A Note on 4-Rank Densities

Robert Osburn

Abstract. For certain real quadratic number fields, we prove density results concerning 4-ranks of tame kernels. We also discuss a relationship between 4-ranks of tame kernels and 4-class ranks of narrow ideal class groups. Additionally, we give a product formula for a local Hilbert symbol.

1 Introduction

Let F be a real quadratic number field and \mathcal{O}_{F} its ring of integers. In [4], the authors gave an algorithm for computing the 4-rank of the tame kernel $K_{2}\left(\mathcal{O}_{F}\right)$. The idea of the algorithm is to consider matrices with Hilbert symbols as entries and compute matrix ranks over \mathbb{F}_{2}. Recently, the author used these matrices to obtain "density results" concerning the 4 -rank of tame kernels, see [6], [7].

In this note, we consider the 4-rank of $K_{2}(\mathcal{O})$ for the real quadratic number fields $(\mathbb{O})\left(\sqrt{p_{1} p_{2} p_{3}}\right)$ for primes $p_{1} \equiv p_{2} \equiv p_{3} \equiv 1 \bmod 8$. We will see that

$$
4-\operatorname{rank} K_{2}\left(\mathcal{O}_{\mathbb{Q}\left(\sqrt{p_{1} p_{2} p_{3}}\right.}\right)=0,1,2 \text {, or } 3 .
$$

For squarefree, odd integers d, consider the set

$$
X=\left\{d: d=p_{1} p_{2} p_{3}, p_{i} \equiv 1 \bmod 8\right\}
$$

for distinct primes p_{i}.
Using GP/PARI [1], we computed the following: For $50881 \leq d<2 \times 10^{7}$, there are 7257 d's in X. Among them, there are 2121 d's (29.23\%) yielding 4-rank 0 , 3977 d's (54.80\%) yielding 4-rank 1, 1086 d's (14.96\%) yielding 4-rank 2, and 73 d's (1.01%) yielding 4-rank 3 . In fact, we prove

Theorem 1.1 For the fields $(\mathbb{O})\left(\sqrt{p_{1} p_{2} p_{3}}\right)$, 4-rank $0,1,2$, and 3 appear with natural density $\frac{1}{4}, \frac{17}{32}, \frac{13}{64}$, and $\frac{1}{64}$ respectively in X.

In the appendix we point out a beautiful result which may not be well known. It is a product formula from [11] for a certain local Hilbert symbol. This product formula both simplifies numerical computations and is a generalization of Propositions 4.6 and 4.4 in [2] and [7], respectively.

[^0]
2 Matrices

Hurrelbrink and Kolster [4] generalize Qin's approach in [8], [9] and obtain 4-rank results by computing \mathbb{F}_{2}-ranks of certain matrices of local Hilbert symbols. Specifically, let $F=\mathbb{O}(\sqrt{d}), d>1$ and squarefree. Let $p_{1}, p_{2}, \ldots, p_{t}$ denote the odd primes dividing d. Recall 2 is a norm from F if and only if all p_{i} 's are $\equiv \pm 1 \bmod 8$. If so, then d is a norm from $(\mathbb{O})(\sqrt{2})$, thus

$$
d=u^{2}-2 w^{2}
$$

for $u, w \in \mathbb{Z}$. Now consider the matrix:

$$
M_{F / \mathbb{Q}}=\left(\begin{array}{cccc}
\left(-d, p_{1}\right)_{2} & \left(-d, p_{1}\right)_{p_{1}} & \cdots & \left(-d, p_{1}\right)_{p_{t}} \\
\left(-d, p_{2}\right)_{2} & \left(-d, p_{2}\right)_{p_{1}} & \cdots & \left(-d, p_{2}\right)_{p_{t}} \\
\vdots & \vdots & & \vdots \\
\left(-d, p_{t-1}\right)_{2} & \left(-d, p_{t-1}\right)_{p_{1}} & \cdots & \left(-d, p_{t-1}\right)_{p_{t}} \\
(-d, v)_{2} & (-d, v)_{p_{1}} & \cdots & (-d, v)_{p_{t}} \\
(d,-1)_{2} & (d,-1)_{p_{1}} & \cdots & (d,-1)_{p_{t}}
\end{array}\right) .
$$

If 2 is not a norm from F, set $v=2$. Otherwise, set $v=u+w$. Replacing the 1's by 0 's and the -1 's by 1 's, we calculate the matrix rank over \mathbb{F}_{2}. From [4],

Lemma 2.1 Let $F=(\mathbb{O}(\sqrt{d}), d>0$ and squarefree. Then

$$
4-\operatorname{rank} K_{2}\left(\mathcal{O}_{F}\right)=t-\operatorname{rk}\left(M_{F / \mathbb{Q}}\right)+a^{\prime}-a
$$

where

$$
a= \begin{cases}0 & \text { if } 2 \text { is a norm from } F \\ 1 & \text { otherwise }\end{cases}
$$

and

$$
a^{\prime}= \begin{cases}0 & \text { if both }-1 \text { and } 2 \text { are norms from } F \\ 1 & \text { if exactly one of }-1 \text { or } 2 \text { is a norm from } F \\ 2 & \text { if none of }-1 \text { or } 2 \text { are norms from } F\end{cases}
$$

Recall that our case is $(\mathbb{O})\left(\sqrt{p_{1} p_{2} p_{3}}\right)$ for primes $p_{1} \equiv p_{2} \equiv p_{3} \equiv 1 \bmod 8$. In this case $a=a^{\prime}$ and we may delete the last row of $M_{F / \mathbb{Q}}$ without changing its rank (see discussions preceding Proposition 5. 13 and Lemma 5.14 in [4]). Also note that v is an p_{1}-adic unit and hence

$$
\left(-p_{1} p_{2} p_{3}, v\right)_{p_{1}}=\left(p_{1}, v\right)_{p_{1}}=\left(\frac{v}{p_{1}}\right)
$$

Similarly, $\left(-p_{1} p_{2} p_{3}, v\right)_{p_{2}}=\left(\frac{v}{p_{2}}\right)$ and $\left(-p_{1} p_{2} p_{3}, v\right)_{p_{3}}=\left(\frac{v}{p_{3}}\right)$. From Lemma 2.1 we have

$$
4-\operatorname{rank} K_{2}\left(\mathcal{O}_{F}\right)=3-\operatorname{rk}\left(M_{F / \mathbb{Q}}\right)
$$

and the matrix $M_{F / \mathbb{O}}$ is of the form

$$
\left(\begin{array}{cccc}
1 & \left(\frac{p_{2}}{p_{1}}\right)\left(\frac{p_{3}}{p_{1}}\right) & \left(\frac{p_{1}}{p_{2}}\right) & \left(\frac{p_{1}}{p_{3}}\right) \\
1 & \left(\frac{p_{2}}{p_{1}}\right) & \left(\frac{p_{1}}{p_{2}}\right)\left(\frac{p_{3}}{p_{2}}\right) & \left(\frac{p_{2}}{p_{3}}\right) \\
(-d, u+w)_{2} & \left(\frac{v}{p_{1}}\right) & \left(\frac{v}{p_{2}}\right) & \left(\frac{v}{p_{3}}\right)
\end{array}\right)
$$

Let us now prove Theorem 1.1.
Proof The idea in [6] and [7] is to first consider an appropriate normal extension N of (\mathbb{O}) and then relate the splitting of the primes p_{i} in N to their representation by certain quadratic forms. The next step is classifying 4-rank values in terms of values of the symbols $(-d, v)_{2},\left(\frac{v}{p_{i}}\right)$. The values of these symbols are then characterized in terms of p_{i} satisfying the alluded to quadratic forms. We then associate Artin symbols to the primes p_{i} and apply the Chebotarev density theorem. In what follows, we classify the 4 -rank values in terms of the symbols $(-d, v)_{2},\left(\frac{v}{p_{i}}\right)$ and in parenthesis give the relevant densities in X obtained by using the above machinery. Let us consider the following four cases (see Table III in [9]).
Case 1 Suppose $\left(\frac{p_{2}}{p_{1}}\right)=\left(\frac{p_{3}}{p_{1}}\right)=\left(\frac{p_{3}}{p_{2}}\right)=1$. Then we immediately have that

- 4- $\operatorname{rank} K_{2}\left(\mathcal{O}_{\mathbb{Q}\left(\sqrt{p_{1} p_{2} p_{3}}\right)}\right)=3 \Leftrightarrow \operatorname{rank}\left(M_{F / \mathbb{Q}}\right)=0 \Leftrightarrow(-d, v)_{2}=1$ and $\left(\frac{v}{p_{1}}\right)=$ $\left(\frac{v}{p_{2}}\right)=\left(\frac{v}{p_{3}}\right)=1\left(\frac{1}{64}\right)$
- 4- $\operatorname{rank} K_{2}\left(\mathcal{O}_{\mathbb{O}\left(\sqrt{p_{1} p_{2} p_{3}}\right)}\right)=2 \Leftrightarrow \operatorname{rank}\left(M_{F / \mathbb{Q}}\right)=1 \Leftrightarrow(-d, v)_{2}=-1$ or $(-d, v)_{2}$ $=1$ and $\left(\frac{v}{p_{1}}\right)=\left(\frac{v}{p_{2}}\right)=-1$ and $\left(\frac{v}{p_{3}}\right)=1$ or $(-d, v)_{2}=1$ and $\left(\frac{v}{p_{1}}\right)=\left(\frac{v}{p_{3}}\right)=-1$ and $\left(\frac{v}{p_{2}}\right)=1$ or $(-d, v)_{2}=1$ and $\left(\frac{v}{p_{2}}\right)=\left(\frac{v}{p_{3}}\right)=-1$ and $\left(\frac{v}{p_{1}}\right)=1\left(\frac{7}{64}\right)$.
Case 2 Suppose $\left(\frac{p_{3}}{p_{2}}\right)=\left(\frac{p_{3}}{p_{1}}\right)=1,\left(\frac{p_{2}}{p_{1}}\right)=-1$. Thus
- 4- $\operatorname{rank} K_{2}\left(\mathcal{O}_{\mathbb{Q}\left(\sqrt{p_{1} p_{2} p_{3}}\right)}\right)=2 \Leftrightarrow \operatorname{rank}\left(M_{F / \mathbb{Q} 2}\right)=1 \Leftrightarrow(-d, v)_{2}=1$ and $\left(\frac{v}{p_{1}}\right)=$ $\left(\frac{v}{p_{2}}\right)=1$ or $(-d, v)_{2}=1$ and $\left(\frac{v}{p_{1}}\right)=\left(\frac{v}{p_{2}}\right)=-1\left(\frac{3}{32}\right)$
- 4- $\operatorname{rank} K_{2}\left(\mathcal{O}_{\mathbb{Q}\left(\sqrt{p_{1} p_{2} p_{3}}\right)}\right)=1 \Leftrightarrow \operatorname{rank}\left(M_{F / \mathbb{Q}}\right)=2 \Leftrightarrow(-d, v)_{2}=-1$ or $(-d, v)_{2}$ $=1$ and $\left(\frac{v}{p_{1}}\right)=\left(\frac{v}{p_{3}}\right)=-1$ and $\left(\frac{v}{p_{2}}\right)=1$ or $(-d, v)_{2}=1$ and $\left(\frac{v}{p_{2}}\right)=\left(\frac{v}{p_{3}}\right)=-1$ and $\left(\frac{v}{p_{1}}\right)=1\left(\frac{9}{32}\right)$.
Case 3 Suppose $\left(\frac{p_{2}}{p_{1}}\right)=\left(\frac{p_{3}}{p_{1}}\right)=-1,\left(\frac{p_{3}}{p_{2}}\right)=1$. Thus
- 4- $\operatorname{rank} K_{2}\left(\mathcal{O}_{\mathbb{Q}\left(\sqrt{p_{1} p_{2} p_{3}}\right)}\right)=1 \Leftrightarrow \operatorname{rank}\left(M_{F / \mathbb{Q}}\right)=2 \Leftrightarrow(-d, v)_{2}=1\left(\frac{3}{16}\right)$.
- 4- $\operatorname{rank} K_{2}\left(\mathcal{O}_{\mathbb{Q}\left(\sqrt{p_{1} p_{2} p_{3}}\right)}\right)=0 \Leftrightarrow \operatorname{rank}\left(M_{F / \mathbb{Q}}\right)=3 \Leftrightarrow(-d, v)_{2}=-1\left(\frac{3}{16}\right)$.

Case 4 Suppose $\left(\frac{p_{2}}{p_{1}}\right)=\left(\frac{p_{3}}{p_{1}}\right)=\left(\frac{p_{3}}{p_{2}}\right)=-1$. Then

- 4- $\operatorname{rank} K_{2}\left(\mathcal{O}_{\mathbb{Q}\left(\sqrt{p_{1} p_{2} p_{3}}\right)}\right)=1 \Leftrightarrow \operatorname{rank}\left(M_{F / \mathbb{Q}}\right)=2 \Leftrightarrow(-d, v)_{2}=1\left(\frac{1}{16}\right)$
- 4- $\operatorname{rank} K_{2}\left(\mathcal{O}_{\mathbb{Q}\left(\sqrt{p_{1} p_{2} p_{3}}\right)}\right)=0 \Leftrightarrow \operatorname{rank}\left(M_{F / \mathbb{Q}}\right)=3 \Leftrightarrow(-d, v)_{2}=-1\left(\frac{1}{16}\right)$.

Thus 4-rank $0,1,2$, and 3 occur with natural density $\frac{1}{16}+\frac{3}{16}=\frac{1}{4}, \frac{1}{16}+\frac{3}{16}+\frac{9}{32}=\frac{17}{32}$, $\frac{3}{32}+\frac{7}{64}=\frac{13}{64}$, and $\frac{1}{64}$.

Remark 2.2 The matrices in [4] are related to Rédei matrices which were used in the 1930 's to study the structure of narrow ideal class groups. Namely, for $\mathbb{O}(\sqrt{d})$, we considered the case that all odd primes divisors of d are $\equiv 1 \bmod 8$. Thus 2 is a norm from $F=(\mathbb{O})(\sqrt{d})$ and we have the representation

$$
d=u^{2}-2 w^{2}
$$

Let $d^{\prime}=\prod_{i=1}^{t} p_{i}$. The matrix $M_{F / \mathbb{Q} 2}$ has the form:

$$
\left(\begin{array}{ccc}
1 & & \\
1 & \hat{R}_{F / \mathbb{Q}} & \\
\vdots & & \\
1 & & \\
(-d, v)_{2} & (-d, v)_{p_{1}} & \cdots
\end{array}(-d, v)_{p_{t}}\right)
$$

The $(t-1)$ by t matrix $\hat{R}_{F / \mathbb{Q}}$ can be extended, without changing its rank, to a t by t matrix $R_{F / \mathbb{Q}}$ by adding the last row

$$
\left(-d, p_{t}\right)_{p_{1}},\left(-d, p_{t}\right)_{p_{2}}, \ldots,\left(-d, p_{t}\right)_{p_{t}}
$$

$R_{F / \mathbb{Q} Q}$ is known as the Rédei matrix of the field $F^{\prime}:=\mathbb{O}\left(\sqrt{d^{\prime}}\right)$ (see [5] or [10]). Its rank determines the 4-rank of the narrow ideal class group $C_{F^{\prime}}^{+}$of the field F^{\prime} by

$$
4-\operatorname{rank} C_{F^{\prime}}^{+}=t-1-\operatorname{rank}\left(R_{F / \mathbb{Q}}\right)
$$

Combining this information with Lemma 2.1, we have that if $(-d, u+w)_{2}=-1$, then 4-rank $K_{2}\left(\mathcal{O}_{F}\right)=4-\operatorname{rank} C_{F^{\prime}}^{+}$. Using Rédei matrices, Gerth in [3] derived an effective algorithm for computing densities of 4-class ranks of narrow ideal class groups of quadratic number fields. It would be interesting to see if density results concerning 4 -class ranks of narrow ideal class groups (coupled with the product formula in the appendix) can be used to obtain asymptotic formulas for 4-rank densities of tame kernels.

3 Appendix: A Product Formula

Most of the local Hilbert symbols in the matrix $M_{F / \mathbb{Q}}$ are calculated directly. Difficulties arise when d is a norm from $(\mathbb{O}(\sqrt{2})$. In this case, we need to calculate the Hilbert symbols $(-d, u+w)_{2}$ and $(-d, u+w)_{p_{k}}$. The local symbol at 2 is calculated using Lemmas 5.3 and 5.4 in [4]. In this appendix we provide a product formula which allows one to calculate $(-d, u+w)_{p_{k}}$ using 2 factors of d at a time.

Let d be a squarefree integer and assume that all odd prime divisors of d are \equiv $\pm 1 \bmod 8$. Then d is a norm from $F=(\mathbb{O}(\sqrt{2})$ and we have the representation

$$
d=u^{2}-2 w^{2}
$$

with $u>0$. Let l be any odd prime dividing d. Note that l does not divide $u+w$ and so

Remark $3.1(-d, u+w)_{l}=(l, u+w)_{l}=\left(\frac{u+w}{l}\right)$.
Recall that any odd prime divisor l of d is $\equiv \pm 1 \bmod 8$. We fix x and y according to the representation:

$$
(-1)^{\frac{l-1}{2}} l=N_{\mathbb{Q}(\sqrt{2}) / \mathbb{Q} 2}(x+y \sqrt{2})=x^{2}-2 y^{2}
$$

with $x \equiv 1 \bmod 4, x, y>0$. Observe that $\bmod 8, x$ is odd. Also we can arrange for $x \equiv 1 \bmod 4$ by multiplying $x+y \sqrt{2}$ by $(1+\sqrt{2})^{2}$.

For $l \equiv 1 \bmod 8$, we have $l=x^{2}-2 y^{2}$ and so $\left(\frac{l}{y}\right)=1$. Thus $\left(\frac{y}{l}\right)=1$. For $l \equiv 7 \bmod 8$,

$$
1=\left(\frac{-l}{y}\right)=\left(\frac{-1}{y}\right)\left(\frac{l}{y}\right)=(-1)^{\frac{y-1}{2}}(-1)^{\frac{y-1}{2}}\left(\frac{y}{l}\right)=\left(\frac{y}{l}\right)
$$

Now let r be an integer not divisible by l which can be represented as a norm from $\mathbb{O}_{(}(\sqrt{2})$. Denote by $\pi_{r}=s+t \sqrt{2}$ an element such that $N_{\mathbb{Q}(\sqrt{2}) / \mathbb{Q}}\left(\pi_{r}\right)=r$ with s, $t>0$. Now let u_{r} and w_{r} be such that

$$
u_{r}+w_{r} \sqrt{2}=(1+\sqrt{2})(x+y \sqrt{2})(s+t \sqrt{2})
$$

By the choice of x, y, s, t, we have $u_{r}>0$. Note that

$$
N_{\mathbb{Q}(\sqrt{2}) / \mathbb{Q} \mathbb{Q}}\left(u_{r}+w_{r} \sqrt{2}\right)=-(-1)^{\frac{l-1}{2}} l r .
$$

Now fix $\mathfrak{l}=\langle x-y \sqrt{2}\rangle$ a prime ideal above l in $\mathbb{O}(\sqrt{2})$. As l splits in $\mathbb{O}_{2}(\sqrt{2})$, $\mathbb{Z}[\sqrt{2}] / I \cong \mathbb{Z} / l \mathbb{Z}$. This allows us to work $\bmod \mathbb{I}$ as opposed to $\bmod l$. From the above, $u_{r}+w_{r}=2 x s+3 t x+3 s y+4 y t$. Modulo \mathfrak{I}, we have

$$
\begin{aligned}
u_{r}+w_{r} & \equiv 2 s y \sqrt{2}+3 t y \sqrt{2}+3 s y+4 y t \\
& \equiv y(3+2 \sqrt{2})(s+t \sqrt{2})
\end{aligned}
$$

As $\left(\frac{y}{l}\right)=1,\left(\frac{u_{r}+w_{r}}{l}\right)=\left(\frac{y}{l}\right)\left(\frac{\pi_{r}}{\mathrm{~L}}\right)=\left(\frac{\pi_{r}}{\mathrm{l}}\right)$ where

$$
\left(\frac{\pi_{r}}{\mathrm{I}}\right)= \begin{cases}1 & \text { if } x^{2} \equiv \pi_{r} \bmod \mathrm{I} \text { is solvable } \\ -1 & \text { otherwise }\end{cases}
$$

In the case $r=\prod_{i}^{t-1} p_{i}$ where $p_{i} \equiv \pm 1 \bmod 8$, we obtain for each p_{i} an element $\pi_{i} \in \mathbb{O}(\sqrt{2})$ of norm $(-1)^{\frac{p_{i}-1}{2}} p_{i}$. Let c be the number of primes dividing r which are congruent to 7 modulo 8 . Then we have (up to squares of units) $\pi_{r}=$ $(1+\sqrt{2})^{c} \prod_{i}^{t-1} \pi_{i}$. This yields

$$
\left(\frac{u_{r}+w_{r}}{l}\right)=\left(\frac{(1+\sqrt{2})^{c}}{\mathfrak{l}}\right) \prod_{i}^{t-1}\left(\frac{\pi_{i}}{\mathfrak{l}}\right)
$$

and so

$$
\left(\frac{u_{r}+w_{r}}{l}\right)=\left(\frac{u_{-1}+w_{-1}}{l}\right)^{c} \prod_{i}^{t-1}\left(\frac{u_{p_{i}}+w_{p_{i}}}{l}\right)
$$

As -1 and 2 are also norms from $(\mathbb{O}(\sqrt{2})$, we can include r 's having factors -1 or ± 2. Thus for $r=(-1)^{n}(2)^{m} \prod_{i}^{t-1} p_{i}$ with $m, n=0$, or 1 , and each $p_{i} \equiv \pm 1 \bmod 8$ and $l \neq p_{i}$ for any i, we have

Remark 3.2

$$
\left(\frac{u_{r}+w_{r}}{l}\right)=\left(\frac{u_{-1}+w_{-1}}{l}\right)^{n+c}\left(\frac{u_{2}+w_{2}}{l}\right)^{m} \prod_{i}^{t-1}\left(\frac{u_{p_{i}}+w_{p_{i}}}{l}\right) .
$$

Setting $r=\frac{d}{l}$, we have $-(-1)^{\frac{l-1}{2}} d=N_{\mathbb{Q}(\sqrt{2}) / \mathbb{O} 2}\left(u_{r}+w_{r} \sqrt{2}\right)$. So for any prime $l \equiv 7 \bmod 8$, we have $N_{\mathbb{Q}(\sqrt{2}) / \mathbb{Q} Q}\left(u_{r}+w_{r} \sqrt{2}\right)=d=N_{\mathbb{Q}(\sqrt{2}) / \mathbb{Q} Q}(u+w \sqrt{2})$. Then, up to squares, $\left(\frac{u_{r}+w_{r}}{l}\right)=\left(\frac{u+w}{l}\right)$. For prime divisors $l \equiv 1 \bmod 8$, we have $-d=$ $N_{\mathbb{Q}(\sqrt{2}) / \mathbb{Q}}\left(u_{r}+w_{r} \sqrt{2}\right)$ and so we include $\left(\frac{u_{-1}+w_{-1}}{l}\right)$. To summarize,

Remark 3.3

$$
(-d, u+w)_{l}= \begin{cases}\left(\frac{u_{r}+w_{r}}{l}\right) & \text { if } l \equiv 7 \bmod 8 \\ \left(\frac{u_{-1}+w_{-1}}{l}\right)\left(\frac{u_{r}+w_{r}}{l}\right) & \text { if } l \equiv 1 \bmod 8\end{cases}
$$

We may now reduce to the following $d=r l$: $d=-l, d=2 l$, and $d=p l$, i.e. calculate the symbols $\left(\frac{u_{-1}+w_{-1}}{l}\right),\left(\frac{u_{2}+w_{2}}{l}\right)$, and $\left(\frac{u_{p}+w_{p}}{l}\right)$. The first two symbols can be calculated using the following two elementary lemmas.

Lemma 3.4 $\quad\left(\frac{u_{-1}+w_{-1}}{l}\right)=1 \Leftrightarrow(-1)^{\frac{l-1}{2}} l=a^{2}-32 b^{2}$ for some $a, b \in \mathbb{Z}$ with $a \equiv 1 \bmod 4$.

Lemma 3.5 $\quad\left(\frac{u_{2}+w_{2}}{l}\right)=1 \Leftrightarrow l \equiv \pm 1 \bmod 16$.
A little care is necessary in computing $\left(\frac{u_{p}+w_{p}}{l}\right)$. If $\left(\frac{\left(-1 \frac{p-1}{2} p\right.}{l}\right)=1$, then the symbol $\left(\frac{\pi}{l}\right)$ is well defined (see discussion preceding Proposition 3.5 in [2]) and can be computed using

Lemma 3.6 For $\mathcal{K}=\mathbb{O}\left(\sqrt{(-1)^{\frac{p-1}{2}} 2 p}\right)$ with $p \equiv \pm 1 \bmod 8$ and $h^{+}(\mathcal{K})$ the narrow class number of \mathcal{K}, we have

$$
\left(\frac{\pi}{l}\right)=1 \Leftrightarrow l^{\frac{h^{+}(\mathcal{K})}{4}}=n^{2}-2 p m^{2} \quad \text { for some } n, m \in \mathbb{Z} \text { with } m \not \equiv 0 \bmod l .
$$

For $\mathcal{K}=(\mathbb{O})(\sqrt{-2 p})$ with $p \equiv 7 \bmod 8,\left(\frac{\pi}{l}\right)=-1 \Leftrightarrow l^{\frac{h^{+}(\mathcal{K})}{4}}=2 n^{2}+p m^{2}$ for some $n, m \in \mathbb{Z}$ with $m \not \equiv 0 \bmod l$.

For $\mathcal{K}=\left(\mathbb{O}(\sqrt{2 p})\right.$ with $p \equiv 1 \bmod 8,\left(\frac{\pi}{l}\right)=-1 \Leftrightarrow l^{\frac{h^{+}(\mathcal{K})}{4}}=p n^{2}-2 m^{2}$ for some $n, m \in \mathbb{Z}$ with $m \not \equiv 0 \bmod l$.

In fact,
Lemma 3.7 $\operatorname{If}\left(\frac{(-1)^{\frac{p-1}{2}} p}{l}\right)=1$, then

$$
\left(\frac{u_{p}+w_{p}}{l}\right)= \begin{cases}\left(\frac{\pi}{l}\right) & \text { for } p \equiv 1 \bmod 8 \\ \left(\frac{u_{-1}+w_{-1}}{l}\right)\left(\frac{\pi}{l}\right) & \text { for } p \equiv 7 \bmod 8\end{cases}
$$

The case where $\left(\frac{(-1)^{\frac{p-1}{2}} p}{l}\right)=-1$ can be done by finding u_{p} and w_{p} from the presentation

$$
N_{\mathbb{Q}(\sqrt{2}) / \mathbb{Q} \mathbb{Q}}\left(u_{p}+w_{p} \sqrt{2}\right)=-(-1)^{\frac{p-1}{2}} p l
$$

Combining Remarks 3.1, 3.2, and 3.3, we have
Theorem 3.8 For $d=(-1)^{n}(2)^{m} \prod_{i=1}^{t} p_{i}$, with each $p_{i} \equiv \pm 1 \bmod 8$, we have

$$
(-d, u+w)_{p_{k}}=\left(\frac{u_{-1}+w_{-1}}{p_{k}}\right)^{n+(-1)^{\frac{p_{k}+1}{2}}}\left(\frac{u_{2}+w_{2}}{p_{k}}\right)^{m} \prod_{i \neq k}\left(\frac{u_{p_{i}}+w_{p_{i}}}{p_{k}}\right)
$$

Example 3.9 Consider the cases $d= \pm p l, \pm 2 p l$ with $p \equiv 7 \bmod 8, l \equiv 1 \bmod$ 8 , and $\left(\frac{l}{p}\right)=1$ (see Proposition 4.6 in [2]). Note that $\left(\frac{\pi}{l}\right)$ is well defined and so Lemma 3.7 is applicable.

For $d=p l$, we have $n=0, m=0$ and so

$$
\begin{aligned}
(-d, u+w)_{l} & =\left(\frac{u_{-1}+w_{-1}}{l}\right)^{-1}\left(\frac{u_{2}+w_{2}}{l}\right)^{0}\left(\frac{u_{-1}+w_{-1}}{l}\right)\left(\frac{\pi}{l}\right) \\
& =\left(\frac{\pi}{l}\right)
\end{aligned}
$$

For $d=2 p l$, we have $n=0, m=1$. Thus

$$
\begin{aligned}
(-d, u+w)_{l} & =\left(\frac{u_{-1}+w_{-1}}{l}\right)^{-1}\left(\frac{u_{2}+w_{2}}{l}\right)^{1}\left(\frac{u_{-1}+w_{-1}}{l}\right)\left(\frac{\pi}{l}\right) \\
& =\left(\frac{2+\sqrt{2}}{l}\right)\left(\frac{\pi}{l}\right)
\end{aligned}
$$

For $d=-p l$, we have $n=1, m=0$. This yields

$$
\begin{aligned}
(-d, u+w)_{l} & =\left(\frac{u_{-1}+w_{-1}}{l}\right)^{0}\left(\frac{u_{2}+w_{2}}{l}\right)^{0}\left(\frac{u_{-1}+w_{-1}}{l}\right)\left(\frac{\pi}{l}\right) \\
& =\left(\frac{1+\sqrt{2}}{l}\right)\left(\frac{\pi}{l}\right)
\end{aligned}
$$

Finally, for $d=-2 p l$, we have $n=1, m=1$. So

$$
\begin{aligned}
(-d, u+w)_{l} & =\left(\frac{u_{-1}+w_{-1}}{l}\right)^{0}\left(\frac{u_{2}+w_{2}}{l}\right)^{1}\left(\frac{u_{-1}+w_{-1}}{l}\right)\left(\frac{\pi}{l}\right) \\
& =\left(\frac{2+\sqrt{2}}{l}\right)\left(\frac{1+\sqrt{2}}{l}\right)\left(\frac{\pi}{l}\right) .
\end{aligned}
$$

Example 3.10 Consider the cases $d= \pm p l$ with $p \equiv l \equiv 1 \bmod 8$, and $\left(\frac{l}{p}\right)=1$ (see Proposition 4.4 in [7]). Again ($\frac{\pi}{l}$) is well defined and so Lemma 3.7 is applicable. For $d=p l$, we have $n=0, m=0$, and so

$$
\begin{aligned}
(-d, u+w)_{l} & =\left(\frac{u_{-1}+w_{-1}}{l}\right)^{-1}\left(\frac{u_{2}+w_{2}}{l}\right)^{0}\left(\frac{u_{p}+w_{p}}{l}\right) \\
& =\left(\frac{1+\sqrt{2}}{l}\right)\left(\frac{\pi}{l}\right)
\end{aligned}
$$

For $d=-p l$, we have $n=1, m=0$. Thus

$$
\begin{aligned}
(-d, u+w)_{l} & =\left(\frac{u_{-1}+w_{-1}}{l}\right)^{0}\left(\frac{u_{2}+w_{2}}{l}\right)^{0}\left(\frac{u_{p}+w_{p}}{l}\right) \\
& =\left(\frac{\pi}{l}\right)
\end{aligned}
$$

Acknowledgments I would like to thank Jurgen Hurrelbrink for bringing Sanford's thesis to my attention and Manfred Kolster for many productive discussions. Additionally, I thank Florence Soriano-Gafiuk at the Université de Metz for her hospitality.

References

[1] D. Batut, C. Bernardi, H. Cohen and M. Olivier, GP-PARI, version 2.1.1, available at http://www.parigp-home.de/.
[2] P. E. Conner and J. Hurrelbrink, On the 4-rank of the tame kernel $K_{2}(\mathcal{O})$ in positive definite terms. J. Number Theory 88(2001), 263-282.
[3] F. Gerth, The 4-class ranks of quadratic fields. Invent. Math. 77(1984), 489-515.
[4] J. Hurrelbrink and M. Kolster, Tame kernels under relative quadratic extensions and Hilbert symbols. J. Reine Angew. Math. 499(1998), 145-188.
[5] J. Hurrelbrink, Circulant Graphs and 4-Ranks of Ideal Class Groups. Canad. J. Math. 46(1994), 169-183.
[6] R. Osburn, Densities of 4-ranks of $K_{2}(\mathcal{O})$. Acta Arith. 102(2002), 45-54.
[7] B. Murray and R. Osburn, Tame kernels and further 4-rank densities. J. Number Theory, 98(2003), 390-406.
[8] H. Qin, The 2-Sylow subgroups of the tame kernel of imaginary quadratic fields. Acta Arith. 69(1995), 153-169.
[9] \longrightarrow, The 4-ranks of $K_{2}\left(\mathcal{O}_{F}\right)$ for real quadratic fields. Acta Arith. 72(1995), 323-333.
[10] L. Rédei, Arithmetischer Beweis des Satzes über die Anzahl der durch 4 reilbaren Invarianten der absoluten Klassengruppe im quadratischen Zahlkörper. J. Reine Angew. Math. 171(1934), 55-60.
[11] C. Sanford, A product formula for detecting 4-torsion in K_{2} of quadratic number rings. M.S. thesis, McMaster University, 1999.

Department of Mathematics
Jeffery Hall
Queen's University
Kingston, ON
K7L 3N6
e-mail: osburnr@mast.queensu.ca

[^0]: Received by the editors August 26, 2002.
 AMS subject classification: Primary: 11R70, 19F99; secondary: 11R11, 11R45.
 (C)Canadian Mathematical Society 2004.

