GENERALISATION OF AN EMBEDDING THEOREM FOR GROUPS

by C. G. CHEHATA

(Received 2 November, 1959)

1. Introduction. Let G be a given group and A, B be two subgroups of G which may or may not coincide. A homomorphism μ which maps A onto B is called a *partial endomorphism* of G. When A coincides with G then we call μ a *total endomorphism* or as it is usually called an *endomorphism* of G. If μ^* is a partial (or total) endomorphism of a supergroup $G^* \supseteq G$, then we say that μ^* extends, or continues, μ when μ^* is defined for at least all the elements $a \in A$ and moreover $a\mu = a\mu^*$ for all $a \in A$. If the partial endomorphism μ is an isomorphic mapping then we speak of a *partial automorphism* of G.

It is known [3] that any number of partial automorphisms $\mu(\alpha)$ of a group G can be simultaneously extended to inner automorphisms of one and the same supergroup.

When $\mu(\alpha)$ are partial endomorphisms (no longer necessarily isomorphic) then necessary and sufficient conditions for their simultaneous extension to total endomorphisms of a supergroup $G^* \supseteq G$ were derived in [1]. These conditions are in fact a generalisation of a result obtained by B. H. Neumann and Hanna Neumann [4] in the case of extending a single partial endomorphism.

In a recent paper [2] the author has derived necessary and sufficient conditions for a partial endomorphism μ of a group G to be extendable to a total endomorphism μ^* of a supergroup G^{*} such that μ^* acts as an isomorphism on $G^*(\mu^*)^m$, for some given positive integer m.

In the following work we take a group G and a sequence $\mu(\alpha)$ of partial endomorphisms of G, where α ranges over some well-ordered set Σ , and using transfinite induction we generalise the conditions of [2] to give necessary and sufficient conditions for the simultaneous extension of the $\mu(\alpha)$ to total endomorphisms $\mu^*(\alpha)$ of one and the same group $G^* \supseteq G$ such that $\mu^*(\alpha)$ acts as an isomorphism on $G^*\{\mu^*(\alpha)\}^{n(\alpha)}$, where, for each $\alpha \in \Sigma$, $n(\alpha)$ is a given positive integer.

2. Derivation of the necessary conditions. Let $\mu(\alpha)$, where α ranges over a well-ordered set Σ whose ordinal is σ , be a partial endomorphism of the group G mapping A_{α} onto B_{α} , where A_{α} and B_{α} are subgroups of G. To find the necessary conditions for $\mu(\alpha)$ to be simultaneously extendable to total endomorphisms $\mu^*(\alpha)$ of one and the same supergroup $G^* \supseteq G$ such that $\mu^*(\alpha)$ acts as an isomorphism on $G^*{\{\mu^*(\alpha)\}}^{n(\alpha)}$, where $n(\alpha)$, for each $\alpha \in \Sigma$, is a positive integer, we assume that the extension is already established, i.e., we assume that G^* , $\mu^*(\alpha)$ exist with the required properties.

Let Ω^* be the semigroup generated by $\mu^*(\alpha)$; then any $\omega^* \in \Omega^*$ is an endomorphism of G^* . Denote the kernel of $\mu(\alpha)$ by K_{α} and that of ω^* by $K(\omega^*)$.

The canonic mapping of G^* onto $G^*/K[\mu^*(\alpha)]$ must induce the canonic mapping of A_{α} onto A_{α}/K_{α} . But it also induces the canonic mapping of A_{α} onto $A_{\alpha}/[K\{\mu^*(\alpha)\} \cap A_{\alpha}]$; thus

$$K_{\alpha} = K[\mu^{*}(\alpha)] \cap A_{\alpha} = \text{kernel of } \mu(\alpha).$$

Let Ω be the semigroup freely generated by a set of elements whose ordinal is σ which we denote, conveniently but without ambiguity, by $\mu(\alpha)$. To every word $\omega = \omega[\mu(\alpha)]$ in Ω there corresponds an element $\omega^* = \omega[\mu^*(\alpha)]$ in Ω^* . For every word $\omega \in \Omega$ and its corresponding

element $\omega^* \in \Omega^*$ we put

$$L(\omega) = K(\omega^*) \cap G.$$

As in [1] we can show that $K(\omega^*)$ ($\omega^* \in \Omega^*$) are normal subgroups of G^* such that

$$K(\omega^*) \subseteq K(\omega^*\omega_1^*),$$

for any ω^* , $\omega_1^* \in \Omega^*$, and thus $L(\omega)$ ($\omega \in \Omega$) are normal subgroups of G for which we can also prove as in [1] that

$$L(\omega) \subseteq L(\omega\omega_1) \text{ for any } \omega, \omega_1 \in \Omega,$$

$$L[\mu(\alpha)] \cap A_{\alpha} \text{ is the kernel of } \mu(\alpha),$$

$$[L\{\mu(\alpha)\omega\} \cap A_{\alpha}]\mu(\alpha) = L(\omega) \cap B_{\alpha}.$$

Moreover, we prove the following lemma.

LEMMA 1. The normal subgroups $L(\omega)$ satisfy the relations

$$L[\{\mu(\alpha)\}^{n(\alpha)}] = L[\{\mu(\alpha)\}^{n(\alpha)+i}],$$

for any $\alpha \in \Sigma$ and any integer i > 0.

Proof. We have

$$K[\{\mu^*(\alpha)\}^{n(\alpha)}] \subseteq K[\{\mu^*(\alpha)\}^{n(\alpha)+1}].$$
 (i)

If $x \in K[\{\mu^*(\alpha)\}^{n(\alpha)+1}]$, then

$$x\{\mu^{*}(\alpha)\}^{n(\alpha)+1} = [x\{\mu^{*}(\alpha)\}^{n(\alpha)}]\mu^{*}(\alpha) = e_{\alpha}$$

where e is the unit element of G^* . Since $\mu^*(\alpha)$ is an isomorphism on $G^*\{\mu^*(\alpha)\}^{n(\alpha)}$, then

$$x \{\mu^*(\alpha)\}^{n(\alpha)} = e,$$

$$x \in K[\{\mu^*(\alpha)\}^{n(\alpha)}],$$

i.e.,

and thus

(i) and (ii) together give

 $K[\{\mu^{*}(\alpha)\}^{n(\alpha)}] = K[\{\mu^{*}(\alpha)\}^{n(\alpha)+1}].$

Intersecting both sides with G, we get

$$L[\{\mu(\alpha)\}^{n(\alpha)}] = L[\{\mu(\alpha)\}^{n(\alpha)+1}],$$

which proves the lemma when i = 1. The proof for i > 1 is the same. Thus we have the following theorem.

THEOREM 1. Let $\mu(\alpha)$, where α ranges over a well-ordered set Σ whose ordinal is σ , be a partial endomorphism of a group G mapping the subgroup $A_{\alpha} \subseteq G$ onto another subgroup $B_{\alpha} \subseteq G$. Then the necessary conditions for the existence of a supergroup $G^* \supseteq G$ with total endomorphisms $\mu^*(\alpha)$ extending $\mu(\alpha)$ such that $\mu^*(\alpha)$ is an isomorphism on $G^*\{\mu^*(\alpha)\}^{n(\alpha)}$, where $n(\alpha)$, for each $\alpha \in \Sigma$, is a positive integer, is that if we denote by Ω the semigroup freely generated by the $\mu(\alpha)$, then for every $\omega \in \Omega$ there exists a normal subgroup $L(\omega)$ of G such that

COROLLARY 1. If $x\{\mu(\alpha)\}^i$ is defined, then *Proof.* If $x \in L[\{\mu(\alpha)\}^i] \cap A_n$, then $x\mu(\alpha) \in \{L[\{\mu(\alpha)\}^i] \cap A_{\alpha}\}\mu(\alpha) = L[\{\mu(\alpha)\}^{i-1}] \cap B_{\alpha}\}$ from (2.4). Since $x\{\mu(\alpha)\}^2$ is defined, then $x\mu(\alpha) \in L[\{\mu(\alpha)\}^{i-1}] \cap B_{\alpha} \cap A_{\alpha} \subseteq L[\{\mu(\alpha)\}^{i-1}] \cap A_{\alpha},$ $x\{\mu(\alpha)\}^{2} \in \{L[\{\mu(\alpha)\}^{i-1}] \cap A_{\alpha}\}\mu(\alpha) = L[\{\mu(\alpha)\}^{i-2}] \cap B_{\alpha}.$ and Repeating this procedure a finite number of times, we get $x\{\mu(\alpha)\}^{i-1} \in L[\mu(\alpha)] \cap A_{\alpha},$ from which, because of (2.3), it follows that $x\{\mu(\alpha)\}^i = e.$ Conversely, if $x\{\mu(\alpha)\}^i = e$, then $x\{\mu(\alpha)\}^{i-1} \in L[\mu(\alpha)] \cap A_{\alpha}.$ But also $x\{\mu(\alpha)\}^{i-1} \in B_{\alpha}$; thus $x\{\mu(\alpha)\}^{i-1} \in L[\mu(\alpha)] \cap A_{\alpha} \cap B_{\beta}$ $\subseteq L[\mu(\alpha)] \cap B_{\alpha}$ $= \{ L[\{\mu(\alpha)\}^2] \cap A_{\alpha}\} \mu(\alpha).$ Thus $x\{\mu(\alpha)\}^{i-2} \in L[\{\mu(\alpha)\}^2] \cap A_{\alpha}.$ The proof can then be completed by induction. COROLLARY 2. If $x\{\mu(\alpha)\}^{n(\alpha)+1}$ is defined, then $x\{\mu(\alpha)\}^{n(\alpha)+1} = e$ implies, by Corollary 1, that Proof. $x \in L[\{\mu(\alpha)\}^{n(\alpha)+1}] \cap A_{\alpha} = L[\{\mu(\alpha)\}^{n(\alpha)}] \cap A_{\alpha},$ from (2.2). Thus, by Corollary 1 again,

$$x\{\mu(\alpha)\}^{n(\alpha)} = e.$$

3. Important lemma. Before proving that conditions (2.1)-(2.4) are also sufficient, we prove the following important lemma which will be required later on.

LEMMA 2. Suppose that we have a sequence of groups

$$G_1, G_2, \ldots, G_{\lambda}, \ldots,$$

defined for every λ in a well-ordered set Λ , such that $G_{\lambda} \subseteq G_{\pi}$ whenever $\lambda, \pi \in \Lambda$ and $\lambda < \pi$.

Let $\mu(\lambda, \alpha)$, where $\lambda \in \Lambda$ and α ranges over an index set Σ , be a partial endomorphism of G_{λ} which maps the subgroup $A_{\lambda,\alpha} \subseteq G_{\lambda}$ onto a second subgroup $B_{\lambda,\alpha} \subseteq G_{\lambda}$, such that

$$A_{\lambda,\alpha} \subseteq A_{\pi,\alpha}, \quad B_{\lambda,\alpha} \subseteq B_{\pi,\alpha}$$

and $\mu(\pi, \alpha)$ extends $\mu(\lambda, \alpha)$ wherever $\lambda < \pi$.

Let G_{λ} also contain the normal subgroups $L(\lambda, \omega)$ for every ω in the semigroup Ω freely generated by $\mu(\alpha)$, such that $L(\lambda, \omega) \subseteq L(\pi, \omega)$ whenever $\lambda < \pi$. Let, for all $\lambda \in \Lambda$,

$$[L\{\lambda, \mu(\alpha)\omega\} \cap A_{\lambda,\alpha}]\mu(\lambda, \alpha) = L(\lambda, \omega) \cap B_{\lambda,\alpha}, \qquad (3.4)$$

and put

$$G' = \bigcup_{\lambda \in \Lambda} G_{\lambda}, \quad A'_{\alpha} = \bigcup_{\lambda \in \Lambda} A_{\lambda,\alpha}, \quad B'_{\alpha} = \bigcup_{\lambda \in \Lambda} B_{\lambda,\alpha}, \quad L'(\omega) = \bigcup_{\lambda \in \Lambda} L(\lambda, \omega).$$

Define $\mu'(\alpha)$ to map A'_{α} onto B'_{α} as follows. If $x \in A'_{\alpha}$, that is to say $x \in A_{\lambda,\alpha}$ for some suitable $\lambda \in \Lambda$, we put

$$x\mu'(\alpha) = x\mu(\lambda, \alpha)$$

Then G', A'_{α} , B'_{α} , $L'(\omega)$ and $\mu'(\omega)$ satisfy the following relations :

$$\begin{split} L'(\omega) &\subseteq L'(\omega\omega_1) \quad \text{for all } \omega, \omega_1 \in \Omega, \qquad (3.5) \\ L'[\{\mu(\alpha)\}^{n(\alpha)}] &= L'[\{\mu(\alpha)\}^{n(\alpha)+i}] \quad \text{for any integer } i > 0, \qquad (3.6) \\ L'[\mu(\alpha)] &\cap A'_{\alpha} \quad \text{is the kernel of } \mu'(\alpha), \qquad (3.7) \\ [L'\{\mu(\alpha)\omega\} \cap A'_{\alpha}]\mu'(\alpha) &= L'(\omega) \cap B'_{\alpha}. \qquad (3.8) \end{split}$$

Proof. If $l \in L'(\omega)$, then

 $l \in L(\lambda, \omega) \subseteq L(\lambda, \omega\omega_1) \subseteq L'(\omega\omega_1)$ for some $\lambda \in \Lambda$,

which proves (3.5).

If $x \in L'[\{\mu(\alpha)\}^{n(\alpha)+1}]$, then

$$x \in L[\lambda, \{\mu(\alpha)\}^{n(\alpha)+1}] = L[\lambda, \{\mu(\alpha)\}^{n(\alpha)}] \subseteq L'[\{\mu(\alpha)\}^{n(\alpha)}],$$

for some suitable λ . Thus

$$\begin{split} L'[\{\mu(\alpha)\}^{n(\alpha)+1}] &\subseteq L'[\{\mu(\alpha)\}^{n(\alpha)}] ; \\ \text{but also} \qquad L'[\{\mu(\alpha)\}^{n(\alpha)}] &\subseteq L'[\{\mu(\alpha)\}^{n(\alpha)+1}] \end{split}$$

from (3.5). These two relations prove (3.6) when i = 1. The proof for i > 1 is the same. To prove (3.7) we notice that

$$L'[\mu(\alpha)] \cap A'_{\alpha} = \left[\bigcup_{\lambda \in A} L\{\lambda, \mu(\alpha)\}\right] \cap \left[\bigcup_{\pi \in A} A_{\pi,\alpha}\right]$$
$$= \bigcup_{\lambda, \pi \in A} [L\{\lambda, \mu(\alpha)\} \cap A_{\pi,\alpha}].$$

Let $x \in L'[\mu(\alpha)] \cap A'_{\alpha}$; then

$$\begin{aligned} x \in L[\lambda, \mu(\alpha)] \cap A_{\pi,\alpha} & \text{for some } \lambda, \pi \in \Lambda, \\ \subseteq L[\tau, \mu(\alpha)] \cap A_{\tau,\alpha}, & \text{where } \tau = \max(\lambda, \pi). \end{aligned}$$

Thus, by (3.3),

 $x\mu'(\alpha) = x\mu(\tau, \alpha) = e.$

Conversely, if x lies in the kernel of $\mu'(\alpha)$, then

$$\begin{aligned} x\mu'(\alpha) &= x\mu(\lambda, \alpha) = e, \quad \text{for some} \quad \lambda \in \Lambda, \\ x \in L[\lambda, \mu(\alpha)] \cap A_{\lambda, \alpha} \subseteq L'[\mu(\alpha)] \cap A'_{\alpha}. \end{aligned}$$

and thus

$$x \in L[\lambda, \mu(\alpha)] \cap A_{\lambda, \alpha} \subseteq L[\mu(\alpha)] \cap Z$$

This completes the proof of (3.7).

https://doi.org/10.1017/S2040618500034110 Published online by Cambridge University Press

Finally, to prove (3.8), we note that

$$L'[\mu(\alpha)\omega] \cap A'_{\alpha} = \bigcup_{\lambda, \pi \in A} [L\{\lambda, \mu(\alpha)\omega\} \cap A_{\pi,\alpha}],$$
$$L'(\omega) \cap B'_{\alpha} = \bigcup_{\lambda, \pi \in A} [L(\lambda, \omega) \cap B_{\pi,\alpha}].$$

If $x \in L'[\mu(\alpha)\omega] \cap A'_{\alpha}$, then

 $\begin{aligned} x \in L[\tau, \mu(\alpha)\omega] \cap A_{\tau,\alpha} \quad \text{for some} \quad \tau \in \Lambda, \\ x\mu'(\alpha) &= x\mu(\tau, \alpha) \in L(\tau, \omega) \cap B_{\tau,\alpha}, \end{aligned}$

by (3.4). Thus

Thus

If, on the other hand, $y \in L'(\omega) \cap B'_{\alpha}$, then

$$y \in L(\lambda, \omega) \cap B_{\pi, \alpha} \subseteq L(\tau, \omega) \cap B_{\tau, \alpha}$$

where $\tau = \max(\lambda, \pi)$, and there exists an element $x \in L[\tau, \mu(\alpha)\omega] \cap A_{\tau,\alpha}$ such that

(iii) and (iv) together prove (3.8).

This completes the proof of Lemma 2.

4. Sufficient conditions. Let α be an arbitrary element in Σ . Put

$$H = G/L[\mu(\alpha)].$$

Then H contains a subgroup

$$B'_{\alpha} = A_{\alpha} \cup L[\mu(\alpha)]/L[\mu(\alpha)] \cong A_{\alpha}/A_{\alpha} \cap L[\mu(\alpha) \cong B_{\alpha}.$$

The mapping: $aL[\mu(\alpha)] \in B'_{\alpha}$ corresponds to $a\mu(\alpha) \in B_{\alpha}$, where $a \in A_{\alpha}$ defines an isomorphism between B'_{α} and B_{α} . Let G_{α} be the free product of G and H with B_{α} and B'_{α} amalgamated according to this isomorphism, i.e., let

$$G_{\alpha} = \{G \ast H ; B_{\alpha} = A_{\alpha} \cup L[\mu(\alpha)]/L\mu(\alpha)\}$$

Denote by $\nu(\alpha)$ the canonic mapping of G onto H. $\nu(\alpha)$ extends $\mu(\alpha)$. For every $\omega \in \Omega$, we define

 $M(\omega) = [L\{\mu(\alpha)\omega\}\nu(\alpha) \cup L(\omega)]^{G_{\alpha}},$

where X^{Y} denotes the normal closure of X in Y.

LEMMA 3. If the subgroups $L(\omega)$ are replaced by $M(\omega)$, then the relation (2.2) will be preserved.

Proof. Applying (2.2) we get

$$M[\{\mu(\alpha)\}^{n(\alpha)}] = \{L[\{\mu(\alpha)\}^{n(\alpha)+1}]\nu(\alpha) \cup L[\{\mu(\alpha)\}^{n(\alpha)}]\}^{G_{\alpha}}$$
$$= \{L[\{\mu(\alpha)\}^{n(\alpha)+2}]\nu(\alpha) \cup L[\{\mu(\alpha)\}^{n(\alpha)+1}]\}^{G_{\alpha}}$$
$$= M[\{\mu(\alpha)\}^{n(\alpha)+1}].$$

This, together with what was already proved in [1], shows that $\mu(\alpha)$ is extended to a partial endomorphism $\nu(\alpha)$ of a supergroup G_{α} of G which maps G onto $G/L[\mu(\alpha)]$, such that when we put

$$G_{\alpha}$$
; $G, G/L[\mu(\alpha)], \nu(\alpha)$; $A_{\beta}, B_{\beta}, \mu(\beta)$ for all $\beta (\neq \alpha) \in \Sigma$ and $M(\omega)$

C. G. CHEHATA

in the place of

$$G; A_{\alpha}, B_{\alpha}, \mu(\alpha); A_{\beta}, B_{\beta}, \mu(\beta) \text{ for all } \beta(\neq \alpha) \in \Sigma \text{ and } L(\omega),$$

relations (2.1)-(2.4) will be satisfied. As a corollary, relation (2.6) will also be satisfied.

We shall describe this process of embedding G in G_{α} by saying that G_{α} is obtained from G by an α -extension.

Now, for any $\lambda \in \Sigma$, we define a group G_{λ} as follows. If we denote the first element of Σ by 0, then we construct G_1 by 0-extension from G.

Inductively, if G_{λ} for $\lambda \in \Sigma$ is defined and thus contains normal subgroups $L(\lambda, \omega)$ and contains for every $\alpha \in \Sigma$ a subgroup $A_{\lambda,\alpha}$ mapped homomorphically by $\mu(\lambda, \alpha)$ onto another subgroup $B_{\lambda,\alpha}$ of G_{λ} , then we construct $G_{\lambda+1}$ by a λ -extension from G_{λ} , that is, we form

$$G_{\lambda+1} = \{G_{\lambda} * G_{\lambda}/L[\lambda, \mu(\lambda)]; B_{\lambda,\lambda} = A_{\lambda,\lambda} \cup L[\lambda, \mu(\lambda)]/L[\lambda, \mu(\lambda)]\}.$$

 $G_{\lambda+1}$ contains, for every $\alpha \in \Sigma$, a subgroup $A_{\lambda+1,\alpha}$ mapped homomorphically by $\mu(\lambda+1, \alpha)$ onto the subgroup $B_{\lambda+1,\alpha}$ of $G_{\lambda+1}$, where

> $A_{\lambda+1,\lambda} = G_{\lambda},$ $B_{\lambda+1,\lambda} = G_{\lambda}/L[\lambda,\mu(\lambda)],$ $\mu(\lambda+1, \lambda)$ is the canonic mapping of G_{λ} on $G_{\lambda}/L[\lambda, \mu(\lambda)]$

and

$$\left. \begin{array}{l} A_{\lambda+1,\alpha} = A_{\lambda,\alpha}, \\ B_{\lambda+1,\alpha} = B_{\lambda,\alpha}, \\ \mu(\lambda+1,\alpha) \text{ is } \mu(\lambda,\alpha) \end{array} \right\} \quad \text{when } \alpha \neq \lambda.$$

Define

$$L(\lambda+1, \omega) = [L\{\lambda, \mu(\lambda)\omega\}\mu(\lambda+1, \lambda) \cup L(\lambda, \omega)]^{G_{\lambda}+1}$$

for every $\omega \in \Omega$. Then, according to [1] and Lemma 1, $G_{\lambda+1}$, $A_{\lambda+1,\alpha}$, $B_{\lambda+1,\alpha}$, $\mu(\lambda+1,\alpha)$ and $L(\lambda + 1, \omega)$ satisfy the relations (2.1)–(2.4) and, as a corollary, also relation (2.6).

If π is a limit ordinal and G_{λ} , $A_{\lambda,\alpha}$, $B_{\lambda,\alpha}$, $\mu(\lambda, \alpha)$, and $L(\lambda, \omega)$ are defined for all $\lambda < \pi$, put

$$G_{\pi} = \bigcup_{\lambda < \pi} G_{\lambda}, \quad A_{\pi, \alpha} = \bigcup_{\lambda < \pi} A_{\lambda, \alpha}, \quad B_{\pi, \alpha} = \bigcup_{\lambda < \pi} B_{\lambda, \alpha}, \quad L(\pi, \omega) = \bigcup_{\lambda < \pi} L(\lambda, \omega)$$

and define $\mu(\pi, \alpha)$ to map $A_{\pi,\alpha}$ onto $B_{\pi,\alpha}$ in the following way. If $\alpha \in A_{\pi,\alpha}$, i.e., if $\alpha \in A_{\lambda,\alpha}$ for some $\lambda < \pi$, we put

$$a\mu(\pi, \alpha) = a\mu(\lambda, \alpha).$$

Then, by Lemma 2, G_{π} , $A_{\pi,\alpha}$, $B_{\pi,\alpha}$, $\mu(\pi, \alpha)$ and $L(\pi, \omega)$ satisfy conditions (2.1)-(2.4) and hence (2.6) also.

0.4 ()

If σ is the ordinal type of Σ , then we continue this process until we form G_{σ} .

$${}^{0}G = G, \quad A_{\alpha} = {}^{0}A_{\alpha}, \quad \mu(\alpha) = \mu_{0}(\alpha),$$

~

$${}^{1}G = {}^{0}G_{\sigma}, \quad {}^{0}A_{\sigma,\alpha} = {}^{1}A_{\alpha}, \quad \mu_{0}(\sigma,\alpha) = \mu_{1}(\alpha),$$

and form inductively

$${}^{n}G = {}^{n-1}G_{\sigma}, \quad {}^{n-1}A_{\sigma,\alpha} = {}^{n}A_{\alpha}, \quad \mu_{n-1}(\sigma, \alpha) = \mu_{n}(\alpha),$$

1.5

for any positive integer n. Let

$$G^* = \bigcup_n {}^n G.$$

For any $\alpha \in \Sigma$ we define a mapping $\mu^*(\alpha)$ as follows. If $g \in G^*$, that is if $g \in {}^nG = {}^{n-1}G_{\sigma}$ for some suitable *n*, then we put

$$g\mu^*(\alpha) = g\mu_n(\alpha).$$

Thus the $\mu^*(\alpha)$ will become total endomorphisms of G^* which extend the $\mu(\alpha)$.

Moreover, if $g \in G^*$ and $g\{\mu^*(\alpha)\}^{n(\alpha)+1} = e$, then

 $g\{\mu_n(\alpha)\}^{n(\alpha)+1} = e$, for some suitable n,

which implies, by a relation corresponding to (2.6), that

 $g\{\mu_n(\alpha)\}^{n(\alpha)} = e,$ and thus $g\{\mu^*(\alpha)\}^{n(\alpha)} = e.$

This proves that $\mu^*(\alpha)$ is an isomorphism on $G^*\{\mu^*(\alpha)\}^{n(\alpha)}$. This completes the proof of the following theorem.

THEOREM 2. The necessary conditions (2.1)-(2.4) of Theorem 1 are also sufficient conditions for the existence of the required extension.

5. Special case. In this section we give the following theorem which is an immediate consequence of Theorem 2.

THEOREM 3. With the previous notation, in order that $\mu(\alpha)$ should be extendable to one and the same group, such that $\mu^*(\alpha)$ is an isomorphism on $G^*{\{\mu^*(\alpha)\}}^{n(\alpha)}$, it is sufficient that there exists for each $\alpha \in \Sigma$, a sequence

$$L(\alpha, 1) \subseteq L(\alpha, 2) \subseteq \ldots \subseteq L[\alpha, n(\alpha)] = L[\alpha, n(\alpha) + 1] = \ldots$$

of normal subgroups in G, such that

 $L(\alpha, 1) \cap A_{\alpha}$ is the kernel of $\mu(\alpha)$,(5.1)

 $L(\alpha, i) \cap B_{\beta} = e \qquad(5.3)$

for $i = 1, 2, ..., \alpha, \beta \in \Sigma$ and $\alpha \neq \beta$.

For then we can satisfy conditions (2.1)-(2.4) by putting

$$L[\{\mu(\alpha)\}^{i}\omega] = L[\{\mu(\alpha)\}^{i}] = L(\alpha, i),$$

or $\omega = \mu(\beta)\omega', \beta \neq \alpha$.

REFERENCES

1. C. G. Chehata, Simultaneous extension of partial endomorphisms of groups, Proc. Glasgow Math. Assoc. 2 (1954), 37-46.

2. C. G. Chehata, An embedding theorem for groups, Proc. Glasgow Math. Assoc. 4 (1960), 140-143.

3. Higman, G., Neumann, B. H., and Neumann, H., Embedding theorems for groups, J. London Math. Soc. 24 (1949), 247-254.

4. Neumann, B. H., and Neumann, Hanna, Extending partial endomorphisms of groups. Proc. London Math. Soc. (3) 2 (1952), 337-348.

FACULTY OF SCIENCE THE UNIVERSITY ALEXANDRIA, EGYPT