φ̄2 ∼ −4π|Λ2|
F2αφ′

0
exp

(
−Re[χ2]

F2

)
cos

(ˆ σ

0

φ′
1(t)

[φ′
0(t)]

3 dt + arg[Λ2] − Im[χ2]
F2

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(3.26)

Through integration of χ ′ = ai(φ′
0)

−2 and imposing the boundary conditions χ1(ai −
λ) = 0 and χ2(ai + λ) = 0, it may be verified that, along the free surface, Im[σ ] = 0, we
have Re[χ1] = Re[χ2]. Furthermore, we also have |Λ1| = |Λ2|. This may be verified by
matching with an inner solution, much like the procedure considered in Appendix A for the
case of a single point vortex. The same leading-order inner equation emerges regardless of
the number of vortices considered, and so the outer limit of the inner solution is the same
as in (A11) but with functional dependence on either σ − λ− ai or σ + λ− ai. Thus, the
only difference encountered in the matching procedure is in the inner limit of the outer
divergent solution.

The prefactors multiplying each of the cosine functions in (3.26) are identical, and the
condition for them to cancel, ȳ1 + ȳ2 = 0, yields

cos
(ˆ σ

0

φ′
1(t)

[φ′
0(t)]

3 dt + arg[Λ1] + arg[Λ2]
2

− Im[χ1 + χ2]
2F2

)

× cos
(

arg[Λ1] − arg[Λ2]
2

− Im[χ1 − χ2]
2F2

)
= 0. (3.27)

Note that, since χ1 and χ2 satisfy the same differential equation, χ ′ = ai(φ′
0)

−2, originally
derived in § 3.2, the only difference between them are their constants of integration.
Therefore, Im[χ1 + χ2] will be a function of σ , and Im[χ1 − χ2] will be constant. Thus,
only the second cosine component of (3.27) is capable of satisfying the identity for
Re[σ ] > λ. Since this cosine function is zero when the argument equals ±π/2, ±3π/2,
and so forth, we find

Fk =
√

Im[χ1 − χ2]
arg[Λ1] − arg[Λ2] + π(2k + 1)

, (3.28)

for k = 0, 1, 2, . . . , and so forth. Equation (3.28) yields the discrete values of the Froude
number, Fk, for which the waves are confined to lie between the two submerged vortices.

All that remains is to evaluate Im[χ1 − χ2], arg[Λ1] and arg[Λ2]. Each of these
singulants is found by integrating χ ′ = ai(φ′

0)
−2, where φ′

0 is specified in (3.24), from
the corresponding singular point. We may decompose each singulant into a real-valued
integral along the Stokes line, and an imaginary-valued integral along the free surface.
Thus, Im[χ ] is an integral along the free surface, Im[σ ] = 0, from the intersection of the
Stokes line to σ . This yields

Im[χ1(σ )− χ2(σ )] =
ˆ λ

−λ

[
1 + Γc

π

(
1

1 + (t + λ)2 + 1
1 + (t − λ)2

)]−2

dt. (3.29)

In the numerical results of § 4.2, the integral in (3.29) is evaluated with a symbolic
programming language. Note that the Stokes lines depicted in figure 4 are not truly vertical,

958 A29-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

94
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2023.94


Exponential asymptotics and line vortices

and are slightly curved such that they intersect the free surface at the points −λ∗ and
λ∗. Thus, the range of integration in (3.29) should actually lie between −λ∗ < t < λ∗;
however, since λ∗ is very close in value to λ (for λ = 8 and Γc = 0.3, λ∗ ≈ 7.99998), this
subtlety has been ignored.

Comparisons between the analytical prediction of Fk from (3.28) and numerical results
are performed in § 4.2.

4. Numerical results

We begin in § 4.1 by verifying with numerical results our analytical predictions for the
exponentially small scaling as F → 0 for the case of a single vortex. This is given by the
singulant function, χ , from (3.9), and comparisons are made for a range of values of the
vorticity, Γc. The analytical predictions of the Froude numbers for trapped waves between
two point vortices, given in (3.28), are then compared to numerical predictions in § 4.2.

A detailed description of the numerical method used is given by Forbes (1985), which
we will briefly summarise here.

(i) The real-valued domain, s, is truncated to lie between the values of sL and sR. A total
of N discretisation points are used, such that the numerical domain is given by sk =
sL + (k − 1)(sR − sL)/(N − 1) for 1 ≤ k ≤ N. The unknown solution is taken to be
y′(s), which we define at each grid point by y′

k = y′(sk). The radiation conditions are
imposed by enforcing y1 = 0, y′

1 = 0, x′
1 = 1, φ′

1 = 1, x1 = sl and φ1 = sL, and the
initial guess for y′

k is either zero or a previously computed solution.
(ii) Since we assume that y′

k is known at the next grid point, the arclength relation (2.1b)
yields x′

k. Trapezoidal-rule integration then determines values for xk and yk, which
we use to find φ′

k from Bernoulli’s equation (2.1a). This process is repeated for k = 2
to k = N to find function values at every grid point.

(iii) The boundary-integral equation (2.1c) is evaluated at each grid point with the
known values of xk, yk, φ′

k, x′
k and y′. To avoid the singularity associated with

the principal-value integral I[x, y, φ′], each unknown that is not a function of the
integration variable, t, is instead evaluated between grid points by interpolation.

(iv) This yields N − 1 nonlinear equations from evaluating the boundary-integral
equation between each grid point, (sk + sk+1)/2, which is closed by the N − 1
unknowns y′

k for k = 2 to k = N. Solutions are found by minimising the residual
through Newton iteration. For the trapped waves studied in § 4.2, we impose an
additional constraint of symmetry about s = 0 in the real-valued solution, y(s), such
that the Froude number, F, is determined as an eigenvalue.

4.1. Waves generated by a single vortex
For the numerical results presented in this section, we have used N = 2000 grid points, and
a domain specified by sL = −40 and sR = 40. In computing numerical solutions for a wide
range of Froude numbers, and the values of Γc = {0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40},
the exponentially small scaling as F → 0 of the high-frequency waves present for s > 0
may be measured. This is shown in the semilog plot of figure 5. We see that these lines,
each of which represents solutions with a different value of Γc, are straight, and thus the
amplitude of these ripples is exponentially small as F → 0. The gradient of each of these
lines is expected to closely match the exponential scaling predicted analytically, given by
the singulant χ . Along the free surface, this is given by Re[χ ] from (3.9), which takes
constant values.
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2 3 4 5 6 7 8
Γc = 0.1
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−7

−8

−6

−5

−4

−3

lo
g
(y–
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1/F 2

Figure 5. The exponentially small dependence of the wave amplitude is shown (dots) for numerical results
for seven different values of Γc = {0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40}. Solid lines represent the analytical
gradient found from the real part of χ in (3.9). The behaviour of this gradient for different values of the vortex
strength Γc is shown in figure 6.

0 0.1 0.2 0.3 0.4
0.6

0.7

0.8

0.9

1.0

Γc

R
e[
χ

(0
)]

Figure 6. The analytical prediction for Re[χ] along the free surface Im[σ ] = 0 from (3.9) is shown against the
vorticity Γc (line). The numerical predictions, corresponding to the slopes of the semilog plot in figure 5, are
shown as dots.

In figure 6, this analytical prediction is compared to the numerical values from figure 5,
and good agreement is observed. Note that there are small instabilities present in the
numerical solution, which decay when the truncated domain is extended; upon which we
expect the numerical results to tend towards the analytical prediction shown in figure 6.

Comparison between a numerical and asymptotic solution profile is shown in figure 7
for F = 0.45 and Γc = 0.4. The numerical solution is determined by the scheme detailed
at the beginning of § 4, with N = 2000 discretisation points in the arclength, −40 ≤ s ≤
40. The asymptotic solution plots x(s) = x0(s)+ F2x1(s)+ x̄(s) against y(s) = y0(s)+
F2y1(s)+ ȳ(s). These early-order solutions, x0, x1, y0 and y1, are specified in (3.2a–c)
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–10 0 10

–0.03

0

0.03

x

y

Figure 7. For F = 0.45 and Γc = 0.4, a numerical solution (dashed line) is compared to an analytical
solution (solid line) determined in § 3.

and (3.3). The exponentially small components, x̄ and ȳ, are implemented from expression
(3.19). This requires knowledge of the singulant, χ , given in (3.9), the amplitude functions
Y = aiΦ/φ′

0 and X = −y′
1Y determined from Φ in (3.11), and the Stokes multiplier, S ,

given in (3.22). A real-valued asymptotic solution is obtained through evaluating the sums
x̄|a=1 + x̄|a=−1 and ȳ|a=1 + ȳ|a=−1 on the real-valued domain, σ = s, for Im[σ ] = 0. Note
that, in the determination of the constant Λ, its magnitude, |Λ|, has been fitted to equal
that found from the corresponding numerical solution, and its argument (corresponding
to a phase shift of the resultant wave) is determined from relation (3.13a,b) as
arg[Λ] = aπ/2.

4.2. Trapped gravity waves between two vortices
We considered the case of two submerged point vortices analytically in § 3.5. When each
vortex had the same non-dimensional circulation, Γc, and depth equal to unity, trapped
waves were seen to occur for certain discrete values of the Froude number, Fk. In this
section, we compare the analytical prediction for Fk from (3.28) with numerical results.
These trapped numerical solutions are found with the method detailed at the beginning of
§ 4. In imposing the additional constraint of symmetry to eliminate waves downstream of
the vortices, the special Froude number, Fk, is determined as an eigenvalue. These results
were performed for N = 4000 grid points, a domain between sL = −60 and sR = 60, and
horizontal vortex placement specified as λ = 8.

In figure 8, we plot the tail amplitude (for s > λ) of the asymptotic solutions for the
values of 0.3 < F < 0.5, Γc = 0.3 and λ = 8. This amplitude is equal to zero at the
values of Fk from (3.28). Figure 8 also contains additional markers denoted by (a), where
F = 0.3383, and (b), where F = 0.4270. This corresponds to figure 9, where we compare
numerical solutions obtained in this section, and asymptotic solutions from § 3 for those
given values of F. The fit is excellent and the corresponding curves are nearly visually
indistinguishable at the scale of the graphic. Finally, in figure 10, we compare the values
of Fk obtained analytically and numerically. The straight lines are the analytical prediction
from (3.28), and dots represent the numerical values for Fk. The agreement between these
is good for moderately small values of F; we notice that the error (horizontal distance)
decreases as F decreases from 0.6 to around 0.4.
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Figure 8. The amplitude of oscillations present for s > λ in the asymptotic solutions is shown against the
Froude number, F. Here, Γc = 0.3 and λ = 8. This amplitude is equal to zero at the locations Fk derived in
(3.28). The two points marked (a) and (b) correspond to the profiles shown in figure 9.

–20 0

F22 = 0.3383 F14 = 0.4270

20
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Figure 9. Two different trapped wave solutions are shown for Γc = 0.3 and λ = 8 corresponding to (a) F =
0.3383 and (b) F = 0.4270 (as marked in figure 8). Asymptotic solutions (solid line) are compared to numerical
solutions (dashed line) for (a) k = 22 and (b) k = 14. In each panel, the two curves are nearly indistinguishable
to visual accuracy.

0.1

0.4 0.5 0.6

0.2

0.3
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Γc

Figure 10. Values of the Froude number, Fk, for which the waves are trapped between each submerged vortex
are shown. The numerical results of § 4.2 are shown by dots, and the analytical results from (3.28) are shown
with lines. Here, λ = 8, and for the numerical solutions N = 4000, sL = −60 and sR = 60.
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Numerical solutions of the double-vortex problem are particularly challenging, however,
due to the finite-difference nature of the numerical scheme, and the truncation of the
infinite domain. This seems to manifest in larger (relative) errors, particularly for F � 0.4.
We have verified that increasing the number of mesh points and increasing the domain
size diminishes the numerical error. In addition, we have used the linear prediction of
Fk = √

λ/(kπ + π/2) to verify our analytical results for small values of Γc. Indeed, these
numerical challenges are common in exponential asymptotics comparisons, where it is
necessary to use a sufficiently small value of the asymptotic parameter, but not too small
so that numerical error overtakes the exponentially small character of the solution.

5. Conclusion

We have shown, through both numerical and analytical investigations, that the waves
generated by submerged point vortices are exponentially small in the low-speed limit
of F → 0. Furthermore, when two submerged vortices are considered, oscillatory waves
vanish downstream for certain values of the Froude number, F. Through the techniques
of exponential asymptotics, we have demonstrated how these values may be derived.
Their prediction relies on the understanding of singularities in the analytically continued
domain that generate a divergent asymptotic expansion. The remainder to this series is
exponentially small as F → 0, and the study of the associated Stokes phenomenon yields
discrete values of F for which the waves are trapped between each vortex.

6. Discussion

The work presented here forms a basis for a number of interesting extensions involving
exponentially small water waves with gravity, capillarity and/or vorticity providing
singular perturbative effects.

Firstly, it should be remarked that the classical exponential asymptotics theories by,
for example, Chapman & Vanden-Broeck (2002, 2006) for capillary- and gravity-driven
surface waves produced in flows over topographies rely upon the existence of closed-form
conformal maps. In such problems, the governing equations for the free surface can be
written in terms of a single complex-valued unknown (e.g. the complex velocity), with
the velocity potential serving as the independent variable. This includes situations such
as flows past polygonal boundaries (related to the availability of the Schwarz–Christoffel
mapping). The arclength formulation we have used in this work provides a more general
setting for wave–structure interactions with arbitrary bodies, including, for instance, flows
past smoothed bodies specified in (x, y) coordinates. Here, we have demonstrated that the
exponential asymptotics can be generalised to such formulations. We expect that many
of the interesting wave–structure interactions studied by Holmes et al. (2013) (symmetric
bottom topography), Hocking et al. (2013) (submerged semi-ellipse), and Elcrat & Miller
(2006) (submerged point vortex with lower topography), for example, can be attacked
using the technology we have developed here.

Secondly, the phenomenon of trapped waves is an interesting one. The exponential
asymptotics interpretation, whereby waves switched on at one location (the Stokes line
intersection) must be switched off at another, provides an intuitive explanation for how
trapped waves form in singularly perturbative limits. The context, in our problem, relates
to vortices fixed within the fluid for modelling submerged obstructions, such as the
submerged cylinders studied numerically by Tuck & Scullen (1998). However, trapped
waves have been detected numerically in other geometries, including submerged bumps
(Hocking et al. 2013), a semi-ellipse (Holmes et al. 2013), a trigonometric profile (Dias
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& Vanden-Broeck 2004), spikes (Binder, Vanden-Broeck & Dias 2005) and a rectangular
bump (Lustri, McCue & Binder 2012). We expect that the ‘selection mechanism’ that
produces the countably infinite set of values (3.28) is a kind of universality in eigenvalue
problems (cf. Chapman et al. (2022) for further discussion and examples). In our paper,
we have mentioned some of the numerical challenges in verifying beyond-all-orders
predictions, particularly in connection with finite-difference formulae and truncation of
the infinite domain. In addition, we note that numerical verification may be further
complicated by the fact that finite-difference discretisation introduces exponentially small
errors in the numerical solution, as shown by Moston-Duggan, Porter & Lustri (2023).

Finally, we note that, in this paper, the forcing mechanism producing the waves was via
the complex-plane singularities associated with the point vortices – then, we found that
the waves were singularly perturbed due to the inertial term in Bernoulli’s equation, thus
producing exponentially small waves, scaling as exp(−const./F2). Recently, analytical
solutions have been developed for pure-vorticity-driven water waves, notably in the works
by Crowdy & Nelson (2010), Crowdy & Roenby (2014) and Crowdy (2023). In essence, we
believe these solutions can serve as leading-order approximations in the regime of small
surface tension; it might be expected that exponentially small parasitic ripples then exist
on the surface of such vorticity-driven profiles. This would then be similar to the work
of Shelton, Milewski & Trinh (2021) and Shelton & Trinh (2022) for parasitic capillary
ripples on steep gravity waves. Numerical and analytical work on this class of problems is
ongoing.

Acknowledgements. We thank the anonymous referees for their helpful comments regarding the clarity of
this work. We are grateful for many stimulating and motivating discussions that took place during the recent
London Mathematical Society–Bath symposium ‘New Directions in Water Waves’ held at the University of
Bath in July 2022. Finally, we would like to thank the Isaac Newton Institute for Mathematical Sciences,
Cambridge, for support and hospitality during the programme Applicable Resurgent Asymptotics, where some
work on this paper was undertaken.

Funding. J.S. and P.H.T. gratefully acknowledge support by the Engineering and Physical Sciences Research
Council (EPSRC grant no. EP/V012479/1); and for work undertaken at the Isaac Newton Institute (EPSRC
grant no. EP/R014604/1).

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Josh Shelton https://orcid.org/0000-0001-6257-5190;
Philippe H. Trinh https://orcid.org/0000-0003-3227-1844.

Appendix A. Inner analysis at the singularities σ = ±i

In order to determine the constant of integration of the amplitude function Φ(σ) from
(3.10), knowledge of the inner solutions at the singularities σ = i and σ = −i is required.
In this section, we study the inner boundary layer at both of these locations, for which
matching with the inner limit of the outer solutions determines the constant of integration.

First, we note that, in the outer region, where σ = O(1), the asymptotic series first
reorder whenever

φ′
0(σ ) ∼ F2φ′

1(σ ), y1(σ ) ∼ F2y2(σ ), x2(σ ) ∼ F2x3(σ ). (A1a–c)

In substituting for the early orders of the asymptotic solutions specified in (3.2a–c), (3.3)
and (3.5), we see that each of equations (A1a–c) reorder in a boundary layer of the same
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width, given by σ − ai = O(F2/3). We thus introduce the inner variable, σ̂ , by the relation

σ − ai = σ̂F2/3, (A2)

for which σ̂ = O(1) in the inner region. Since the asymptotic series each reorder near the
two locations of σ = i and σ = −i, we have again used the notation a = ±1 to distinguish
between these two cases.

Next, to determine the form of the inner solutions, we take the inner limit of the outer
series expansions for φ′, x and y, by substituting for the inner variable σ̂ defined in (A2)
and expanding as F → 0. This yields

φ′ ∼ 1
F2/3

[
−aiΓc

2π

1
σ̂

+ · · ·
]
, y ∼ F2/3

[
Γ 2

c

8π2
1
σ̂ 2 + · · ·

]
, x ∼ ai + F2/3[σ̂ + · · · ],

(A3a–c)
where the omitted terms, represented by · · · , are from the inner limit of lower-order terms
of the outer asymptotic expansion. For instance, the next term in the inner limit of φ′ is
of O(F−2/3σ̂−4). The form of the inner limits in (A3a–c) motivates our definition of the
inner solutions, φ̂(σ̂ ), ŷ(σ̂ ) and x̂(σ̂ ), through the equations

φ′ = − aiΓc

2πF2/3
φ̂(σ̂ )

σ̂
, y = Γ 2

c F2/3

8π2
ŷ(σ̂ )
σ̂ 2 , x = ai + σ̂F2/3x̂(σ̂ ). (A4a–c)

The form of the inner variables introduced in (A4a–c) ensures that the first term in the
series expansion for their outer limit will be equal to unity. Furthermore, based on the
form of the inner limit of the singulant, χ , from (3.8),

χ ∼ −4aiπ2

3Γ 2
c
σ̂ 3F2, (A5)

the outer limit of the inner solutions will be a series expansion in inverse powers of
−4aiπ2σ̂ 3/(3Γ 2

c ). We thus introduce the variable z, defined by

z = −4aiπ2

3Γ 2
c
σ̂ 3 (A6)

to ensure that these series expansions are in inverse powers of z alone.

A.1. Inner equation
The leading-order inner equations, as F → 0, may now be derived by substituting (A4a–c)
for the inner variables into the outer equations (2.5a)–(2.5c), yielding

ŷ − φ̂2 = 0, (A7a)

(x̂ + 3zx̂′)2 −
(

1
3z

ŷ − 1
2

ŷ′
)2

= 1, (A7b)

φ̂

(
x̂ − 1

6z
ŷ
)(

x̂ + 3zx̂′ − 1
3z

ŷ + 1
2

ŷ′
)

= 1. (A7c)

The inner solutions, φ̂(z), ŷ(z) and x̂(z), will satisfy (A7a)–(A7c). Rather than solve these
inner equations exactly, knowledge of the inner solutions is only required under the outer
limit of z → ∞ in order to match with the inner limit of the outer solutions to determine
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their divergent form. Thus, we will consider the following series expansions for these inner
unknowns,

φ̂(z) =
∞∑

n=0

φ̂n

zn , ŷ(z) =
∞∑

n=0

ŷn

zn , x̂(z) =
∞∑

n=0

x̂n

zn , (A8a–c)

which hold as z → ∞.
At leading order as z → ∞, we have, by the definition on the inner solutions in (A4a–c),

φ̂0 = 1, ŷ0 = 1, x̂0 = 1. (A9a–c)

Determination of φ̂n, ŷn and x̂n, as n → ∞, requires the evaluation of a recurrence relation,
which is now given. Firstly, substitution of expansions (A8a–c) into the inner equation
(A7b) yields

x̂1 = 0,

x̂n =
n−1∑
m=1

(3m − 1)(3n − 3m − 1)
2(1 − 3n)

(
ŷm−1ŷn−m−1

36
− x̂mx̂n−m

)
for n ≥ 2.

⎫⎪⎪⎬
⎪⎪⎭ (A10a)

Next, we substitute the same expansions into the inner equation (A7c), yielding

φ̂1 = 1
2
, φ̂n = 1

36

n∑
m=2

m−1∑
q=1

(3q − 1)(6x̂q + ŷq−1)(6x̂m−q − ŷm−q−1)φ̂n−m

− 1
2

n∑
m=1

((4 − 6m)x̂m − mŷm−1)φ̂n−m for n ≥ 2. (A10b)

Lastly, a recurrence relation for ŷn is found from (A7a) to be

ŷ1 = 1, ŷn =
n∑

m=0

φ̂mφ̂n−m for n ≥ 2. (A10c)

Assuming that φ̂n−1, ŷn−1 and x̂n−1 are known, x̂n can be determined from (A10a), which
then yields a value for φ̂n from (A10b). Lastly, ŷn is found by evaluating equation (A10c).

A.2. Matching and determination of the constant Λ

We now match the outer limit of the inner solution, φ̂, with the inner limit of the outer
solution, φ′. In writing the outer limit of the inner solution in outer variables, we have

φ′ = −aiΓc

2π

∞∑
n=0

F2nφ̂n(
−4aiπ2

3Γ 2
c

)n

(σ − ai)3n+1

, (A11)
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and for the inner limit of the outer solution,

φ′ =
∞∑

n=0

F2nφ′
n ∼

∞∑
n=0

−F2nχ ′Φ
Γ (n + α + 1)
χn+α+1

∼
∞∑

n=0

− 4π2Λ

Γ 2
c (−ai)1/2

eP(ai) F2nΓ (n + α + 1)(
−4aiπ2

3Γ 2
c

)n+α+1

(σ − ai)3n+3α−1/2

. (A12)

In the above, the inner limit of the amplitude function Φ from (3.11) has been taken by
defining

P(σ ) =
ˆ σ

0

[
aiφ′

1(t)
[φ′

0(t)]
3 − 3

2(t − ai)

]
dt, (A13)

such that P(σ ) = O(1) as σ → ai. Matching (A11) with (A12), and substituting for α =
1/2 from (3.13a,b), determines the constant, Λ, as

Λ = −aie−P(ai)

3
√

3
lim

n→∞

(
φ̂n

Γ (n + α + 1)

)
. (A14)
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