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Abstract

For normed linear spaces two similar characterizations of strong differentiability of the norm
and rotundity of the dual space are established, but it is shown that in general there is no
causal relation between these two concepts.

Subject classification (Amer. Math. Soc. (MOS) 1970): 46 B 10.

Given a real normed linear space X, and yeX and r>0 we denote by B[y; r]
closed ball {xeX:\\x-y\\^r}. We denote by B(X) the closed unit ball
{xeX: ||*||< 1} and by S(X) the unit sphere {xeX: \\x\\ = 1}. Given xeS(X) we
denote by D(x) the set {feS(X*):f(x) = 1}. X is said to be smooth at xeS(X)
if D(x) is a single point set. The norm of X is said to be strongly differentiable
(Frechet differentiable) at xeS(X) if for some/xe£>(jc),

v-»o IMI
If the norm of X is strongly differentiable at x e S(X) then X is smooth at x, (see
Giles (1971), p. 109), but from Example 2 below it can be observed that the
converse is not true even for reflexive spaces. We say that X is rotund at xeS(X)
if for any yeS(X)\{x}, $(x+y)$S(X). It is well known that if X* is rotund on
S(X*) then Jif is smooth on S(X), but it follows from a result of Klee (1959), p. 62,
and Day's theorem given in Theorem 2(i)o(ii) below that there exists a separable
space which can be equivalently renormed so that X is smooth on S(X) and X*
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is not rotund on S(X*). We might well ask whether there is some tighter relation
between strong differentiability of the norm and rotundity of the dual.

Phelps (1960), p. 977, explored an important geometrical implication of strong
differentiability of the norm. His Theorem 2.2 motivates the characterization of
strong differentiability of the norm which we give in Theorem 1 below.

Vlasov (1970), p. 776, showed rotundity of the dual to be a geometrical property
with significant consequences. His Theorem 1 is a fascinating characterization of
rotundity of the dual which suggests comparison with Phelp's investigation of
strong differentiability of the norm. We localize Vlasov's theorem in Theorem 2
below to highlight its similarity with our characterization of strong differentiability
of the norm.

To prove our first theorem we require the following elementary result.

LEMMA. For a normed linear space X, the norm is strongly differentiate at x e S(X)
if for some fx e D(x) and all zeX such that fjz) = 0,

PROOF. Given e > 0 there exists a 0 < S < J such that

" I^HHlUjs when||z||<33.

Now any yeS(X) can be represented in the form y = ocx+z where a —fx{y) and
fjz) = 0. Since \\z\\^2, when | A|< 8 we have

and so

<s

THEOREM 1. For a normed linear space X, the norm is strongly differentiable at
xeS(X) if and only if for some fxe D(x) and for every bounded closed convex set
K where supfx(K)< 1, there exists an n0 such that K^B[(l —no)x; n0].

PROOF. Suppose that the norm is strongly differentiable at x but that for/x e D(x)
there exists a bounded closed convex set K such that supfJ^K) < 1 and for every n
there exists an xneK\B[(l —n)x; »]. Writingyn=xj(n — 1), since {xn} is bounded,
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we have yn->0. Now
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ll*+y»Hl*ll _ \\(l-n)x-xn\\-\\(n-l)x\\ H-(H-1)

b.ll " Kll Kll

Tf7T-TCT*inni' where ^

But

Again since {xn} is bounded we conclude that this contradicts the strong differen-
tiability of the norm at x.

Conversely, suppose that the norm of A' is not strongly differentiable at x e S(X).
Then from the lemma we see that for any fxeD{x) there exists an r>0 and a
sequence {yn} where fx(yn) = 0 and yn-+0 such that

for all n.

We may assume that

For a given n, consider the Minkowskian plane associated with the normed linear
subspace generated by x and yn. Denote by an the point of intersection of the
interval from 0 to x+yn with S(X). Denote by dn the point of intersection of the

S(X)

x+y,

line through an parallel to the line through x and x+yn, with the interval from
0 to x. On the ray from dn through an choose a point xn outside B(X) such that
IIxn~anII = l/«- Consider the similarity transformation zh^-z' = nz—{n—\)x
taking B(X) to B[(l -n)x; «]. It is clear that
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and so

II*-*;II=«II*-4JI>1'-
But also

nx d n J
\\x+yn\\

and so

Therefore, in X the closed convex set K=co{x'7^ has the properties that
sup/x(Af)< 1 and AT is bounded but for each n,x'neK\B[{\ — n)x; ri\.

We present our local characterization of rotundity of the dual through a
localized form of Day's characterization of rotundity of the dual (Day (1973),
p. 145).

THEOREM 2. For a normed linear space X with dual space X*, given feS(X*),
the following statements are equivalent.

(i) The dual space X* is rotund at f.
(ii) For any geS(X*)\{±f}, writing L=f~1(0)ng~1(Q), and for any sequence

{xn} in S(X) where f(xn)-> 1, the two-dimensional factor space X/L is smooth at Y
where Yis a cluster point of{xn+L} in X/L.

(iii) For any sequence of closed balls {Bn}, where Bn=B[zn; Rn] and Bn^Bn+1

for all n and Rn->co, contained in the half-space {yeX:f(y)4:l}, there exists an
r s£ 1 such that ~UBn = {yeX: f(y) s£ r}.

PROOF, (ii) implies (i). Suppose that X* is not rotund at/ . Then there exists a
geS(X*)\{f} such that $(J+g)eS(X*). Write L^f-^ng-^O) and consider
the two-dimensional factor space X/L. Define the linear functional F and G on
X/L by

F(x+L)=f(x) and G(x+L)=g(x) forallxeA-.

Now || F|| = ||/|| = 1 and || G|| = ||^|| = 1. There exists a sequence {xn} in S(X) such
that (f+g)(xn)^\\f+g\\ = 2 and so/(*„)-> 1 and g(xn)-+1. Now the set {xn+L}
is contained in B(X/L) and so it has a cluster point Y in B(X/L). We may suppose
that xn+L-*Y. But

f(xn)^l and G(xn+L) =

and so F(Y) = 1 and G(Y) = 1, and we conclude that X/L is not smooth at Y.
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(iii) implies (ii). Suppose that there exists a geS(X*)\{±f} such that, writing
L =f~HP)ng~HP% f°r s o m e sequence {xn} in S(X) where /(*„)-»• 1 we have that
the two-dimensional factor space X/L is not smooth at Y where Y is a cluster
point of {xn+L} in X/L. Then there exist linearly independent Fand GeS((X/L)*)
such that F(Y)= 1 and G(F) = 1. Consider a real decreasing sequence {eB} such
that £n->0 and a sequence of closed balls {Bn} in A7Z.wherei?n=2?[(l —n) Y; n - e j .
It is clear that sup F(Bn) s£ 1 and sup G(Bn) < 1. Now for each n it is possible to find
z n e ( l - n ) 7 such that

Consider the sequence of closed balls {Bn} in X where Bn=B [zn; n - sn]. It is clear
that 2?n £ 2?n+1 for all n. But also for any n and x e fin we have that x+L e Bn and so

f(x) = F(x+L)^l and g(x) = G(x+L)^l.

Therefore, UBnc{yeX:f(y)^l}n{yeX: g(y)^l}sindso UBn is not a half-space,
(i) implies (iii). Suppose that there exists a sequence of closed balls {Bn}, where

Bn=Bn[zn; Rn] and Bn^Bn+1 for all n and Rn->co, contained in the half-space
{yeX:f(y)^l} such that UBn is not a half-space. Then there exists a
zeint{yeX:f(y)^l} and z$UBn. Now £/2?n is a convex set with an interior
point and so there exists a geS{X*) such that g{z)^supg(USn). Clearly,/andg
are linearly independent. We may assume that supf(UBn) = supg(UBn) = 1.
Writing

and Sn=l

we have that en, SB->0. Now

f(zn) = l-en-Rn and g(zn) = I - 8n-Rn for all «.

Consider the sequence {xm} where xn={z1—zn)/Rn. Since J? n s5 n + 1 for all « we
have that xneB(X) for all n. Now

_\-e1-R1-\+en

Similarly g(xn)^-1. So then (/+£)(*„)->-2 and we have that | | /+^| | = 2 and we
conclude that X* is not rotund at/.
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It is obvious that a normed linear space A'is smooth at xeS(X) if and only if
for some fxeD(x), UB[(l-n)x; n] = {yeX;fJ[y)4!l}. This condition is clearly
weaker than those given in the above theorems.

These two theorems, characterizing strong differentiability of the norm and
rotundity of the dual in terms of increasing sequences of balls, prompt investigation
of the relation between the two concepts.

In a finite dimensional space Xn the norm is strongly differentiable at xeS(Xn)
if the dual space is rotund stfxeD(x). However, the converse is not true locally.

EXAMPLE 1. Consider R2 where, for JC=(AX,X^, \\x\\a = max{|A1|,|A2|}. Now
^=(1,0) is a smooth point on the unit sphere and since the space is finite
dimensional it is a point where the norm is strongly differentiable. The dual space is
isometrically isomorphic to R2 where, for f=(jx^,ft^), ||/||i = l/^l+l/^al- Now
fi=(l,0)eZ)(e1) but the dual space is clearly not rotund atfv

For reflexive spaces the converse is true globally. However, it is possible to have
a reflexive space whose norm is not strongly differentiable at a point of its unit
sphere but which has rotund dual. The dual of this example was discussed in Giles
(1976), p. 407.

EXAMPLE 2. Consider Hilbert space /2 with its natural basis {*„}. Brown (1974),
p. 146, has shown that it is possible to give l2 an equivalent rotund norm such that
for each k^2 the two-dimensional subspaces s p ^ e * } have an /fc-norm; that is,
forxs{a1,0>...,aA.,0,...},

Now /2 with this norm is reflexive and its dual is smooth and is isometrically
isomorphic to /2 with norm such that for each k ̂  2 the two-dimensional subspaces
spK,<?*} have 4/(fc_i) norm; that is, for x s ^ O , ...,<xk,0,...}

11*11
In this space consider the sequence O^+i} where

{
fcth place

Now
IIJWlHO/*)1-1'*-**) asfc+oo,

and
= (1 + llky-™> 1 = |N | for all k>2,

so forfeieD(ej) we have
4(^+i) = 0 for all
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But

l | j l
\\yk+l\\

We conclude that the dual of Brown's space has norm not strongly differentiable
a t e-y.

The only relation left to explore is the global situation for a non-reflexive space X
with norm strongly differentiable on S(X). Surely such a space does not necessarily
have rotund dual. However, the construction of a counter-example would seem to
involve a refinement of the construction given by Klee (1959), p. 62, to produce a
smooth space with non-rotund dual. Such a construction could prove to be quite
complicated.
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